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Abstract

Major depression is a chronic and debilitating illness that effects approximately 1 in 5 people, but 

currently available treatments are limited by low rates of efficacy, therapeutic time lag, and 

undesirable side effects. Recent efforts have been directed towards investigating rapid-acting 

agents that reverse the behavioral and neuronal deficits of chronic stress and depression, notably 

the glutamate NMDA receptor antagonist ketamine. The cellular mechanisms underlying the rapid 

antidepressant actions of ketamine and related agents are discussed, as well as novel, selective 

glutamatergic receptor targets that are safer and have fewer side effects.
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Introduction

Major Depressive Disorder (MDD) is a leading cause of disability worldwide and in the 

United States alone has a lifetime prevalence of 17% [1]. Current estimates by the World 

Health Organization caution that MDD will be the second leading cause of disability by 

2020 [2]. In addition to the increasing prevalence and associated behavioral sequelae, MDD 

exacts a very large economic burden on society, with an estimated cost of $210.5 billion 

annually as a result of treatment and workplace related expenses [3]. Furthermore, twice as 

many people die by suicide each year than by homicide, with 23% of suicide victims on an 

antidepressant treatment at the time of death, demonstrating a lack of efficacy [4].

These statistics are compounded by the limitations of currently available antidepressants, 

including a significant time lag for treatment response and modest rates of efficacy. Current 

agents, notably the serotonin (5-HT) selective reuptake inhibitor (SSRI) antidepressants, 

require several weeks to months of administration before a therapeutic response is observed. 

Moreover, only one-third of patients will respond to the first antidepressant prescribed and 
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another third will only respond following multiple trials that can take many months to years. 

Importantly, approximately one-third of individuals diagnosed with depression fail to 

respond to two or more first line antidepressant treatments and are consequently 

characterized as having treatment resistant depression (TRD) [5].

Given the extensive personal and economic consequences and anticipated rise in rates of 

MDD, more efficacious and rapid-acting treatments are sorely needed. Current 

pharmacological treatments, while effective for some, are largely inadequate and are 

associated with undesirable side effects. One logical step towards the development of 

effectual treatments is to better understand the etiology of the disease. Much of the work has 

focused on deficits in monoamine neurotransmitter systems, including 5-HT and 

norepinephrine, and is based largely on the discovery that drugs that block the metabolism 

or reuptake of monoamines have clinical efficacy [6]. However, the therapeutic limitations 

of these agents, combined with a lack of evidence to support a monoamine deficiency 

hypothesis, have lead to new avenues of investigation.

While the underlying etiology and pathophysiology of depression remain incomplete, 

clinical and basic research studies are beginning to provide evidence that depression is 

associated with atrophy of neurons in cortical and limbic brain regions that control mood 

and emotion [7, 8]. In addition, the discovery that antagonists of the N-methyl-D-aspartate 

(NMDA) receptor, notably ketamine, produce rapid improvement in depressive symptoms 

(within hours), even in TRD patients, has shifted efforts towards novel agents targeting the 

glutamatergic system. Importantly, basic research studies demonstrate that ketamine rapidly 

increases synaptic connections in the PFC and reverses the deficits caused by chronic stress 

[9, 10]. This pioneering work on ketamine, a nonselective NMDA receptor antagonist, has 

launched investigations into a variety of rapid agents that act at different NMDA sites or 

within the glutamate system. The ultimate goal in the development of these agents is 

reversal of the stress-induced cellular and molecular deficits, most notably the atrophy of 

neurons, caused by stress and depression.

There are other systems that are negatively affected by depression, including disruption of 

metabolic and immune/inflammatory pathways. However, the focus of the current review is 

on emerging treatments targeting NMDA receptors and the glutamate neurotransmitter 

system that reverse stress-induced behavioral, molecular, and structural deficits of MDD. 

We discuss the evidence for neuronal atrophy as a pathophysiological marker of MDD, how 

rapid acting agents such as ketamine and other NMDA modulating agents reverse these 

deficits, and how these agents differ from conventional treatments. Furthermore, we explore 

how the rapid antidepressant actions of these drugs, in particular induction of glutamate 

transmission, may be mediated through disinhibition of GABAergic interneurons in the 

PFC. These discoveries highlight a new era of promise for the development of more 

effective and fast-acting agents with fewer side effects.

Currently Available Treatments for Depression

During the 1950’s, the field of psychopharmacology experienced an explosion in the 

development of drugs for the treatment of illnesses, providing psychiatrists with new tools to 
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complement traditional therapy techniques. The first drugs to be identified as 

antidepressants were monoaminergic agents and consequently the disease was investigated 

as a deficiency of monoamine neurotransmitters, particularly 5-HT, norepinephrine, and 

dopamine. Drugs used to specifically treat clinical depression came about fortuitously 

following the discovery of the tricyclic antidepressant (TCA) reuptake inhibitors and the 

monoamine oxidase inhibitors (MAOIs). The monoamine hypothesis of depression evolved 

from the observation that these drugs, effective in treating depression, increase levels of 

serotonin and norepinephrine. Unfortunately, as a result of their non-selective binding 

profile, the TCAs have undesirable side effects, including drowsiness and sedation, memory 

and cognitive impairments, dry mouth, and increased heart rate [11]. Additionally, although 

MAOIs are effective, their use is highly uncommon due to the potentially fatal reaction of 

MAOIs with foods high in tyramine (fermented foods) resulting in increased blood pressure, 

heart attack and stroke.

To improve the side effect profile, drug development focused on more selective reuptake 

inhibitors, leading to several SSRIs reaching the market, notably fluoxetine (Prozac). These 

agents are better tolerated as expected, but in addition to the therapeutic time lag, side 

effects include acute nausea and headaches as well as chronic sexual dysfunction, weight 

gain, and diminished REM sleep [12, 13]. Furthermore, when treatment is stopped patients 

can suffer from discontinuation syndrome, characterized by insomnia, headaches, nausea 

and irritability [14]. There have been several other promising drug development programs 

based on preclinical studies and target development that have failed in human clinical trials, 

including corticotrophin releasing factor receptor-1 (CRF-R1) and substance P antagonists 

[15, 16]. These failures highlight the difficulty and limitations of preclinical rodent models 

used for validating antidepressant drug targets, as well as the difficulties of conducting 

large-scale clinical trials.

Challenges for MDD drug development

There are several major hurdles in the development of therapeutic agents for MDD. One 

major impediment is heterogeneity, as MDD is a syndrome that is widely believed to have 

multiple subtypes and causes. Genetic heritability is relatively low (approximately 40 

percent), and environmental factors, notably stress or trauma, are often associated with 

depression and interact with genetic vulnerability [17]. Another problem is the lack of a 

good biomarker of depression or treatment response. Further characterization of MDD and 

subtype specific pathophysiology, as well as development of biomarkers, will lead to 

treatments targeting selected abnormalities that are more efficacious and have fewer side 

effects. Another problem facing researchers is the placebo effect when testing new drugs. A 

meta-analysis of published clinical trials of treatments for MDD found that placebo 

responses are highly variable between studies and generally show substantial effects on 

measures of depression. Furthermore, placebo effects have been on the rise since the 1980’s 

making it more and more difficult to identify agents that are significantly better than placebo 

[18].
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Pathophysiological Consequences of Stress and Depression

The adverse effects of MDD extend well beyond perceptible behavioral deficits, as decades 

of research have begun to elucidate the cellular and molecular changes that contribute to the 

underlying pathophysiology of depression and stress related illnesses. Clinical and pre-

clinical studies have focused on the neural circuits that are altered following prolonged bouts 

of stress and depression. Although not exclusive, the prefrontal cortex (PFC), hippocampus, 

and amygdala comprise what is commonly referred to as a depression circuit [19]. These 

studies have contributed to further elucidation of MDD pathophysiology and can help direct 

the rational design of novel antidepressants that correct the disrupted synaptic and circuit 

level alterations.

Stress and Depression cause neuronal atrophy

Brain neuroimaging studies have shown a reduction in blood flow and glucose metabolism, 

and thus activity, in the PFC and parts of the hippocampus, which can partially be attributed 

to reduction in volume possibly as a result of neuronal atrophy in these regions [20]. 

Furthermore, the volume reduction is inversely correlated with the number of prior 

depressive episodes [21]. As there is a reduction in activity of the PFC and hippocampus, 

top-down control of the amygdala, which regulates fear, anxiety, and mood, is dampened [8, 

22, 23]. Reduced volume of PFC and hippocampus could contribute to impairments in 

executive function and memory often observed in MDD patients [8, 24] (Figure 1). 

Although postmortem studies are limited, there is one report of decreased synapse number in 

the dorsal lateral PFC of MDD subjects [20].

Preclinical studies in rodent models demonstrate that chronic stress can result in symptoms 

of depression, including helplessness/despair and anhedonia, as seen in the forced-swim test 

(FST) and sucrose preference test (SPT), respectively [10]. The behavioral deficits of 

chronic stress are associated with reduced number and function of spine synapses in the 

medial PFC (mPFC) [10, 25–27] (Figure 1). Similar effects have been observed in CA3 

pyramidal cells of the hippocampus following chronic stress [28]. Evidence of a direct link 

between PFC synapse number and behavior is provided by a recent report that an inhibitor 

of mTORC1 signaling (REDD1) that decreases synapse number causes helpless and 

anhedonic behavior in rodents [29]. Together, these human and rodent studies of PFC and 

hippocampus indicate that depression can be viewed as a mild neurodegenerative disease, 

characterized by neuronal atrophy and that treatments should target neural repair systems 

and reversal of the observed atrophy [30].

Role of BDNF in stress and depression

Chronic stress models of depression in rodents report reduced levels of BDNF mRNA and 

protein, particularly in the dentate gyrus of the hippocampus, and chronic antidepressant 

treatment reverses these effects [31, 32]. Central or peripheral administration of BDNF has 

been shown to produce antidepressant-like effects, providing further support for the 

neurogenic hypothesis and the role of BDNF in the pathophysiology of depression [33]. In 

addition, over-expression of BDNF in the hippocampus prevents the development of 

depressive-like behaviors following chronic stress while knockdown of BDNF during 

Gerhard et al. Page 4

Drug Discov Today. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adolescence is sufficient to cause depressive-like behaviors and prolonged increases in 

corticosterone release [34].

Individual differences in stress resilience and susceptibility have been linked to the 

expression and BDNF and genetic polymorphisms, particularly the Val/Met polymorphism 

at codon 66 (Val66Met). The Met allele blocks the processing and activity dependent release 

of BDNF [35] and is associated with increased vulnerability to stress and depression. 

Specifically, Met carriers exhibit a reduction in hippocampal volume that is comparable to 

depressed patients not receiving treatment [36] as well as reduced activity in the 

ventromedial prefrontal cortex and heightened activity in the amygdala [37]. When 

compared with Val/Val homozygotes, Met-allele carriers exhibit heightened levels of 

anxiety and depression [38]. BDNF Val/Met transgenic mice have provided additional 

insight into the role of BDNF in the development and treatment of depression. Rodents 

carrying the Met-allele show reduced spine and dendrite complexity in the hippocampus and 

prefrontal cortex [39, 40], as well as diminished synaptic plasticity in the infralimbic medial 

PFC and reduced dendritic secretion of BDNF in the hippocampus [35, 41]. Additionally, 

SSRI treatment does not increase BDNF in Met/Met mice [42]. Together, these pre-clinical 

and clinical findings over the past decade have established support for a role of BDNF in the 

etiology and treatment of depression.

In contrast to the effects seen in the PFC and hippocampus, the neurons in the basolateral 

nucleus of the amygdala undergo hypertrophy following chronic stress, which could 

contribute to loss of emotional control and reduced motivation in individuals suffering from 

depression [43]. Disruption of these and other cortical and limbic structures demonstrate that 

depression is not a disorder confined to a specific brain region but is rather due to 

dysfunctional neural circuitries controlling mood, cognition, memory and reward [19]. 

Although depression should be considered a system-wide disorder, the PFC is an ideal target 

for treatments as it receives and sends substantial projections throughout the brain to both 

cortical and subcortical regions that have been implicated in depression.

Discovery of the Rapid Antidepressant Actions of Ketamine

The limitations of SSRIs and other antidepressants provided the impetus for the 

development of novel strategies for the treatment of MDD. The seminal findings of Berman 

and colleagues in the early 2000s showing the rapid-acting (within hours) and sustained (up 

to one week) antidepressant effects following intravenous administration of low dose 

ketamine, an NMDA receptor antagonist, has prompted pre-clinical investigations into the 

mechanisms underlying the actions of this agent [44]. Subsequent replication studies have 

also highlighted ketamine’s efficacy in patients suffering from TRD as well as rapidly 

reducing suicidal ideations [45, 46]. These findings, by a mechanism completely different 

from traditional monoaminergic agents, represent the most significant advance in the field of 

antidepressant drug development in over six decades.

Ketamine is dissociative anesthetic used for surgical procedures in young and old humans, 

as well as veterinary medicine. It is also a drug of abuse and repeated, daily use of high 

doses can cause cognitive and memory impairments as well as schizotypal symptoms and 
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neurotoxicity [47]. It should be noted that the antidepressant effects of ketamine have been 

reported to begin after the acute psychotomimetic, dissociative and euphoric effects have 

subsided, suggesting that the antidepressant effects are not just a result of acute elevated 

mood [44]. Because of the abuse potential and undesirable side effects of ketamine, 

investigations into additional, safe agents have been underway. In addition, studies to 

determine a therapeutically effective and safe dosing regiment for ketamine in addition to 

agents that could sustain the effects of acute ketamine treatment are being conducted.

Mechanisms Underlying Rapid-Acting Antidepressants

On-going efforts to develop more efficacious treatments strive to mimic the rapid-acting 

molecular and cellular effects of agents like ketamine. Since the monumental discovery of 

the antidepressant properties of acute, sub-anesthetic ketamine treatment, researchers have 

been trying to determine the molecular changes mediating the rapid-acting time course of 

ketamine and similar compounds. Acute ketamine treatment stimulates a rapid cascade of 

molecular and cellular events that underlie the long-lasting synaptic and behavioral 

responses.

First, ketamine acts via blockade of NMDA receptors located on GABAergic interneurons, 

resulting in disinhibition of glutamate neurons. These neurons are thought to be more 

sensitive to low doses of ketamine because they are tonically firing and thereby have open 

channels free for ketamine to enter. The increase in glutamate transmission results in a burst 

from pyramidal neurons in the prefrontal cortex caused depolarization of postsynaptic [48, 

49]. These effects are specific to sub-anesthetic doses of ketamine as no changes in 

glutamate release are observed at anesthetic doses [48, 50]. Third, increased glutamate 

activates AMPA receptors, resulting in depolarization of the cell and an influx of calcium 

through L-type voltage gated calcium channels (VDCC). Studies using AMPA receptor and 

VDCC antagonists have shown that activation of these postsynaptic receptors and channels 

is necessary for the rapid-acting behavioral, molecular and structural effects of ketamine [9, 

51, 52]. Fourth, depolarization of the cell induces release of BDNF and activation of the 

mammalian target of rapamycin complex 1 (mTORC1) signaling pathway [9]. The 

mTORC1 signaling pathway regulates protein translation following alterations in neuronal 

activity contributing to synaptic plasticity [53]. Fifth, these molecular signaling cascades are 

believed to underlie changes in PFC pyramidal neurons following ketamine treatment, 

including enhanced number and function of dendritic spines [9, 54]. Ketamine 

administration rapidly increases phosphorylation of mTORC1 signaling proteins in the PFC 

and the behavioral effects of ketamine are blocked by pretreatment of the selective 

mTORC1 inhibitor rapamycin, providing further support for the role of mTORC1 in the 

rapid-acting antidepressant effects of ketamine [9, 55] (Figure 1). In addition, a recent study 

has demonstrated that expression of signaling proteins that increase or decrease mTORC1 

signaling in the medial PFC produce antidepressant or pro-depressive actions, respectively 

[29, 56].

While classical antidepressants eventually result in an increase in BDNF levels, they require 

chronic activation of second messenger systems and thus produce subtle, indirect effects 

spine number and function. Notably, classical antidepressants do not cause a burst of 
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glutamate that is required for activity dependent release of BDNF (Figure 1). Levels of 

synaptic proteins, which presumably correlate with synapse formation, are increased in the 

prefrontal cortex within 2 hours of ketamine administration [9]. Furthermore, acute ketamine 

treatment is capable of rapidly reversing behavioral (anhedonia) and synaptic deficits 

resulting from exposure to chronic unpredictable stress for 3 weeks [10]. The molecular and 

synaptic changes following ketamine have largely been investigated in the PFC yet the exact 

mechanism of action of ketamine is still unclear. Understanding the microcircuitry of the PC 

can lend insight into the mechanisms of ketamine.

Current Drugs Under Investigation: Glutamatergic Agents

The shift in our understanding of depression as a disorder of synaptic deficits has 

transformed the modus operandi of drug development. No longer designed to directly 

increase monoamines, treatments are now being designed to increase synaptic plasticity and 

to oppose the cellular effects of stress and depression. Ketamine, an open-channel blocker of 

the NMDA receptor, was the first rapid-acting agent discovered and many agents targeting 

the NMDA receptor complex have emerged since then. While glutamatergic agents targeting 

the ionotropic NMDA receptor have shown promise, other classes of drugs that influence 

glutamate transmission have also received attention, including NMDA receptor subtypes and 

presynaptic metabotropic glutamate 2/3 receptors (mGlu2/3). In addition, clinical studies 

have found that scopolamine, a nonselective muscarinic receptor antagonist, also produces 

rapid antidepressant actions in depressed patients and preclinical studies have demonstrated 

a role for increased glutamate transmission [54, 57].

All of the ionotropic, glutamatergic agents target the NMDA receptor, however, they differ 

in the location of binding on the channel receptor complex (Figure 2). NMDA receptors 

have a heterotetramer composition of two obligatory GluN1 and two GluN2 subunits 

surrounding an ion-permeating channel that is blocked by magnesium in a voltage-

dependent manner; once magnesium is removed open channel blockers like ketamine bind 

within the channel pore and block ion flow [58]. GluN1 subunits contain glycine-binding 

sites, are present in almost all neurons throughout development, and lack variability as they 

are produced by only one gene. In contrast, the GluN2 subunits are generated by four 

different genes (GluN2A, B, C, & D), produce unique physiological, biochemical, a 

pathophysiological properties, and have divergent regional localization, making them an 

ideal target in the development of selective therapeutic agents [59, 60]. In the adult rat, 

GluN2C is primarily expressed in the cerebellum, GluN2D is very low-expressing in 

midbrain structures, and GluN2A and GluN2B are expressed throughout the forebrain. The 

extracellular region contains an allosteric regulatory domain where selective agents bind 

[58]. Depending on where an agent binds to the NMDA receptor complex there is a 

distinctive physiological, and thus therapeutic response and side effect profile. Furthermore, 

it is believed that this determines whether or not a particular agent is effective as a rapid-

acting antidepressant.

Gerhard et al. Page 7

Drug Discov Today. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Open-channel Blockers

Although ketamine is one of the most widely investigated agents, other nonselective NMDA 

antagonists have been investigated as potential treatments. AZD6765 (lanicemine), 

originally designed for the treatment of stroke, has surfaced as a potential rapid acting agent. 

A clinical investigation in patients with TRD found that one third of the patients exhibited 

an antidepressant response in under two hours of treatment initiation [61]. Furthermore, 

patients only reported minor side effects, including dizziness and headaches without the 

psychotomimetic or dissociative effects characteristic of ketamine. Although the effects 

were rapid, they were also short-lived, lasting only approximately one hour. A more recent 

large clinical study found that only with repeated dosing over a three week period (3-day 

intervals) did the drug result in significantly improved depression scores when compared to 

placebo controls and this difference was sustained for two weeks after the last infusion [62]. 

However, there are several limitations to this study, including a large placebo response and 

required repeated dosing. Another study of repeated AZD6765 treatment has been 

conducted (not published), but did not find a significant antidepressant response, due in part 

to a large placebo response. A subgroup of TRD patients, with lower placebo response, did 

show a significant antidepressant response in this study (Dr. Sanacora, personal 

communication).

Another nonselective NMDA antagonist that has been examined for the treatment of 

depression is memantine (Namenda). Memantine is an approved drug used as a treatment for 

Alzheimer’s Disease but due to it’s NMDA antagonist properties has been considered as a 

treatment for MDD. Unfortunately, clinical investigations have not been fruitful, failing to 

find any significant effects of memantine above placebo [63]. A recent study links 

memantine’s lack of efficacy to its inability to inhibit phosphorylation of eukaryotic 

elongation factor 2 or increase the subsequent increase in BDNF expression, both of which 

occur with ketamine [64]. Attempts to isolate the antidepressant effects from the 

psychotomimetic effects have shifted research towards selective NMDA receptor 

antagonists, specifically the NMDA receptor subtype 2B (GluN2B) antagonists (Figure 2).

Channel Blocking and Drug Efficacy

Open channel blockers like memantine have shown promise as a clinical treatment for 

delaying the progress of Alzheimer’s Disease as a result of their neuroprotective effects in 

the presence of increased amyloid-beta plaque formation and resulting glutamate 

excitotoxicity [65]. With respect to depression, one question that has been raised is why one 

channel blocker is shown to be more effective as a rapid-acting antidepressant over another? 

Ketamine, a high trapping agent (86%), or an agent that has a greater tendency to be trapped 

within the channel pore after the drug has been removed and reapplied, shows both strong 

rapid-acting antidepressant effects as well as psychotomimetic effects [62]. AZD6765, a 

lower-trapping agent (54%) shows minimal psychotomimetic effects but only very transient 

antidepressant effects with a single dose [61, 62]. Another low-trapping agent, memantine 

(71%), dissociates quickly from the receptor and has been shown to have fewer aversive side 

effects as compared to ketamine but has not proven to be an effective rapid-acting 
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antidepressant [63, 66]. This has led to a second question asking whether or not it is possible 

to separate antidepressant efficacy from the psychomimetic effects?

Selective GluN2B Antagonists

NMDA receptors are localized at both synaptic and extrasynaptic sites that have differential 

physiological effects, including excitotoxicity at the extrasynaptic site, and it is still 

unknown whether the therapeutic actions of ketamine result from blockade at a specific 

synaptic location. GluN2B subunits are located at extrasynaptic, as well as synaptic NMDA 

receptors sites, and have been shown to play a role in excitotoxity, resulting in targeting of 

GluN2B for the treatment of stroke induced damage [67]. Interestingly, GluN2B has been 

the focus of depression drug development studies following a clinical report that a selective 

GluN2B antagonist produces a relatively rapid antidepressant response. Preskorn and 

colleagues conducted a double-blind placebo-controlled clinical study of the GluN2B 

selective antagonist CP-101,606 (traxoprodil) and found antidepressant responses 5 days 

after drug administration, including in patients with TRD [68]. Furthermore, compared to 

ketamine, the psychotomimetic effects of CP-101,606 appear to be diminished.

Following these clinical findings, preclinical studies of another GluN2B antagonist, 

Ro-25-6891 have been conducted and compared with ketamine (Figure 2). Ro-25-6891 

administration rapidly increases mTORC1 signaling within 1 hr and elevates synaptic 

proteins in the PFC within 6 hr after dosing [9]. Ro-25-6891 also produces antidepressant 

responses in the forced swim and novelty suppressed feeding tests that are blocked with the 

selective mTORC1 inhibitor rapamycin. Another study reports that a single dose of 

Ro-25-6891 produces a rapid reversal of depressive-like behaviors resulting from chronic 

unpredictable stress, as seen in the sucrose preference test and novelty-suppressed feeding 

test [10]; these effects are also blocked by rapamycin.

Another GluN2B selective antagonist, MK-0657 (CERC-301), has recently been studied as 

an oral treatment option for TRD. A pilot study found that following 12 days of oral 

MK-0657 monotherapy regimine patients reported a reduction in depressive symptoms [69]. 

However, the small sample size is a limiting factor and thus further studies into MK-0657 

are necessary. Additional GluN2B selective antagonists are currently under investigation, 

including another oral treatment, TXT-0300 (Traxion Therapeutics) as well as an EVT-100 

series (EvoTec). Together, these preclinical and clinical studies, combined with reduced side 

effect profile, provide good evidence for further development of GluN2B antagonists as 

rapid acting antidepressants (Figure 2).

Glycine-site Modulators of the NMDAR

The binding site for the co-agonist glycine is located on GluN2 subunits, making it a unique 

target for the treatment of depression as GluN2 subunits have been under investigation. One 

compound thought to act at the glycine site is GLYX-13 (rapastinel), a tetrapeptide and 

functional partial glycine site agonist, specifically GluN2B containing NMDARs [70]. An 

initial study by Burgdorf and colleagues reported positive effects of GLYX-13 on 

hippocampal-dependent learning tasks (trace conditioning, Morris water maze) and 

enhanced long-term potentiation (LTP), a model of synaptic plasticity, in hippocampal slices 
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[71]. Recent preclinical work by the group has explored the antidepressant models and 

found that a single dose of GLYX-13 is sufficient to produce a rapid antidepressant 

response, including reversal of anhedonia resulting from chronic unpredictable stress 

exposure [72]. GLYX-13 is also reported to increase spine synapse formation in the PFC 

[73].

Phase II trials in depressed patients have also demonstrated that GLYX-13 produces rapid 

antidepressant action [74]. Using a double-blind, randomized placebo controlled design, 

Preskorn and colleagues show that a single intravenous injection of GLYX-13 reduced 

depressive symptoms, as measured by the Hamilton Depression Rating Scale-17, within 2 

hours. These effects were maintained for an average of 7 days. There are current plans for a 

Phase 3 study as well as trials to investigate the efficacy and safety of a multiple dosing 

regime. Additional preclinical and clinical studies are required to determine the exact 

mechanism of action of GLYX-13 as well as it’s full therapeutic potential.

An NMDAR glycine-site partial agonist with antidepressant potential is D-cycloserine 

(DCS) (Figure 2). Originally used as an antibiotic to treat tuberculosis, it was observed that 

DCS improved insomnia, lethargy, and appetite in patients [75]. A 6-week study using DCS 

as an adjuvant to antidepressant therapy failed to show a significant improvement in 

depressive symptoms [76]. However, a recent, small-scale clinical trial in 22 treatment-

resistant patients using a similar experimental design but a higher dose of DCS showed 

improvement in depressive symptoms over placebo [77]. Additional larger scale clinical 

studies are required to investigate the antidepressant potential of DCS as a supplement to 

traditional antidepressant therapy.

Recently, the NMDA glycineB-site antagonist and prodrug 4-Chlorokynurenine (4-Cl-KYN) 

and has shown promise as a rapid acting antidepressant [78]. Similar to ketamine, a single 

treatment with 4-Cl-KYN is sufficient to produce antidepressant-like effects in the FST, 

novelty-suppressed feeding test (NSFT), and learned helplessness test. Furthermore, these 

effects were blocked by pre-treatment with either glycine or the AMPA receptor antagonist 

2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). However, in 

contrast to ketamine, 4-Cl-KYN did not induce stereotypic behaviors. Phase II clinical trials 

are currently underway on 4-Cl-KYN (AV-101, VistaGen Therapeutics) to investigate the 

efficacy and safety for people with MDD (ClinicalTrials.gov identifier: NCT02484456).

mGlu Receptor Antagonists

Ketamine and the other rapid-acting compounds discussed thus far produce their rapid-

acting effects by targeting fast-acting ionotropic glutamate receptors. The metabotropic 

glutamate receptors (G-protein coupled) have also been examined as potential therapeutic 

targets for depression. There are 8 subtypes of mGlu receptors (mGlu1-mGlu8). Drugs acting 

at mGlu2/3, mGlu5, and mGlu7 receptors have shown therapeutic potential in pre-clinical 

models of depression [79–81].

Support for targeting mGlu2/3 receptors comes from a study using microelectrode arrays of 

glutamate in the PFC following local application of different drugs known to bind to 

glutamate receptors. While the mGlu2/3 agonist LY379268 decreases extracellular glutamate 
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release, the antagonist LY341495 significantly increases glutamate release [82]. The ability 

of these agents to regulate glutamate is thought to occur via regulation of presynaptic 

autoreceptors located on glutamatergic terminals (Figure 3). Similar to the actions of 

ketamine, the antidepressant effects LY341495 as well as another mGluR2/3 antagonist 

MGS0039 require activation of the mTORC1 pathway [55, 83]. LY341495 also rapidly 

reverses the anhedonia caused by chronic stress exposure, a rigorous rodent test of rapid 

antidepressant actions [84]. Together these preclinical studies provide strong evidence of the 

therapeutic potential of mGlu2/3 receptor antagonists.

A recent study investigated the effects of the mGlu5 antagonist MTEP and the mGlu7 

agonist AMN082 and found that while both drugs produced antidepressant-like behavioral 

effects in the FST 60 minutes following administration, the behavioral effects were no 

longer present at 23 hours. Furthermore, the study found that the behavioral effects of 

MTEP seen at 60 minutes were not dependent on the mTORC1 pathway while the effects of 

AMN082 were dependent on mTORC1 but not on AMPA receptor activation (as seen with 

ketamine and other rapid-acting antidepressants) [85]. The investigations into the mGluR 

modulators are still early in the experimental phases and additional studies are necessary to 

better understand the potential of targeting the metabotropic receptors in the treatment of 

depression.

Scopolamine

Another potential rapid antidepressant drug is the non-selective muscarinic acetylcholine 

receptor antagonist, scopolamine. Clinical studies have reported that intravenous infusion of 

a very low dose of scopolamine (4 ug/kg) initiated rapid antidepressant effects (within 3–5 

days after administration) and 3 doses over 5 to 7 days produces long-lasting improvements 

in mood (12–16 days after administration) [57, 86]. In addition, a follow-up study indicated 

that females show a significantly greater antidepressant and antianxiety effect following 

scopolamine treatment compared to males [87]. Interestingly the antidepressant effects of 

scopolamine appear to be increased with repeated administration in patients with no prior 

antidepressant treatment history though treatment-resistant patients still show significant 

reductions in depressive symptoms [88]. Moreover, an early study using other routes (i.e., 

intramuscular) and dosing regimens suggest that scopolamine can produce antidepressant 

effects within several hours after drug treatment [89].

Corresponding to these clinical findings, animal models show that, like ketamine, 

scopolamine caused rapid antidepressant responses through increased glutamate 

neurotransmission and activation of mTORC1 signaling in the PFC [9, 54]. The increase in 

glutamate transmission is thought to occur via blockade of muscarinic receptors located on 

GABAergic interneurons in the medial PFC, similar to the initial cellular target underlying 

the actions of ketamine. Indeed, there is functional and immunohistochemical evidence that 

interneurons expression muscarinic receptors [90]. Based on these preclinical studies it is 

evident that scopolamine can produce an antidepressant effect through neurophysiological 

pathways that increase PFC function which would effectively reverse the pathophysiology 

reported in depression.
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While scopolamine acts as a non-selective muscarinic acetylcholine receptor antagonist it 

may elicit antidepressant effects through interactions with specific subtypes of muscarinic 

acetylcholine receptors. Indeed seminal studies revealed that blockade of specific mACh 

receptor subtypes recapitulate the molecular and behavioral effects of scopolamine. For 

example, selective antagonism of M1-ACh receptors with telenzepine produced 

antidepressant responses [54]. Consistent with this study, a recent report showed that the 

M1-AChR antagonist, VU0255035, cause a robust antidepressant response in rats that 

coincided with mTORC1 signaling in the PFC [91]. Furthermore, repeated administration of 

scopolamine and VU0255035 reduced anhedonia in CUS-exposed rats [91]. A separate 

study using higher doses of scopolamine indicated that mutant mice lacking M1- or M2-

ACh receptor do not show antidepressant responses to scopolamine [92]. In this context it is 

relevant to note that prior studies with other partially selective M1-AChR compounds (i.e., 

biperiden) report antidepressant effects in severely depressed, but not moderately depressed 

patients [89, 93]. There is also evidence that selective blockade of M4 receptor antagonists 

produce antidepressant actions (Dr. Jones, Vanderbilt). In the end, both clinical and 

preclinical studies indicate that antagonism of specific muscarinic acetylcholine receptors 

lead to the molecular and behavioral responses reported following scopolamine 

administration (Figure 3).

GABA-A inverse agonist: New approach to increase glutamate 

transmission

Another approach to increase glutamate transmission, particularly when considering the 

disinhibition model (Figure 1) is to block GABA-A receptors. This approach is not without 

limitations as GABA-A receptor blockade can cause seizures. However, a recent study has 

used a selective GABA-A alpha 5 inverse agonist to produce a more specific, forebrain 

blockade of GABA-A receptors and thereby reduce the potential for seizure genic side 

effects [94]. The choice of selective GABA-A alpha-5 agents is based on the expression of 

this subunit in hippocampus and forebrain cortical regions. The authors tested a GABA-A 

alpha-5 selective inverse agonist, L-655,708 (FG-8094), which has approximately 30-fold 

selectivity for alpha-5 over other GABA-A receptors containing alpha-1, alpha-2, or 

alpha-3. The results indicate that the compound is a partial allosteric modulator at GABA-A 

receptors containing all the alpha subunits previously mentioned, with comparable efficacy 

albeit with higher affinity for alpha-5 [95, 96]. Therefore to further examine the efficacy of 

targeting alpha-5 subunit, they tested another apha-5 agent, MRK-16. The results 

demonstrate that a single dose of either L-655,708 or MRK-016 significantly reverses the 

deficits in sucrose preference and social interaction caused by exposure to chronic stress 

(restraint or unpredictable stress). Additional studies of synaptic plasticity were conducted 

with L-655,708, and demonstrate that L-655,708 reverses the decrease in excitatory 

transmission caused by chronic restraint stress, as well as the reduction of GluA1 in the 

hippocampus.

These findings identify GABA-A alpha-5 as a potential target for novel rapid acting 

antidepressants, and demonstrate a novel approach for producing a burst of glutamate that 
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results in a rapid antidepressant response (Figure 3). Further studies will be required to 

determine the therapeutic efficacy and safety of these agents.

Future Studies

Although the discovery of ketamine represents a major advance for the treatment of mood 

disorders there are still significant limitations to overcome before ketamine and other novel 

glutamatergic agents are accessible to the general population. Even at the low therapeutic 

doses used in a clinical setting, ketamine can produce euphoric and/or psychotomimetic 

effects. Furthermore, ketamine, or “Special K”, is a drug of abuse and prolonged use can 

cause neuronal damage. For instance, individuals with daily use of high doses of ketamine 

have cortical atrophy and pre-clinical studies have shown that repeated ketamine treatment 

produces neurotoxic effects [44, 97].

Despite the potential for abuse and toxicity, ketamine represents a compelling therapeutic 

agent as well as prototype for drug discovery and clinical studies of ketamine are currently 

underway. For example, a recent study has demonstrated the therapeutic efficacy of nasal 

ketamine and development of this route of administration has been fast tracked by the FDA 

[98]. Janssen Research & Development, LLC is currently sponsoring a Phase II clinical trial 

to evaluate the safety and efficacy of intranasal esketamine, the S(+) enantiomer of ketamine 

(ClinicalTrials.gov Identifier: NCT01998958). Additional clinical trials to define the 

effective therapeutic dose of ketamine are also being conducted (ClinicalTrials.gov 

identifier: NCT01920555), as well as investigations are to determine the safety and efficacy 

of repeated dosing regimens [99]. Furthermore, the use of lithium to sustain the rapid-acting 

effects of ketamine is currently being investigated in Phase II clinical studies 

(ClinicalTrials.gov identifier: NCT01880593).

The development of safer and more effective agents will also rely on a better understanding 

of the mechanisms underlying the rapid-actions of ketamine. A question of major interest is 

the mechanisms, in particular the initial cellular target that “triggers” the cascade of 

signaling, that underlies the rapid antidepressant actions of ketamine. One hypothesis is that 

ketamine directly targets NMDA receptors on the pyramidal neurons to cause a homeostatic 

response in the absence of neuronal activity [52]. Another growing hypothesis, as discussed 

in this review, is that ketamine first acts on the inhibitory interneurons resulting in 

disinhibition of pyramidal neurons and a burst of glutamate. During basal, resting state 

conditions, pyramidal cell firing is inhibited by presynaptic tonic firing GABA neurons 

[100]. This would remove the magnesium block of NMDA receptors, making GABA 

neurons more sensitive to low-dose ketamine (Figure 1). Preclinical studies that selectively 

delete or knockdown NMDA receptor subunits in specific neuronal subtypes would provide 

insight into these hypotheses (e.g. targeting GluN2B containing NMDA receptors on 

GABAergic or glutamatergic neurons). In support of this approach, a study investigating the 

selective GluN2B antagonist ifenprodil revealed that approximately 50% of NMDA 

receptors on interneurons contain GluN2B subunits [101]. Similar studies are underway 

investigating the role of different muscarinic acetylcholine receptors on interneurons in the 

rapid-acting antidepressant actions of scopolamine.
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Studies are still needed to examine the cellular actions of stress and depression on 

interneuron subtypes in the PFC, as well as the influence of ketamine on synaptic plasticity 

of these neurons. Identification of the cellular targets of ketamine and other rapid-acting 

agents could reveal additional receptors that regulate GABA firing and thus glutamate 

transmission, which could potentially lead to better antidepressant agents. In addition, 

further studies of the molecular pathways that control subtypes of GABA, as well as 

glutamate neurons in the PFC in response to stress could lead to a better understanding of 

the pathophysiology of depression. Finally, understanding developmental shifts in receptor 

expression across cell types could be important in development of novel treatments. These 

findings may provide context for mental health disorders across the lifespan, including 

neurodevelopment and neurodegeneration, leading to more effect treatment of 

heterogeneous populations.
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Highlights

• Stress and depression are characterized by loss of synapses in prefrontal cortex.

• Rapid acting antidepressants increase synaptic contacts in prefrontal cortex.

• NMDA antagonists, notably ketamine are a new class of rapid acting 

antidepressant.

• A burst of glutamate underlies the rapid actions of ketamine.

• Glutamate transmission offers novel sites for therapeutic intervention.
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Figure 1. Stress and depression decrease, while rapid-acting antidepressants increase, 
synaptogenesis
Prolonged stress and depression is known to cause atrophy of spine and synapses in brain 

regions implicated in depression, notably the prefrontal cortex and hippocampus. Preclinical 

studies suggest that this is a result of reduced production and release of brain derived 

neurotrophic factor (BDNF). Rapid acting antidepressants (eg, ketamine and scopolamine) 

reverse these stress-induced deficits by inducing a cascade of glutamate neurotransmitter 

signaling events. (1) Ketamine is thought to act via blockade of N-methyl-D-aspartate 

(NMDA) receptors located on inhibitory λ-aminobutyric acid (GABA)-ergic neurons. (2) 

This causes disinhibition of the pyramidal cells, resulting in a burst of glutamate 

transmission. (3) Increased glutamate release activates α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors, resulting in depolarization and calcium influx. 

(4) Depolarization of the cell induces release of BDNF and activation of the mammalian 

target of rapamycin complex 1 (mTORC1) signaling pathway. (5) Stimulation of mTORC1 

increases the synthesis of synaptic proteins that results in increased number and function of 

spine synapses.
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Figure 2. NMDA receptor targets for rapid acting antidepressants
Agents targeting ionotropic N-methyl-D-aspartate receptors have shown promise in both 

preclinical and clinical studies for their rapid-acting antidepressant effects. Differing 

therapeutic effects of these drugs may be explained by the their binding sites on NMDARs. 

NMDA receptors are heterotetramers with two GluN1 and two GluN2 subunits surrounding 

an ion permeating channel that is blocked by Mg2+; this Mg2+ block is removed upon 

depolarization, which then allows ketamine and other channel blockers like memantine and 

AZD6765 to enter the pore. The glycine-site is another modulatory site located on the 

extracellular GluN1 subunit; D-cycloserine binds at this site and GLYX-13 nearby. 

Selective GluN2B antagonists CP-101,606 and Ro-25-6981 bind to an extracellular 

allosteric site on the GluN2B subunit.
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Figure 3. Receptor targets for rapid-acting antidepressants
Pre-clinical studies have shown that low dose ketamine produces a rapid glutamate burst 

from pyramidal cells in the prefrontal cortex. This is hypothesized to result from 

disinhibition of λ-aminobutyric acid (GABA)-ergic interneurons that control the activity/

depolarization of glutamatergic pyramidal neurons. In addition to ketamine, agents 

hypothesized to antagonize presynaptic GABAergic interneurons include other nonselective 

NMDA receptor antagonists like AZD6765, the selective GluN2B antagonists Ro-25-6891 

and CP-101,606, the muscarinic acetylcholine receptor antagonist scopolamine, and the 

selective M1 antagonists telenzepine and VU0255035. Another route investigated to 

produce a rapid glutamate burst is via transient potentiation of pyramidal neurons. Drugs 

believed to directly target pre-synaptic glutamatergic pyramidal neurons include the 

GABAA receptor inverse agonists L-655,708 and MRK-016 and the mGluR2/3 antagonists 

LY341495 and MGS0039.
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