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Objectives: Upon completion of this article, the reader will be
able to describe the biological forces that drive intimal
hyperplasia leading to arteriovenous fistula failure.
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For the over 600,000 patients with end-stage renal disease
(ESRD) in the United States alone, hemodialysis has been an
indispensable lifeline. While there are several modes of

vascular access including grafts and catheters, native fistulas
are the most preferred, as they have lower rates of infection
and complication compared with other alternatives.1–4 These
outcomes and the Fistula First Initiative have helped to
increase the numbers of arteriovenous fistulas (AVFs) used
throughout the world and in diverse patient populations.4–7

However, AVFs can be affected by several problems that
compromise venous access. Stenosis, thrombosis, infection,
and aneurysm formation are the most common complica-
tions, and stenosis and thrombosis are the most relevant to
AVF access failure.

Stenosis in the setting of hemodialysis (HD) usually occurs on
the venous side, and is defined by the proliferation of several cell
types leading to intimal hyperplasia (IH). These include inflam-
matory cells (mainly macrophages) along with vascular smooth
muscle cells (SMCs), myofibroblasts, and fibroblasts. This rapid
proliferation occurs due to uremic changes in ESRD patients
along with stressors secondary to surgical trauma. To better
understand the complications associated with AVFs and
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Abstract Arteriovenous fistulas (AVFs) are essential for patients and clinicians faced with end-
stage renal disease (ESRD). While this method of vascular access for hemodialysis is
preferred to others due to its reduced rate of infection and complications, they are
plagued by intimal hyperplasia. The pathogenesis of intimal hyperplasia and subsequent
thrombosis is brought on by uremia, hypoxia, and shear stress. These forces upregulate
inflammatory and proliferative cytokines acting on leukocytes, fibroblasts, smooth
muscle cells, and platelets. This activation begins initially with the progression of
uremia, which induces platelet dysfunction and primes the body for an inflammatory
response. The vasculature subsequently undergoes changes in oxygenation and shear
stress during AVF creation. This propagates a strong inflammatory response in the vessel
leading to cellular proliferation. This combined response is then further subjected to the
stressors of cannulation and dialysis, eventually leading to stenosis and thrombosis. This
review aims to help interventional radiologists understand the biological changes and
pathogenesis of access failure.

Issue Theme Dialysis Interventions;
Guest Editor, Gordon McLennan, MD,
FSIR

Copyright © 2016 by Thieme Medical
Publishers, Inc., 333 Seventh Avenue,
New York, NY 10001, USA.
Tel: +1(212) 584-4662.

DOI http://dx.doi.org/
10.1055/s-0036-1572355.
ISSN 0739-9529.

15

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

mailto:misra.sanjay@mayo.edu
http://dx.doi.org/10.1055/s-0036-1572355
http://dx.doi.org/10.1055/s-0036-1572355


arteriovenous grafts (AVGs), it is helpful to study the chronology
of these pathological changes. AVF failure can be thought of as
occurring in three overly simplified steps: inflammation, prolif-
eration, and thrombosis.

Initially, patients with ESRD have high baseline levels of
inflammatory and platelet cell dysfunction secondary to
uremic toxins and reactive species. During the creation of
the AVF, there are changes in the vessel wall secondary to
hypoxia and shear stress. These factors work together in a
positive feedback loop propagating inflammation and
cellular proliferation, which progresses to the point of
stenosis and thrombosis.8–13 By exploring the nature of
these biological mechanisms, HD access failure can be
better understood, which can help guide future research
aimed to ameliorate it.

Uremia

As stated earlier, even before fistula or graft creation several
important systemic and vascular changes take place.14–17 The
inherent uremia of ESRD increases inflammation and oxida-
tive stress.18,19 These changes are evidenced by increases in
many inflammatory cytokines, namely, interleukin-6 (IL-6)
and tumor necrosis factor-α (TNF-α), and proliferate cyto-
kines, such as transformative growth factor - β (TGF-β).

There are many other effects of uremia that involve the
vascular system. Several studies have shown increased vessel
thickness and calcification in patients with ESRD. This in-
creased wall thickness is likely secondary to the proliferation
of vascular smooth muscle cells in response to inflammation
secondary to advanced glycation products and reactive oxy-
gen species (ROS), both of which are increased in ESRD
patients.20–22 The increased thickness of the vessel wall has
implications in cardiovascular risk and also in access failure as
it, along with inflammation, predisposes the vessel to steno-
sis.23–26 Increased vessel fibrosis, calcium phosphate deposi-
tion, and cellular calcium extrusion have been noted in ESRD
patients. These changes are likely secondary to oxidative
stress, dysfunctional cell signaling, and changes in mineral
metabolism.27,28 These effects are compounded by platelet
and endothelial wall dysfunction leading to rapid atheroscle-
rotic progression. These combined changes predispose the
vessel wall to negative, stenotic, inward remodeling after
access placement.

Hypoxia

It is in this background of widespread cellular dysfunction
that patients usually undergo placement of an AVG or AVF
creation. The trauma induced by surgery induces hypoxia
secondary to ischemia, both from cross-clamping and disrup-
tion of the vasa vasorum. This hypoxic injury is thought to
also occur due to repeat needle sticks during cannulation for
dialysis. This insult induces a series of cytokine cascades that
promote inflammation, angiogenesis, and proliferation,
which ultimately results in IH.

Ischemia and the release of ROS activate early response
elements such as hypoxia-inducible factor 1-alpha (HIF-1α)

and immediate-early responsive gene (IEX-1).29–31 These in
turn activate endothelial cells (ECs), inflammatory cells, and
vascular SMCs. HIF-1α, ROS, and hypoxia have been shown to
upregulate vascular endothelial growth factors (VEGFs),
which increase inflammation and promote EC proliferation.
In addition, VEGF-A subsequently activates metalloprotei-
nase (MMPs), namely, MMP-2, MMP-9, and ADAMTS-1,
which allows for remodeling of the extracellular matrix
(ECM) allowing for increased cellular proliferation.25,30,32–36

Hypoxia also activates platelet-derived growth factor, which
has been shown to increase myofibroblasts.13,31,35,37

These are the main proliferative changes that occur. How-
ever, cytokines such as VEGF-A, IEX-1, HIF-1α have also been
shown to propagate inflammation, which can subsequently
induce proliferation resulting in a dangerous positive feed-
back loop. VEGF-a can serve as a leukocyte attractant. HIF-1α
can induce activation of inflammatory cells.38 These and
other early cytokines have been linked to activation of IL-8
andMCP-1. MCP-1 serves a leukocyte attractant and activator
via CXCR motif receptors drawing monocytes, memory T
lymphocytes, and natural killer cells toward the AVF.39 IL-8
also recruits monocytes via the same receptors. Macrophage
migration inhibitory factor also becomes elevated, and is
thought to direct inflammatory cells toward the neointima,
inducing negative remodeling through the proliferation of
vascular SMCs and ECs.40,41 Another set of molecules impli-
cated in AVF failure are Heme oxygenase-1 (HO-1) and Heme
oxygenase-2 (HO-2). HO-1 is a stress protein that acts in a
vasoprotective capacity by reducing inflammation, prolifera-
tion,fibrosis, and oxidant stress. Based on knockout (KO) gene
models, it is likely that it acts on plasminogen activator
inhibitor-1 (PAI-1), MCP-1, MMP2, and MMP9.42,43 HO-2 is
thought to act in a similar manner.44

Along with these agents, TGF-β and TNF-α have also been
implicated in IH. TGF-β1 has been shown to lead to changes in
the ECM, cellular proliferation, and thrombus formation. TNF-
α is an inflammatory cytokine that has been shown to be
activated by local inflammation and to hypoxia.45,46 TNF-α is
released by leukocytes and also by SMCs and ECs.4 TNF-α can
act via the receptor for advanced glycation end products
(RAGE). This receptor has been linked to upregulation of
VCAM-1. TNF-α can also act through more specific receptors
upregulating inflammatory cytokines such as IL-1β; it also
promotes cellular proliferation in fibroblasts. The ability of
TNF-α to be released from and act on cells enables it to serve
as a strong mediator of cellular proliferation and inflamma-
tion in the setting of AVF failure.

Shear Stress

In addition to hypoxia and inflammation, shear stress also
plays a role in negative remodeling. After AVF creation, the
venous ECs undergo increases in shear stress due to greater
flow. Over the course of maturation, levels of shear stress
decrease as the vessel dilates and laminar flow is reestab-
lished. While there is normalization of shear stress distal to
anastomoses, ECs near the anastomosis experience continued
wall shear stress (WSS). ECs respond in three interrelated
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mechanisms: by rearranging the cytoskeleton, expressing
different signaling cytokines, and affecting vasodilation.47–50

Increased WSS increases inflammatory cytokines such as
Il-1β, TNF-α, and interferon (IF-γ).51–53 Additionally, WSS has
been shown to increase VEGF-A, MMP2, MM9, intercellular
adhesion molecule-1 (ICAM-1), and other cytokines implicat-
ed in the proliferative aspect of negative remodeling.54 Many
of these changes are likely tied to nuclear factors such as
decreased Krüppel-like factor 2 (KLF-2) and increased AKT
signaling. KLF-2 has been shown to maintain a resting cell
state and suppress inflammatory cytokines such as MCP-1
and IL-8. AKT is linked to the ERK/MAPK pathways, which
propagate cell survival and mitotic changes.

WSS can induce mechanical tension on vascular endothe-
lial (VE)-cadherin and platelet endothelial cell adhesion
molecule (PECAM)-1.55,56 This mechanical stress serves to
remodel the actin fibers and intracellular junctions. This
allows the cell to change shape, and also induces cellular
mobility.57,58 Beyond structural changes within cells, WSS
also affects the vessel structure by affecting heme oxygenase
and nitric oxide (NO) synthesis. NO acts to dilate the vessel,
but this response can become blunted in cases of persistent
activation such as hypertension.59

Thrombosis

Thrombosis of HD access is a cumulative step and often
signals the end of access viability. The same factors that drive
IH lead to thrombosis. It is important to note that in the
setting of ESRD, patients often experience increased bleeding
time. The increased bleeding is secondary to dysfunctional
platelets and also due to impaired platelet endothelial inter-
actions. It is likely that much of the platelet dysfunction seen
can be attributed to metabolic changes, and activation of
coagulative and fibrinolytic cascades.60 Platelets in uremia
have accelerated apoptosis. Levels of ADP and serotonin are
lower in ESRD patients. These reduced levels limit platelet
aggregation and activation.60 Thromboxane A2 is also
systemically decreased in ESRD patients, which limits vaso-
constriction and platelet aggregation. Additionally, uremia
appears to have an impact on the cytoskeletal structure of
platelets, which are found to have lower levels of actin,
inhibiting contractile mechanisms and mobility.61 These
and other changes account for the bleeding aspect caused
by uremia.

On a systemic level, these factors lead to increased bleed-
ing, but at the site of access, venous stenosis, shear stress, and
endothelial damage can precipitate clot formation.62–69 The
process of dialysis has also been shown to activate platelets,
depending mainly on the membrane used in the dialysis
machine. This can result in thrombocytopenia due to platelet
destruction, and can also yield cell aggregates. Platelet–
leukocyte aggregates can induce atherosclerosis and throm-
bosis.70 Additionally, dialysis has been shown to increase
circulating levels of p-selectin, CD40L, von Willebrand factor
(WF), and D-dimer. This suggests that platelet activation in
dialysis may lead to temporarily higher coagulability in the
postdialysis period.71–73

Another major factor specific to the AVF is inflammation
due not just to AVF creation but also to repeat needle stick
injury. Platelets can adhere to the already inflamed endothe-
lial tissue and potentiate the process by releasing MCP-1,
VCAM-1, ICAM-1, IL-1 β, and TNF-α, among others. These
cytokines further the activation cascade leading to increased
inflammation, adhesion, and eventually plaque or thrombus
formation. Additionally, platelets can also directly induce
these cytokines by direct interaction via P-selectin and
with the monocyte receptor Mac-1 (αMβ2) via αIIbβ3 or
GPIbα.74 Uremia along with shear stress and indoxyl sulfate
have also been linked with increased endothelial micro
particles. These by-products of EC activation or apoptosis
can inhibit endothelial NO, further reducing the dilatory
capacity of the vessel.75,76

Genetics

There is a growing body of evidence examining the genetics of
fistula failure. Many of the driving forces implicated in the
activation of genes leading to AVF failure can also lead to
epigenetic changes. Epigenetic changes affect the expression
of genes through changes in histone modifications without
changes in the DNA sequence. For example, HIF-1α has been
shown to alter a set of histone-modifying genes.77 It is likely
that chronic kidney disease (CKD) and the comorbidities seen
in ESRD patients also result in epigenetic changes that affect
fistula functionality.78 In addition to these changes, several
polymorphisms have been linked to AVF patency rates, spe-
cifically VEGF-A, HO-1, and TGF-β.12,79–81

There have been genetic studies focused on thrombosis.
For example, polymorphisms in the TNF-α promoter region
have been linked to AVF thrombosis.82 There have also been
studies assessing platelet function. Platelet antigens such as
human platelet antigen-3aa (HPA-3aa) have been found to
be linked to AVF failure. This gene codes for a part of
glycoprotein IIb (GbIIb). Certain alleles of these genes
have been correlated with higher rates of access thrombo-
sis.83 Studies examining genetic predispositions to AVF
failure lend credence and support to the current under-
standing of the molecular changes leading to AVF failure.
Future work aiming at gene-specific therapy may help
alleviate IH.

Conclusion

Hypoxia, uremia, shear stress, and thrombosis are the major
factors implicated in AVF failure. These forces act on fibro-
blasts, macrophages, ECs, and platelets. They induce many
interrelated genes implicated in inflammation and prolifera-
tion. These cytokines, along with the stressors of surgical
anastomosis, repeat needle stick injury, and dialysis itself
leads to IH and thrombosis.
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