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Abstract

Attention can be conceptualized as comprising the functions of alerting, orienting, and executive
control. Although the independence of these functions has been demonstrated, the neural
mechanisms underlying their interactions remain unclear. Using the revised attention network test
and functional magnetic resonance imaging, we examined cortical and subcortical activity related
to these attentional functions and their interactions. Results showed that areas in the extended
frontoparietal network (FPN), including dorsolateral prefrontal cortex, frontal eye fields (FEF),
areas near and along the intraparietal sulcus, anterior cingulate and anterior insular cortices, basal
ganglia, and thalamus were activated across multiple attentional functions. Specifically, the
alerting function was associated with activation in the locus coeruleus (LC) in addition to regions
in the FPN. The orienting functions were associated with activation in the superior colliculus (SC)
and the FEF. The executive control function was mainly associated with activation of the FPN and
cerebellum. The interaction effect of alerting by executive control was also associated with
activation of the FPN, while the interaction effect of validity by executive control was mainly
associated with the activation in the pulvinar. The current findings demonstrate that cortical and
specific subcortical areas play a pivotal role in the implementation of attentional functions and
underlie their dynamic interactions.
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Introduction

Attention refers to the activity of a set of brain networks that influence the priority of
information processing for access to conscious awareness (Mackie et al., 2013; Posner and
Fan, 2008). It can be conceptualized in specific functional and anatomical terms, with three
separable networks of alerting, orienting, and executive control (Petersen and Posner, 2012;
Posner and Fan, 2008; Posner and Petersen, 1990). The alerting network is responsible to
achieve and maintain phasic and tonic states of readiness in order to process non-specific
impending inputs and is associated with activation in the thalamus and a set of frontal and
parietal regions, such as dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex
(ACC) and anterior insular cortex (Al), and areas near or along the intraparietal sulcus
(thereafter referred to as IPS) (Fan et al., 2005; Kinomura et al., 1996; Perin et al., 2010),
which are part of the extended frontoparietal network (FPN) (Fan, 2014). The orienting
network shifts the focus of attention to specific inputs within or among different sensory
modalities, and is associated with activation in the frontal eye fields (FEF) and IPS (Corbetta
et al., 2002; Corbetta and Shulman, 1998; Fan et al., 2005; Thompson et al., 2005). The
executive control network detects and resolves conflict between competing mental processes
(Fan et al., 2009; Fan et al., 2002) and is associated with activation in the ACC (Botvinick et
al., 2001; Bush et al., 2000; Fan et al., 2005; MacDonald et al., 2000; Matsumoto and
Tanaka, 2004), and other areas of the FPN (Fan, 2014). The synergy of the three attentional
functions is needed to achieve cognitive control (Mackie et al., 2013), however, the neural
substrates underlying the interactions of the attentional networks remains to be clarified.

Although the three attentional networks have been shown to act independently (Fan et al.,
2002) and to be associated with distinct neural substrates (Fan et al., 2005), evidence
suggests that the attentional networks also interact to influence performance (Callejas et al.,
2004; Fan et al., 2009; Wen et al., 2013). Alerting has been shown to interact with executive
control, resulting in an increase of the conflict effect (Fan et al., 2009). Orienting enhances
the efficiency of executive control (Callejas et al., 2004; Fan et al., 2009; Spagna et al.,
2015), and alerting has been shown to influence the behavioral effects of orienting (Callejas
et al., 2004; Fuentes and Campoy, 2008; Spagna et al., 2014). However, neuroimaging
studies have not yet systematically investigated brain regions and networks that support the
interactions of attentional functions.

Much of the neuroimaging literature has focused on the cortical activity associated with the
attentional functions. However, animal and human studies have also shown substantial
evidence that subcortical regions play a critical role in attention (e.g., Fan et al., 2005;
Karnath et al., 2002; Petersen et al., 1987; Rafal and Posner, 1987; Shipp, 2004). Alerting is
influenced by the cortical distribution of the noradrenergic (NAergic) system that arises
from the locus coeruleus (LC) (Beane and Marrocco, 2004; Marrocco and Davidson, 1998;
Moruzzi and Magoun, 1949), a nucleus located in the dorsorostral pons which receives
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strong descending afferents from prefrontal brain regions such as the ACC (Aston-Jones and
Cohen, 2005b). The presentation of a warning signal is often accompanied by activity in the
LC (Petersen and Posner, 2012; Posner and Petersen, 1990). Orienting is modulated by
cholinergic systems arising in the basal forebrain (Marrocco and Davidson, 1998).
Subcortical activity related to the orienting function has been shown in the superior
colliculus (SC) in the midbrain, as well as pulvinar and reticular nucleus in the thalamus
(Ignashchenkova et al., 2004; Lee and Keller, 2006; Petersen et al., 1987; Salzmann, 1995;
Shipp, 2004). Executive control relies on regions associated with the dopaminergic system
(Marrocco and Davidson, 1998). The ventral tegmental area (VTA) projects to ACC and
lateral prefrontal cortex, areas of the executive control network (Botvinick et al., 2004;
Kerns et al., 2004; Raz and Buhle, 2006). Although subcortical regions have been shown to
play a critical role in attention, the activation of these areas in attentional networks and their
interactions remains to be thoroughly examined.

In this study, we used the revised attention network test (ANT-R) (Fan et al., 2012; Fan et
al., 2009) together with functional magnetic resonance imaging (fMRI) to examine the
neural substrates underlying the attentional functions and the interactions among them. We
focused on identifying the activation of subcortical structures associated with the attentional
networks and their interactions. We predicted that there would be substantial involvement of
cortical and subcortical regions, such as LC, SC, VTA, and thalamus in the attentional
functions and their interactions.

Materials and Methods

Participants

Twenty-four adult volunteers (11 females and 13 males; mean age = 26.3 years; range = 18—
49 years) participated in this study. All participants were right-handed and had normal or
corrected-to-normal vision with an average estimated intelligence quotient of 115 + 17. The
Institutional Review Board of Icahn School of Medicine at Mount Sinai approved the
consent procedure, and written informed consent was obtained from each participant prior to
the experimental procedures.

The revised attention network test

The ANT-R (Fan et al., 2009) was designed to magnify the interactions among the three
attentional functions based upon the original task (Fan et al., 2002) by manipulating the
validity of spatial cues in order to measure the orienting operations of disengaging and
moving + engaging. The details of the ANT-R are illustrated in Figure 1. A central fixation
cross and two boxes subtending 4.69° of the visual angle to the left and right of fixation
remain visible on the screen throughout the duration of the task. In each trial, depending on
the condition, either a transient cue (brightening of the box) is presented for 100 ms (the
cued conditions) or the screen remains unchanged (the no cue condition). Three types of
cues were used: (1) no cue (no brightening prior to target onset); (2) double cue (brightening
of both boxes); and (3) spatial cue (one box brightening prior to target onset). The difference
between the double cue and no cue conditions is that the former provides temporal
information about the impending target, while in the latter condition no temporal
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information is provided because no cue is presented. The contrast between these two
conditions gives a measure of how temporal information regarding the upcoming target
benefits participants’ performance (the alerting effect). The spatial cue provides both
temporal and spatial information about the target, and may be valid, indicating the exact
position where the target will appear, or invalid, cueing the position opposite to where the
target will appear. The contrast between these two conditions gives a measure of how valid
spatial information about the upcoming target benefits participant’s performance, compared
to a performance cost by invalid spatial information (validity effect). Within the validity
effect, two components can be separated: disengaging (invalid cue minus double cue) and
moving + engaging (double cue minus valid cue). After a variable duration (either 0, 400, or
800 ms, mean = 400 ms), the central target arrow and two flanker arrows on each side are
presented at one of the two possible locations and remain visible for 500 ms. A single arrow
subtends 0.58° of visual angle and the contours of adjacent arrows are separated by 0.06° of
visual angle, so that the target + flanker array subtends a total of 3.27° of visual angle.
Participants are instructed to respond to the direction of the central arrow as quickly and
accurately as possible by pressing the left or right response buttons using the left or right
index fingers respectively. There are two flanker conditions: the congruent condition with
the target and the flankers pointing toward the same direction, and the incongruent condition
with the target and the flankers pointing in opposite directions. The contrast between these
two conditions (incongruent minus congruent) gives a measure of the cost of distracting
stimuli on participants’ performance (the conflict effect). The duration between the offset of
the target and the onset of the next trial is jittered systematically, approximating an
exponential distribution ranging from 2000 to 12000 ms, with a mean of 4000 ms. The mean
trial duration is 5000 ms. There are 12 trials for no cue, 12 trials for double cue, and 48 trials
for spatial cue (75% valid and 25% invalid) conditions in each run, with 72 trials in each
run. The run duration is 420 seconds. There are 4 runs in total. The total time to complete
this task is approximately 30 minutes.

Behavioral data analysis

The three attentional networks and their interaction effects were operationally defined (see
Table 1) as differences in performance between experimental conditions (Fan et al., 2009).
Mean reaction time (RT) for each condition were calculated. Error trials (incorrect and
missing responses) were excluded from the mean RT calculation. RT outliers, defined as
responses beyond 1700 ms (due to either omission error or long RT), were excluded by the
task program. The significance of the effects was tested using one-sample t-tests (one-
tailed).

Image acquisition

All MRI scans were acquired on a 3 T Siemens Allegra MRI system at the Icahn School of
Medicine at Mount Sinai. Each scan run started with two dummy volumes before the onset
of the task to allow for equilibration of T1 saturation effects, followed by 168 image
volumes. All image volumes were acquired along axial planes parallel to the anterior
commissure-posterior commissure (AC-PC) line. A high-resolution T2-weighted anatomical
image volume of the whole brain was acquired on an axial plane parallel to the AC-PC line
with a turbo spin-echo pulse sequence with the following parameters: 40 axial slices 4-mm
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thick, skip = 0 mm, repetition time (TR) = 4050 ms, echo time (TE) = 99 ms, flip angle =
170°, field of view (FOV) = 240 mm, matrix size = 448x512, voxel size = 0.47x0.47x4 mm.
Four runs of T2*-weighted image volumes were acquired with a gradient echo-planar
imaging sequence using the following parameters: 40 axial slices, 4-mm thick and skip =0
mm, TR = 2500 ms, TE = 27 ms, flip angle = 82°, FOV = 240 mm, matrix size = 64x64, in-
plane resolution = 3.75x3.75x4 mm.

Image analysis

Functional MRI preprocessing and the statistical modeling were conducted using the
statistical parametric mapping package (SPM8, Wellcome Trust Centre for Neuroimaging,
London, UK). Image preprocessing was performed first for each participant: each image
volume was realigned to the first volume, slice timing corrected, co-registered to the T2
image, and spatially normalized to the Montreal Neurological Institute (MNI) ICBM152
space based on normalization parameters of the T2 image, resampled to a voxel size of
2x2x2 mm3. To test the experimental effect on brainstem regions (such as LC, SC, and
VTA) and thalamus, we also generated another set of normalized images using a 2-stage
Automated Brainstem Co-registration (Napadow et al., 2006) to improve brainstem co-
registration to the MNI ICBM 152 template. We created a mask of the MNI-152 brainstem
(also including surrounding cerebral-spinal fluid voxels) across axial section from z = 13 to
z = =57. Voxels inside this mask were set to 1, while other voxels were set to 0. The first
stage involved global co-registration of the EPI images to MNI ICBM 152 space based on
normalization parameters of the mean EPI image, also resampled to a voxel size of 2x2x2
mm?3. The seconded stage involved co-registration of the normalized EPI images to both
MNI ICBM 152 EPI template and the EPI template weighted by the brainstem mask. Finally
all normalized images were spatially smoothed with an 8x8x8 mm full-width-at-half-
maximum Gaussian kernel. To optimize the detection of the subcortical activation, we tested
different kernel sizes of 2, 4, and 8 mm. The 8-mm kernel yielded the best power and
therefore all results reported below include smoothing with the 8-mm kernel. This is
possibly because the large variation in localization of subcortical regions due to individual
indifference similar to cortical regions. This suggests that high-resolution scanning may not
be the best solution to improve functional imaging of subcortical areas. Other studies have
also used a similar kernel size for the detection of subcortical brain activation (Minzenberg
et al., 2008; Riva et al., 2011; Tomasi and Volkow, 2014). For the activation in the cortical
regions (and surface views in the figures), we reported results based on the whole-brain
normalization method, while for the activation in the subcortical regions (and section views
in the figures) results are based on the two-stage normalization method described above.

General linear modeling (GLM) was conducted for the functional scans from each
participant by regressing the observed event-related blood oxygenation level-dependent
(BOLD) signals on task-related regressors to identify the brain regions which show the
hemodynamic response as a function of task events (Friston et al., 1994). The regressors
were created by convolving a train of delta functions representing the sequence of individual
events with the SPM basis function of hemodynamic response (HRF). The regressors
included five cue-related hemodynamic responses: double cue, left valid cue, right valid cue,
left invalid cue, right invalid cue. Regressors also included 16 target-related hemodynamic
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responses: four cue conditions (no cue, double cue, valid cue, invalid cue) x two flanker
conditions (congruent and incongruent) x two target locations (left and right) (Fan et al.,
2012). The six parameters generated during motion correction were entered as covariates. In
addition, hemodynamic responses related to error response events for each condition were
modeled separately to partial out the error related activity. The effects of the attentional
functions were tested by applying linear contrasts to the regressors. The target responses
under different cue-by-target conditions were equally weighted for the contrast between
congruent and incongruent conditions. As in our previous study (Fan et al., 2012), the
attentional network effects were defined differently from the behavioral effects for the
contrasts. For the alerting effect, the contrast was defined as double cue compared to
baseline. Moving + engaging was defined as valid cue minus double cue. The interaction of
alerting by flanker conflict was defined as (double cue, flanker incongruent — double cue,
flanker congruent) — (no cue, flanker incongruent — no cue, flanker congruent). The
interaction of validity by flanker conflict was defined as (invalid cue, flanker incongruent —
invalid cue, flanker congruent) — (valid cue, flanker incongruent — valid cue, flanker
congruent).

The contrast images from all participants were entered into a second-level group analysis
with random-effects statistical models. For multiple comparison correction, AlphaSim
(http://afini.nimh.nih.gov/pub/dist/doc/manual/AphaSim.pdf) was used to determine the
extent threshold for a given height threshold with a corrected p value of 0.05. An
uncorrected p value of 0.01 for the height (intensity) threshold of each activated voxel and a
threshold of extent cluster size k > 191 of 2x2x2 mm voxels were applied. This threshold is
relatively liberal given that this study is more hypothesis-driven and based on a priori
knowledge (rather than exploratory) regarding the brain regions involved in the attentional
functions. Therefore, we believe this is a good balance in terms of minimizing Type | error,
and having sufficient power to detect brain activity and connectivity. For the hypothesis-
driven subcortical regions (such as LC and SC), which are much smaller than cortical
regions (DuBois and Cohen, 2000; Keren et al., 2009), we used a more liberal height
threshold of p < 0.01 uncorrected (without extent threshold) because the extent threshold
estimated by AlphaSim was much larger than the volumes of these structures. The
localization of the LC, SC, and VTA were referenced to previous MRI studies (D’ Ardenne
et al., 2008; Katyal et al., 2010; Keren et al., 2009; Minzenberg et al., 2008; Murphy et al.,
2014). The conjunctions of the activation for the different attentional effects were also
examined to reveal shared brain regions/networks between different attentional functions.
An uncorrected p value of 0.01 for the conjunction was used with the same extent threshold
as mentioned above.

Region of interest analysis

Based on the second-level analyses, three subcortical regions identified in the activation
maps were chosen as the regions of interest (ROI): LC (2, —34, —20) for the alerting effect
and SC for disengaging ([-8, —24, —4] for left SC and [8, —24, —4] for right SC) effects of
orienting. The coordinates were close to the local maxima, with adjustments based on the
references of previous studies. However, in the tables we listed the coordinates of local
maxima of the clusters. The first eigenvariate of voxels in corresponding contrast images,
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which passed the height threshold inside the cluster and also inside the sphere around the
activation peak, were extracted for each participant. That is, voxels included in the ROI
satisfied two conditions in that they were: (1) located inside the sphere; and (2) nearby the
activation peak of a specific brain structure. This method balances the Type I error with
achieving sufficient power to detect activation in subcortical structures. The radiuses was 4-
mm for the LC and 3-mm for the left and right SC, because left and right LC clusters were
too close to be separated into two ROIs under current resolution. There were 14 voxels in
the LC ROI for the alerting effect and 33 voxels in the SC ROI for the disengaging effect.
Pearson’s correlation analyses were conducted to examine the relationship between
behavioral effects and brain activation in the corresponding ROI.

Behavioral results

fMRI results

The overall mean RT was 710 ms (SD = 115 ms) and the overall error rate of the task
performance was 4.41% (SD = 3.94%). Figure 2 shows the attentional network effects in RT
and error rate. The alerting effect was significant for both RT (M £ SD =53 + 35 ms, t(23) =
7.39, p < 0.01) and error rate (2.60 + 6.03 %), t(23) = 2.12, p < .05. The disengaging effect
was significant for both RT (57 £ 30 ms, t(23) = 9.21, p < 0.01) and error rate (2.43 £
4.11%, t(23) = 2.90, p < 0.01). The moving + engaging effect was significant for RT (58 +
27 ms, t(23) = 10.62, p < 0.01) but not for error rate (-0.55 £ 3.50%, t(23) = -0.77, n.s.).
The validity effect was significant for both RT (115 + 38 ms, t(23) = 14.73, p < 0.01) and
error rate (1.88 + 3.08 %, t(23) = 2.99, p < 0.01). The flanker conflict effect was significant
for both RT (138 + 40 ms t(23) = 17.00, p < 0.01), and error rate (4.89 + 5.30%, t(23) =
4.52, p < 0.01). The alerting by flanker conflict interaction effect was significant for RT (21
+ 56 ms, t(23) = 1.81, p < 0.05) and error rate (4.17 + 10.78%, t(23) = 1.89, p < 0.05). The
validity by flanker conflict interaction was significant for both RT (64 + 48 ms, t(23) = 6.53,
p < 0.01) and error rate (5.03 £ 5.32%, t(23) = 4.64, p < 0.01).

Activation associated with the alerting effect—Figure 3 shows bilateral activation
related to the alerting effect in ACC, Al, FEF, temporoparietal junction (TPJ), IPS,
precentral and postcentral gyri, and other occipital regions. Activation of subcortical regions
was also found in thalamus, putamen, LC, and cerebellum (see Table 2). The correlation
between LC activation and the behavioral alerting effect was not significant (r = -0.24, p =
0.18, one-tailed). For fMRI of subcortical structures in attentional functions, caution is
warranted due to the limitations in localizing these structures in fMRI. For example, the LC
cluster we localized is more medial than the actual structure. Due to fMRI data acquisition
distortion and signal loss, and most importantly individual differences in terms of
localization, it is difficult to localize the activated voxels in the small anatomically defined
ROls.

Activation associated with the orienting effects—Figures 4A-C, and Table 3, show
activation related to the disengaging, moving + engaging, and validity effects, respectively.
The activation for disengaging was found in FEF bilaterally, left ACC, right superior frontal
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gyrus, left precentral gyrus, right precentral and postcentral gyri, right parahippocampal
gyrus, left cuneus, right precuneus, right calcarine cortex, and subcortically in bilateral
thalamus extending to SC and left caudate nucleus. Moving + engaging was only associated
with left red nucleus. The validity effect was associated with activation in parahippocampal
gyrus bilaterally, right lingual gyrus, right fusiform gyrus, and other frontal and parietal
brain regions including both FEF, in addition to the thalamus bilaterally, right putamen, and
left caudate nucleus. The correlation between SC activation and the behavioral disengaging
effect was not significant (r = 0.05, p = 0.41, one-tailed). The localization of SC, as shown
in the figure, is more toward the pretectal nucluei rather than the tectal nuclei. This may be
due to inaccurate co-registration of some subjects resulting in cutting the activation in the
tectal nuclei. It is also possible that the activation is in the pretectal nuclei that are related to
gaze-shift and eye movement.

Activation associated with the flanker conflict effect—Figure 5 shows FPN
activation related to the executive control function, including ACC (peaked at right), Al,
FEF, IPS, precentral gyrus bilaterally, and right middle and left inferior occipital cortex.
Activation was also found in subcortical regions including bilateral thalamus (including
pulvinar and extending to SC) and caudate nucleus, and regions in cerebellum including
somatomotor regions of the cerebellum and the vermis (see the right bottom panel of Figure
5). We did not find activation specifically within the VTA, but in other nearby midbrain
structures (see the enlarged section of the axial slice of Figure 5).

Activation associated with the interaction and conjunction of alerting and
flanker conflict effect—Figure 6 and Table 5 show activity associated with the
interaction and conjunction of the alerting and flanker conflict effects. The interaction of
alerting by flanker conflict was related to the activation of bilateral inferior and middle
frontal gyri, IPS bilaterally, right insula, and subcortical regions of right putamen and
regions of the cerebellum (Figure 6A). Conjunction analysis revealed that alerting and
flanker conflict shared activation in bilateral ACC, bilateral thalamus, right Al, bilateral
FEF, bilateral IPS, and regions of the cerebellum (Figure 6B).

Activation associated with the interaction and conjunction of validity and
flanker conflict effect—The interaction of validity by flanker conflict was related to the
activation of the right Al, right superior frontal gyrus, right postcentral gyrus, and bilateral
pulvinar (see Figure 7A and Table 6). The validity and flanker conflict conjunction was
related to the activation of left thalamus (extending to pulvinar) (Figure 7B and Table 6).

Discussion

In this study, beyond associating cortical activation with the independent alerting, orienting,
and executive control functions as in our previous study (Fan et al., 2005), we identified
cortical and subcortical regions supporting the attentional functions and the interactions
among them. These results expand upon previous knowledge about the brain networks
involved in implementing attentional functions, and show that the recruitment of areas of the
FPN together with subcortical brain regions underlies dynamic interactions of attentional
functions to achieve cognitive/attentional control.

Neuroimage. Author manuscript; available in PMC 2017 April 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xuan et al. Page 9

Cortical and subcortical contributions to the attentional functions

The alerting function—Consistent with previous theoretical (Petersen and Posner, 2012)
and empirical work (Clerkin et al., 2009; Rajkowski et al., 2004; Ramos and Arnsten, 2007),
we found that activation of the LC was related to the alerting effect (Aston-Jones and
Cohen, 2005a; Petersen and Posner, 2012). Activation of the LC-noradrenergic system is
thought to serve as a temporal “attentional filter” to facilitate goal-relevant information
processing and response by modulating the responsiveness of cortical regions responsible
for task performance (Aston-Jones and Cohen, 2005b; Aston-Jones et al., 2000; Morrison
and Magistretti, 1983; Sara, 2009; Sara and Bouret, 2012). This increases the signal-to-noise
ratio and consequently signal detection (Servan-Schreiber et al., 1990).

In addition to areas previously identified for the alerting network (Fan et al., 2005), such as
thalamus and TPJ, activation was also observed in the ACC, Al, IPS, and other frontal and
parietal sites of the FPN. The influence of ACC on alerting to modulate behavioral
responsiveness has been previously suggested (Aston-Jones and Cohen, 2005b). These
regions of the FPN are involved in attentional/cognitive control of information processing
and are related to response anticipation (Fan, 2014; Fan et al., 2007a). The alerting cue
carries the temporal information about the target onset, triggering the activation of FPN and
other subcortical regions for the preparation of response. The Al, in addition to ACC, has a
distinct functional role in monitoring baseline uncertainty (Fan et al., 2014). Also, in a
recent study we found that TPJ is a necessary region in the interaction between bottom-up
and top-down attentional control (Wu et al., 2015). Therefore, the alerting function is not
only related to the arousal function of thalamus, but is implemented by a large brain network
that supports timing, response preparation, and other functions of warning signals.

The orienting functions—Activation of the SC was associated with the disengaging
component of orienting functions, consistent with its previously identified role as a critical
structure in orienting of attention (Gitelman et al., 2002) and saccadic eye movements
(Wurtz et al., 1982). The orienting functions are modulated by acetylcholine (Petersen and
Posner, 2012; Posner and Petersen, 1990), and the SC is highly innervated by cholinergic
inputs (Hall et al., 1989; Harting et al., 1991). SC activity can typically be modulated by
gaze or covert visual shifts of attention (Krauzlis et al., 2013; Ngan et al., 2015). In this
study, we were able to differentiate the activation associated with the orienting components
by refining the operational definitions to include the disengaging and moving + engaging
components of orienting. The SC has also been implicated in the disengaging component of
orienting, most recently demonstrated at the neuronal level (Ngan et al., 2015). In addition
to the ACC, the FEF was also involved in the disengaging component of orienting. For the
moving + engaging component of orienting, we only found activation in the left red nucleus.
Its role in orienting of attention is not clear, but may be related to the voluntary movement
of attention towards the cued location and/or engaging to the cued location. For the validity
effect, which is a combination of the two components of orienting, we also found the FEF
involvement in addition to early visual areas and subcortical structures of thalamus and basal
ganglia.
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The executive control function—The dopaminergic system has been associated with
the executive control of attention (Fan et al., 2003). The VTA is one of the two major
dopamine sources in the brain, with wide projections to cortical and subcortical regions
(Amalric and Koob, 1993; Chudasama and Robbins, 2004; Smith and Kieval, 2000;
Tzschentke, 2001). However, we did not find activation in the VTA, possibly due to the
scanner parameters that were not optimum to image such a small structure. Overall, our
result is in line with our information theory account of cognitive control (Fan, 2014), which
proposes that areas within the FPN, such as ACC, FEF, and IPS, dynamically interact to
incorporate the functions of cognitive control.

Activation in the lobule VI bilaterally, and anterior and posterior lobules of the cerebellum
were also associated with the flanker conflict effect, which is consistent with the previous
studies showing cerebellar contribution to the inhibition of prepotent responses (Bellebaum
and Daum, 2007) and in attention (Fan et al., 2003). Resting state functional connectivity
has revealed that in addition to brain networks associated with motor function, the
frontoparietal, ventral, and dorsal attention systems (among others) are also functionally
connected to discrete cerebellar regions (Buckner et al., 2011). The task-related activation of
the cerebellum for the executive control function found in this study confirms the
involvement of cerebellum in attentional functions.

The involvement of thalamus and basal ganglia in attentional functions—While
the recruitment of subcortical structures has been described in the context of individual
attentional functions, this study identified the thalamus as a common structure that was
involved in each of the attentional functions. The involvement of the intralaminar thalamic
region and reticular nucleus for the alerting (Morrison and Magistretti, 1983), dorsal
pulvinar, oculomotor thalamus and caudal intralaminar nuclei for the orienting (Murphy et
al., 2014; Rafal and Posner, 1987), and more broadly of the thalamus for the executive
control functions (Fan et al., 2005; Perin et al., 2010; Yanaka et al., 2010) has been
previously demonstrated. The majority of input to cortical areas is routed through the
thalamus (Scholey, 2002), which has also been increasingly appreciated as a critical
structure in cognition, beyond its earlier simplified definition as a relay’ structure, with a
role in attention posited several decades ago as the basis of the attentional searchlight’
(Crick, 1984).

The involvement of the basal ganglia in the orienting functions was demonstrated in the
present study and is consistent with previous resting state connectivity evidence that the
putamen is associated with the ventral attention system, while the caudate nucleus is
associated with the FPN (Choi et al., 2012). These structures receive input from almost
every brain region, and have been demonstrated to play an attentional role in both the
enhancement of task-relevant information processing and the inhibition of task-irrelevant
processing (van Schouwenburg et al., 2015).

Interactions of attentional networks

One of the important findings of this study is the involvement of FPN in attentional
functions of alerting and executive control, although this is not surprising. Here the FPN is
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defined more broadly than in Petersen and Posner (2012) and includes the ACC, Al, and
thalamus of the cingulo-opercular network (Dosenbach et al., 2008). Within the FPN, ACC
and Al are involved in baseline uncertainty processing (Fan et al., 2014). The involvement
of FPN in the alerting and executive control functions is supported by the identified brain
regions of FPN (frontal and parietal regions), as well as occipital regions and putamen and
cerebellum, associated with the interaction effect between these attentional functions. It is
further supported by activation in bilateral thalamus, bilateral ACC, right insula, and parts of
FPN found for the conjunction of alerting and flanker conflict effects, indicating a partial
overlap in the neural substrate supporting these two functions.

We previously observed that behaviorally, alerting interacts with the executive control
function indicated by an increase in conflict effect (Fan et al., 2009; Spagna et al., 2015).
This may be explained by shared neural resources in FPN for these two functions. Both
alerting and executive control functions are associated with an increase in information
(warning cue vs. baseline for alerting and incongruent flankers vs. congruent flankers for
executive control), supporting the case for involvement of the FPN in alerting. Therefore,
the FPN is phasically activated for the general purpose of cognitive control in a task state
with increased uncertainty. In our previous studies, we have argued that cognitive control is
implemented by attentional functions (Mackie et al., 2013), and demonstrated that the
activation of the regions of FPN is a linear function of cognitive control load, estimated in
units of information entropy (Fan et al., 2014).

The validity by flanker conflict interaction effect was associated with activation in pulvinar
bilaterally, right Al, right FEF and PCC. The pulvinar is an association thalamus nucleus
that receives its major inputs from the visual cortex, and ascending SC projections relay
through dorsal and ventral pulvinar to the FEF and other frontal areas (Guillery, 1995;
Shipp, 2004). It is often activated in studies of the orienting network (LaBerge and
Buchsbaum, 1990; Petersen et al., 1987). The pulvinar has been proposed to be involved in
synchronizing information transfer according to the allocation of spatial attention (Saalmann
etal., 2012) and in response anticipation (Fan et al., 2007b). Lesion studies showed that the
pulvinar plays a key role in modulating attentional selection mechanisms by integrating
frontoparietal attentional control signals within visual processing areas (Snow et al., 2009).
The increased involvement of the pulvinar in the validity by flanker conflict interaction may
suggest this structure is recruited when there is a need to disengage attention from one
location and move and engage to another location during conflict processing.

In summary, this study revealed that attentional control is implemented via complex
corticosubcortical relationships underlying alerting, orienting, and executive control and
their interactions. Attention is a dynamic mental operation that is implemented by distinct
yet interactive brain networks. Each function is associated with cortical and subcortical
regions to produce the attentional effects, and some specific brain regions are activated for
multiple attentional functions, depending on functional requirements. Not only do the
attentional functions interact to achieve cognitive control, but also involve common and
functionally specific regions.
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Schematic of revised Attention Network Test (ANT-R). In each trial, depending on the cue
condition (none, double, and valid or invalid cues), a cue box flashes for 100 ms. After a
variable duration (0, 400, or 800 ms), the target (the center arrow) and two flanker arrows on
both the left and right side (congruent or incongruent) are presented for 500 ms. Participants
must indicate the target’s direction. Before the target appears, a cue in the form of a box
flashing on one or both sides is displayed. The cue can be valid, which predicts the target
position correctly, or invalid, which predicts the opposite position. There is also a double
cue condition, in which both boxes flash, to provide temporal but not spatial information,
while in the no cue condition no cue is presented. The post-target fixation period varies
between 2000 and 12,000 ms. Note: The location congruency manipulation was not treated
as a manipulation in data analysis in this study.
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Figure 2.
Attentional effects and interactions in terms of (A) reaction time (RT in ms), and (B) error

rate (%). Error bars represent the standard error of the mean.
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Figure 3.
Brain regions showing increased activation associated with the alerting effect.
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Figure 4.
Brain regions showing increased activation associated with the (A) disengaging, (B) moving

+ engaging, and (C) validity effects of orienting.
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Figure 5.

Brain regions showing increased activation associated with the flanker conflict effect.
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Figure 6.
Brain regions showing increased activation associated with (A) the alerting by flanker

conflict interaction effect, and (B) the conjunction of alerting and flanker conflict effects.
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Figure 7.
Brain regions showing increased activation associated with (A) the validity by flanker

conflict interaction effect, and (B) the conjunction of validity and flanker conflict effects.
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Table 1

Operational definition of the attentional network effects and interactions for behavior performance

Testing condition

minus

Reference condition

Network effects
Alerting

Disengaging

Moving + Engaging &
Validity P

Conflict

Interactions

Alerting by Flanker Conflict

Validity by Flanker Conflict

No cue
Invalid cue

Double cue
Invalid cue

Incongruent

No cue, incongruent
minus

No cue, congruent
Invalid cue, incongruent
minus

Invalid cue, congruent

Double cue
Double cue

Valid cue
Valid cue

Congruent

Double cue, incongruent
minus

Double cue, congruent
Valid cue, incongruent
minus

Valid cue, congruent

aThe “Moving + Engaging” is equivalent to the “orienting” effect originally defined in (Fan et al., 2009). However, here we defined the orienting
effect with the disengaging component included, which is the validity effect.

bThe validity effect = Disengaging + (Moving + Engaging).
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