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Abstract

Tractography is becoming an increasingly popular method to reconstruct white matter connections 

in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to 

resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from 

crossing fibers. However, scan time increases with increasing spatial and angular resolutions, 

which can become infeasible in clinical settings. Here we investigated the trade-off between 

spatial and angular resolutions to determine which of these factors is most worth investing scan 

time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high 

angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI 

acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 

directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated 

the effects of angular and spatial resolutions in three fiber bundles—the corticospinal tract, arcuate 

fasciculus and corpus callosum—by analyzing the volumetric bundle overlap and anatomical 

correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions 

provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. 

Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest 

resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular 

resolution appeared to be more influential than spatial resolution in improving tractography 

results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography 

methods if this is not at the cost of decreased angular resolution.

Introduction

In recent years, diffusion magnetic resonance imaging (MRI) has attracted attention for its 

potential to reconstruct fiber tract pathways within the white matter (WM) using fiber 

tractography (e.g., Mori et al. 1999; Basser et al. 2000; Behrens et al. 2007; Jones 2008). 
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High angular resolution diffusion imaging (HARDI) methods have been proposed to 

describe the measured diffusion profile with a higher accuracy than the diffusion tensor 

(e.g., Basser et al. 1994; Frank 2002; Tournier et al. 2004; Tuch 2004; Descoteaux et al. 

2007). By describing the diffusion signals with a higher angular resolution on a single shell 

in q-space (Callaghan et al. 1988), orientation distribution functions (ODFs) can be 

estimated that allow for more accurate representations of diffusion in complex fiber 

architecture. These multi-fiber methods can be used to boost tractography performance, by 

more accurately tracking through regions of crossing fibers (Descoteaux et al. 2009; Fillard 

et al. 2011; Jeurissen et al. 2011; Wedeen et al. 2012), and have already found their way into 

clinical research studies (e.g., Reijmer et al. 2012) and presurgical planning (e.g., Winston et 

al. 2014). In parallel to the developments of multi-fiber methods, improvements in diffusion-

weighted image (DWI) acquisition have led to an increase in spatial resolution (e.g., McNab 

and Miller 2008; McNab et al. 2009; O’Halloran et al. 2013; Engstrom and Skare 2013), 

which increase the spatial accuracy with which to distinguish neighboring structures within 

the brain.

A high angular resolution is essential for accurate diffusion modeling per voxel, whereas a 

high spatial resolution is required for accurate localization of anatomy. Specifically, multi-

fiber tractography can resolve multiple fibers within a voxel, but has a difficulty 

distinguishing between crossing and kissing fibers (Tournier et al. 2011). A high spatial 

resolution, however, aids in making this distinction. Such different complex fiber 

configurations are present in vivo and these configurations coexist within one voxel to 

various degrees, which means a high angular and a high spatial resolution would be optimal 

to resolve the highly complex fiber architecture.

So far, research has mostly focused on improving either spatial or angular resolution. In this 

work, we aim to bridge the two, investigating the trade-off between angular and spatial 

resolutions. Early investigations into the effects of angular or spatial resolution on 

tractography focussed on either one of the two effects, or independently looking at both. 

(Kim et al. 2006), for instance, have looked at the effects of voxel size on diffusion tensor 

tractography and were one of the first studies to demonstrate the benefit of isotropic voxel 

sizes. For multi-fiber methods, the effects of angular and spatial resolutions were first 

examined independently of one another by Zhan et al (2012) to be followed up by the first 

study investigating the trade-off between angular and spatial resolutions (Zhan et al. 2013), 

using short time-matched acquisition protocols with different angular and spatial resolutions 

to show the added signal-to-noise ratio (SNR) of lower spatial resolutions improved 

tractography results in a hardware phantom in the low SNR regime. More recently, 

Calabrese et al. (2014) showed in an extensive ex vivo macaque study using six time-

matched protocols with varying spatial and angular resolutions that tractography results 

greatly vary depending on the acquisition protocol, finding an optimal balance at 

intermediate spatial and angular resolutions.

In this study we aim to extend these last works into high-end in vivo data, comparing a 

unique human in vivo dataset that offers both high spatial and high angular resolution to 

subsamples of this dataset that have either a high spatial or high angular resolution. The 

overarching aim of this study was to determine whether increasing spatial or angular 
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resolution provides the largest gain and when (if at all) there are diminishing returns. 

Especially for clinical settings, where scan time is limited, it is important to determine where 

scan time is best invested in.

Materials and methods

Simulated datasets

Simulations of diffusion-weighted signals for single and crossing fiber configurations have 

already shown huge benefit in validating multi-fiber methods, both in terms of accuracy, 

precision, and theoretical optimal acquisition settings (e.g., Jeurissen et al. 2013; Tournier et 

al. 2013; Zhan et al. 2013). These contributions from simulations are essential in informing 

the community on the performance of multi-fiber methods under varying SNRs, modeling 

parameters, and number of gradient directions. These, however, often focus on crossing 

configurations. To determine how well tractography can resolve different complex fiber 

geometries under varying angular and spatial resolutions, tractography results from 

simulations were used. Three configurations are used: crossing, or interdigitating, fibers; 

brushing fibers; and kissing fibers (as shown in the first column of Fig. 1). These 

configurations were created using the methods from Leemans et al. (2005) in ExploreDTI 

(Leemans et al. 2009) with a fiber bundle thickness of 1 mm, with the two fiber populations 

coming together at a 65° angle within the axial plane. The individual fiber populations were 

simulated as cylindrically symmetric (i.e., λ2 = λ3) diffusion tensors (simulated with FA = 

0.9 and MD = 0.7×10−3 mm2/s). Diffusion-weighted images were generated at b = 1000 

s/mm2 for each configuration at 1 mm isotropic resolution (at an SNR of 10; Sijbers and den 

Dekker 2004) and two angular resolutions (25 and 100 gradient orientations sampled on the 

half-sphere Jones et al. 1999). The simulated DWIs at 1 mm resolution were downsampled 

to 2 mm for comparison at both resolutions. Multi-fiber deterministic tractography was 

performed on these datasets as detailed in Section Fiber tractography for the in vivo data.

Data acquisition

A variant of the recently proposed 3D multi-slab EPI method by Engstrom and Skare (2013) 

was used to acquire high-resolution isotropic DWI data. While conventional 2D acquisitions 

only Fourier-encode each slice in-plane (kx and ky), 3D acquisitions also encode each slab 

along the z-direction, kz Here, a slab of 7 mm thickness was excited, and read out with a 

field-of-view (FOVSLAB) of 232 × 232 × 8 mm and an acquisition matrix (matrixSLAB) of 

232 × 232 × 8 was used to achieve 1 mm isotropic resolution. The matrix was acquired by 

‘stacking’ 2D EPI readouts, each with a different phase-encoding along the kz-dimension. 

Each of the 8 kz phase-encodes was acquired in a separate excitation. Each in-plane EPI 

readout was performed with a GRAPPA acceleration factor of 4 and a partial Fourier factor 

of 0.7. A two-echo readout was used: the first echo was used for the imaging data and the 

second was used as navigator for non-linear 2D phase correction before combining the kz-

encodes. Given the small slab thickness, through-plane phase errors were ignored. The echo 

time of the imaging and navigator echoes were 71.5 and 146.6 ms, respectively, for a TR of 

7 s. As for most MR acquisitions, the slab profile — with a prescribed 7 mm thickness—was 

not perfectly rectangular. To account for slab boundary artifacts and prevent aliasing of the 

slab back onto itself (see Fig. 2 in Engstrom and Skare 2013), only 5 of the 8 kz-encodes of 1 
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mm each were used. Thirty slabs were acquired and spaced in such a way that the 

combination of the 5 mm volume of the 3rd–7th kz-encodes of each slab formed a 

continuous coverage of 150 mm to image the entire brain. Imaging was performed on single 

female subject (30 years old; healthy, no lesions) on a 3 T GE MR750 scanner with a Nova 

Medical 32-channel head coil.

For the HARDI acquisition scheme, 100 unique gradient orientations were acquired (Jones 

et al. 1999) with a b-value of 1000 s/mm2 and single-refocused diffusion preparation. To 

account for possible background gradients that could modify the diffusion-weighting 

orientation and magnitude (Neeman et al. 1991), each gradient orientation was acquired with 

opposing directions (i.e., gradient directions g = [0 0 1] and g = [0 0–1]).

To achieve DWI data with a high geometric fidelity, a high in-plane parallel imaging 

acceleration of 4 was used, as shown by Holdsworth et al. (2012) to greatly reduce EPI 

distortions. In order to reduce geometric distortions even further, each DWI was acquired 

two times, once with the phase-encoding direction in the posterior–anterior direction (blip-

up), and once in the anterior–posterior direction (blip-down Chang and Fitzpatrick 1992; 

Skare and Bammer 2010).

Each of the 100 unique gradient orientations was acquired with two EPI phase-encoding 

directions (AP and PA) and opposite gradient directions (AP+, AP−, PA+, and PA−), for a 

total of 100 × 2 × 2 = 400 DWIs. In addition, 40 volumes without diffusion-weighting were 

acquired (b = 0-images, 20 with ‘blip-up’ and 20 with ‘blip-down’). Because of the 3D 

nature of the sequence, the total acquisition time per image was TACQ = TR × NKz = 56 s, 

for a total acquisition time of 440 × 56 s = 24,640 s = 6 h50 m40 s. To acquire this amount 

of data, the total acquisition was fragmented into 20 sessions of 20.5 min., which were 

performed over several weeks. Scanner stability over the study duration was monitored, as 

detailed in a study performed on the same scanner at the same time (Maclaren et al. 2014). 

In each session, 20 DWIs and 2 b = 0-images were acquired as follows: 5 unique gradient 

orientations acquired with AP+, AP−, PA+, and PA−; and one b = 0-image with opposite 

EPI phase-encoding readout.

To ensure accurate repositioning over different scan sessions, and thus reliable data fusion, a 

custom-made ‘head holder’ was created based on the geometry of the head coil—as 

determined via CT—and an anatomical MR scan of the subject’s head (Fig. 2). As a result, 

this head holder molded around the subject’s head and fit tightly into the head coil for 

immobilization and near-perfect repositioning. The head coil used in this work had a non-

circular cross-section so that the insertable head holder fit into the coil in only one unique 

way. The head holder was constructed using a 3D printer, and yielded a very high 

repositioning accuracy over repeated scans (<1°). A more detailed description of this 

positioning approach and its validation can be found in Vos et al. (2013a). This head holder 

also helped to prevent intra-volume motion—a risk that could seriously corrupt the acquired 

images and decrease scanning efficiency if not prevented. Note that given the longer scan 

time per volume compared with 2D imaging, 3D imaging is much more prone to motion 

artifacts—as any motion during the scanning of a volume could render the 3D k-space of 

each slab erroneous.
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In addition, a single T1-weighted structural scan was acquired using the same 32-channel 

head coil and head holder. A sagittal 3D FSPGR scan with a 256 × 256 × 192 mm field-of-

view (AP × IS × LR) and an acquisition matrix of 256 × 256 × 192 was made to obtain a 1 

mm isotropic resolution structural image. Sequence parameters include TE/TR/TI of 

3.0/7.3/400 ms, and a flip angle of 11°.

Image preprocessing

Prior to analysis, data had to be fused from the different scan sessions into one dataset. First, 

each dataset was corrected for possible background gradients and EPI distortions by 

combining an affine transformation of the corresponding opposite gradient orientations 

using elastix (Klein et al. 2010) with the Jacobian-weighted reverse gradient polarity method 

(RGPM) using a multi-resolution b-spline registration (Chang and Fitzpatrick 1992; Skare 

and Bammer 2010). The order of these two image registrations was chosen such that the 

affine registration was done first, to increase the image SNR for the non-linear b-spline 

registration of the EPI distortion. Image intensities were normalized across sessions based 

on the b = 0-images (similar to Froeling et al. 2014). Lastly, all datasets were combined 

(similar to Froeling et al. 2014), correcting each DWI for eddy current induced geometric 

distortions and subject motion by realigning all DWIs and b = 0-images to the the b = 0-

image of the first session using elastix (Klein et al. 2010), with an affine coregistration 

technique and mutual information as the cost function. In the same registration step, this 

DWI dataset was also transformed to the T1-weighted structural scan (Rohde et al. 2004). 

The diffusion-encoding gradients were reoriented to account for subject motion (Leemans 

and Jones 2009).

Reconstruction of datasets with different spatial and angular resolutions

The full 1 mm isotropic dataset with 100 directions (dubbed 100_1.0 mm) was reconstructed 

into optimal subsets of 75 (75_1.0 mm), 50 (50_1.0 mm), and 25 (25_1.0 mm) of the 

acquired directions. Here, the aim was to achieve as uniform a sampling on the half-sphere 

as possible. These optimal subsets were selected based on their condition number of the 

gradient sampling scheme (Skare et al. 2000; Dubois et al. 2006). The total number of 

permutations is , or roughly 1029, making it impossible to calculate the condition 

number of each subset. Instead, 107 random subsets were created and from this the optimal 

subset was chosen. In addition, these datasets were also spatially subsampled to 1.5 mm, 2.0 

mm, and 2.5 mm isotropic resolution (25_1.5 mm, 25_2.0 mm, 25_2.5 mm, etc). This 

subsampling was done in image-space to ensure equal downsampling effects in all three 

dimensions, where all imaging volumes were downsampled independently. Interpolation 

after downsampling was done using a trilinear interpolation—which has inherent anti-

aliasing properties. With large downsampling factors the downsampled image may no 

longer give a complete representation of the underlying high-resolution data. We used a 3 × 

3 × 3 trilinear interpolation kernel centered on the point of interest with kernel weights 

varying by downsampling factor. This can be regarded as a linear version of the work 

recently presented by Cardoso et al. (2015).
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Fiber tractography

For each reconstructed dataset, second-order diffusion tensors were estimated using the 

iterative weighted least-squares approach (Veraart et al. 2013) to generate fractional 

anisotropy and directionally-encoded color maps used to delineate tract inclusion and 

exclusion regions. Constrained-spherical deconvolution (CSD, (Tournier et al. 2007)) was 

used to calculate the fiber ODF (fODF) using a recursive response function calibration, 

using the settings from that original paper (Tax et al. 2014). The fODF peak amplitude was 

set to 0.1, similar to the settings in (Jeurissen et al. 2011, 2013). Multiple values for the 

maximum order of spherical harmonics (LMAX) were used (4, 6, and 8) except for the 25-

direction datasets where only LMAX = 4 was used. The fODFs were created at the respective 

voxel grid for each spatial resolution.

Whole-brain deterministic multi-fiber tractography was performed based on the fODF peaks 

in ExploreDTI, using trilinear interpolation of the voxel-wise fODF spherical harmonic 

coefficients. An isotropic 1.5 × 1.5 × 1.5 mm3 seeding grid was used for all datasets. From 

these whole-brain tractography results, several fiber bundles were segmented:

• the arcuate fasciculus (AF), as described in Catani and Thiebaut de Schotten 

(2008);

• the corticospinal tracts (CSTs) that terminate in the primary motor cortex (M1) 

were segmented as described in Wakana et al. (2007) and Aarnink et al. (2014). 

The ROIs selecting M1 were 26 mm superior to the corpus callosum on the mid-

sagittal slice;

• the trans-callosal bundle connecting the bilateral M1 areas, which will be 

abbreviated to M1–M1. The same M1 selecting ROIs were used as for the selection 

of the CST.

Detailed illustrations of the tract-selection process are shown in the Supplementary material. 

All tracts were included that intersected both bundle-selecting ROIs.

To investigate how the results of deterministic tractography compare with probabilistic 

tractography, probabilistic multi-fiber tractography of the bilateral CST was performed in 

MRtrix (Tournier et al. 2012). Here, the inferior tract-selecting ROI was used as seed region 

from where 20,000 tracts were seeded, only including those that ended up in the superior 

ROI (using the same ROIs as for the deterministic tractography).

Analysis

Simulated datasets—For each of the three complex fiber geometries—crossing, 

brushing, and kissing—tracts were extracted for each of the possible subparts. In any two-

fiber crossing, there are four branches that could each be connected. Connections between 

each branch were investigated to determine how well datasets of varying spatial and angular 

resolutions could resolve the three configurations, and results interpreted solely based on 

whether the correct connections were retrieved and whether or not wrong connection was 

found.
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In vivo datasets—The anatomical accuracy of fiber tracts is difficult to quantify, given 

that no ground truth of the wiring of the human brain exists. None of the acquired datasets 

can be regarded as the ‘gold standard’ for this work, but given that the full 100_1.0 mm 

dataset using LMAX = 8 has the highest angular and spatial resolutions, and should therefore 

provide the “best” results in terms of tractography, overlap values were determined with 

respect to this reference. Because of this lack of a gold standard, it is only possible to 

compare datasets against each other, and to previously published work on neural anatomy 

(e.g., Catani and Thiebaut de Schotten 2008).

Volumetric overlap: To quantify the volumetric overlap between segmented fiber tract 

bundles from different datasets, a binary mask was created of all voxels intersected by the 

tract pathways included in that bundle. Because tracts are continuous space-curves, this 

tract-mask is not restricted to the voxel size of the dataset it was created from (as for 

instance demonstrated in track density imaging, Calamante et al. 2010). For all datasets, the 

tract masks were created at a 1 mm isotropic resolution. For the fiber bundles from 

deterministic tractography any tract that intersected a voxel at any point within its volume 

was counted as being included in the binary mask. For probabilistic tractography at least five 

tracts should intersect a voxel at any point to be included in the binary mask. A higher 

threshold was used to account for the large number of tracts initiated from the seed region. 

From these binary masks the volumetric overlap was quantified as the Dice similarity 

coefficient (Dice 1945):

(1)

where maskA and maskB are the tract masks of the reconstructed bundles to be compared, 

and ∩ indicates the overlap of the masks. The Dice similarity is bounded between total 

overlap, 1, and no overlap, 0. All overlap values are determined with respect to the 100_1.0 

mm LMAX = 8 reference. Dice overlap scores are the method of choice in reproducibility 

studies into in vivo fiber tractography (e.g., (Besseling et al. 2012; Bauer et al. 2013; Kristo 

et al. 2013b; Dayan et al. 2015) which helps put the obtained overlap values in this work 

into perspective.

Anatomical correspondence: Volumetric overlap is one of the many possible criteria of 

fiber tract bundle correspondence. Termination points of fiber bundles are another important 

aspect. Because of the different configurations of the fiber bundles, this is evaluated 

differently for each fiber bundle:

• The segment of the AF investigated connects two language areas: Wernicke’s and 

Broca’s in the temporal and frontal lobes, respectively (Dejerine 1895; Benson et 

al. 1973; Catani et al. 2005). Tract reconstructions were evaluated based on their 

ability to show cortical projections into these areas;

• Tracts from the CST should terminate in the M1 gyrus. The superior ROI used to 

select these tracts was drawn around M1, and the fraction of voxels in this ROI 

penetrated by fiber tracts was inspected for each reconstructed dataset;

Vos et al. Page 7

Neuroimage. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Trans-callosal fibers that connect the bilateral M1 areas were evaluated similar to 

the tracts from the CST.

Methodological validation

Test–retest, or scan–rescan, experiments on multi-fiber tractography of fiber bundles have 

already shown that volumetric overlap can be markedly lower than unity (e.g., Kristo et al. 

2013b; Dayan et al. 2015), possible as a result from noise-related small variations in local 

fODF estimation. To put the obtained overlap values between different reconstructed 

datasets into perspective with respect to such test–retest variation, internal reference values 

of the volumetric overlap were generated. From the full 100_1.0 mm datasets, ten ‘test sets’ 

were created where one random gradient direction was removed from each, generating very 

similar datasets. Because these ‘test sets’ were nearly identical, only very minor changes in 

local fODF estimation and subsequently in tractography results were expected, and the 

volumetric overlap values for each fiber bundle between all combinations of these ten ‘test 

sets’ (45 combinations) can be used as a reference standard against which to compare the 

overlap values from the differently reconstructed datasets.

Results

Simulations

The results of tractography are shown in Fig. 1 for each of the three configurations. For the 

three different complex geometries, angular and spatial resolutions have different benefits. 

For a true crossing, the two datasets with a low angular resolution could only resolve one of 

the populations. Here, a high spatial resolution does not help in resolving the crossing—one 

instead needs a high angular resolution. For brushing fibers, as one might have on the 

interface between two distinct fiber populations (e.g., the cingulum and the corpus 

callosum), a high spatial or a high angular resolution both aid in resolving the intersection. 

Here, the dataset with low angular and low spatial resolutions could correctly follow one 

bundle but also finds an erroneous connection. In this case, the low spatial resolution of 2 

mm isotropic showed a larger variability in tract location due to the increased partial 

voluming effect. The kissing fiber experiment shows that a high spatial resolution is 

essential. Both datasets with 1 mm resolution perfectly separate the two kissing bundles, 

whereas both datasets with low spatial resolution also find crossings when these are not 

there. Here, the low angular resolution of the 25_2.0 mm dataset seems to perform better 

than the 100_2.0 mm dataset. Here, the 25_2.0 mm dataset has insufficient angular 

resolution to resolve the complex configuration, whereas the 100_2.0 mm datasets resolves 

this area—wrongly—as a crossing. As such, the 25_2.0 mm dataset that cannot resolve the 

configuration seems to perform better.

Dataset reconstruction

Example diffusion-encoded color (DEC) maps of the full 100_1.0 mm dataset and the 

datasets reconstructed at lower spatial resolutions are shown in axial and coronal views in 

Fig. 3.
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Methodological validation

The overlap between the fiber bundles from deterministic tractography in the two near-

identical test sets with 99 gradient directions is shown in Table 1, where the mean, 

minimum, and maximum overlaps are shown for each bundle over the 45 combinations from 

the ten subsets. Example fiber bundles of the structures with the highest (M1–M1) and 

lowest (AF) overlaps are shown in Fig. 4 from two test sets, to visualize where these 

differences occur. Although visually there are only minor differences in the reconstruction 

of these bundles, the volumetric overlap is lower than 1 (which would have indicated perfect 

overlap). For the probabilistic tractography results from the bilateral CST the test–retest 

overlap values were lower, 0.81 for the left and 0.75 for the right bundle.

Comparison of spatial and angular resolutions

The overlap in reconstructed tract volumes is shown in Figs. 5-8, for the AF, CST, and M1–

M1 tracts, respectively. The fiber bundles are visualized in Figs. 9-14, respectively. This 

allows for inspection of where differences are, facilitating the interpretation of why any 

differences in volumetric overlap occur.

Arcuate fasciculus

Volumetric overlap—These results clearly show that the datasets with only 25 directions 

are inadequate to capture the complete AF, where the reduced volumetric overlap originates 

largely from the more anterior part of the bundle (Fig. 9a). Similar limitations are visible 

using LMAX = 8 at only 50 directions (Fig. 9d). More generally, at the highest number of 

directions, 75 and 100, the use of LMAX = 4 seems to give inferior overlap compared with 

the LMAX = 6 and LMAX = 8 (5). From Fig. 9 one can see that the lower volumetric overlap 

for the datasets with 50 directions and for LMAX = 4 at 75 and 100 directions seem to arise 

from a similar origin: tracts branching off laterally in the middle of the AF that seem to 

belong to the corpus callosum. These limitations are present for all spatial resolutions for 

low angular resolution and low LMAX.

Anatomical correspondence—As the datasets with low angular resolution suffer from 

various errors (Fig. 9) only the datasets with 75 and 100 directions with LMAX = 6 and 8 

(Fig. 10) will be discussed in more detail. The 75_1.0 and all datasets with 100 directions 

show more posterior and lateral projections off the temporal part of the AF, which are 

missed in the other low-resolution datasets with 75 directions at LMAX = 8 (arrows in Fig. 

10). At the anterior end of the bundle, the only systematic difference seems to be that the 

higher spatial resolution datasets show tracts branching off superiorly (arrowheads in Fig. 10 

indicate location in datasets with these branching tracts).

Corticospinal tracts

Volumetric overlap—In comparison with the test–retest overlap values from the 

methodological validation, the deterministic tractography fiber bundles from 25 directions 

(LMAX = 4) and 50 directions at LMAX = 8 demonstrate low (<0.7) volumetric overlap (Fig. 

6). For the left CST, overlap is very high (≥0.80) between the 100_1.0 at LMAX = 8 

reference standard and the other datasets with 100 directions except the 2.5 mm resolution 
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cases, and high (≥0.75) for the 100_2.5 and all datasets with 75 directions. This indicates 

high similarities throughout a large range of parameters concerning spatial and angular 

resolutions. For the right CST, the overlap values are marginally lower, and a clear decrease 

in overlap is observed with spatial resolutions of 2.0 and 2.5 mm.

For the probabilistic tractography similar patterns are observed albeit with lower absolute 

overlap values (Fig. 7), which could be expected from the lower overlap values from the 

test–retest experiments (0.75–0.81 vs 0.9 from deterministic tractography). The datasets 

seem to benefit more from higher spatial resolution, with relatively equal overlap at 1.0 and 

1.5 mm and a stronger drop in overlap values when going from 1.5 to 2.0 mm then in the 

deterministic approach. Moreover, the difference between the 75 direction and 100 direction 

datasets seems smaller, with the 50 direction dataset also performing reasonably well.

Anatomical correspondence—From Fig. 11, showing the left CST, it would appear that 

the majority of the volumetric differences arise from the inferior half of the CST. At the 

most inferior end, there are marked differences in how the tracts remain within the CST or 

branch also into the medial lemniscus (posterior to the CST), especially for lower LMAX and 

lower spatial resolution (open arrowhead). Where the CST should only contain fibers from 

the primary motor area, the medial lemniscus contains tactile fibers that terminate in the 

primary somatosensory area (Purves et al. 2001; O’Sullivan and Schmitz 2007; Oishi et al. 

2011). These cortical areas are on different sides of the central sulcus, and the inclusion of 

these lemniscal tracts in the CST for the lower resolutions can therefore be regarded as a 

clear result of increased partial voluming. In the datasets with 75 and 100 directions, partial 

volume effects also cause tracts entering the cerebellar peduncles to appear at a lower spatial 

resolution (as indicated with closed arrowheads for the 100 directions datasets). For lower 

number of directions, LMAX, and spatial resolutions there is a tendency to pick up tracts that 

branch off medially towards the basal ganglia (as indicated by white arrows in Fig. 11).

Cortical visitation—Fig. 12 shows how the primary motor cortices are penetrated by the 

bilateral CST from deterministic tractography. Here, for the right M1 the more lateral part of 

the cortex is visited by tracts, for instance in all spatial resolutions of the 100_LMAX = 8 

cases, all of the 50_LMAX = 6 cases, and 75_1.5 and 75_2.0 at LMAX = 8. These projections 

were missed in the 75_1.0 dataset, likely because of a reduction in number of directions 

causing a reduction in angular SNR. The lower spatial resolutions (75_1.5 and 75_2.0) have 

increased SNR and can recover these parts. For all spatial resolutions, this is at the highest 

reliable LMAX value. Interestingly, intersection of the lateral part of the cortex by tracts 

seems to be consistent over the range of spatial resolutions. In contrast, whereas at 100 

directions the CST reconstructed with LMAX = 8 do show these lateral parts consistently, 

they are fully absent when using LMAX = 6 or LMAX = 4 to reconstruct the same datasets. 

No clear distinction is found in the left M1 area, with almost no tracts ending up in the 

lateral parts. At lower spatial resolutions the shape of the cortex seems to be lost somewhat, 

with the visitation map becoming more continuous and compact compared with the high 

spatial resolutions.

For probabilistic tractography the results are shown in Fig. 13. Generally, the lateral part of 

the gyrus has a higher visitation than in deterministic tractography, combined with smaller 
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variations in cortical visitation at different angular resolutions and LMAX. With lower 

angular resolution of a dataset fewer tracts reached the M1 gyrus, causing a less densely 

sampled visitation area (e.g., comparing the 50 and 100 directions datasets for the same 

LMAX), especially at high spatial resolutions. Across spatial resolutions, a similar pattern 

was observed as in the deterministic tractography (Fig. 12), where lower spatial resolutions 

yielded a more clustered and convex visitation area. For the left CST a lot more of the lateral 

part of the gyrus was visited than in deterministic tractography. Although this effect was not 

observed in all datasets and typically only included a few lateral voxels, this seemed to 

appear at low angular resolution and/or lower spatial resolution.

M1–M1 tracts

Volumetric overlap—For the M1–M1 tracts, Fig. 8, only the 50 directions at LMAX = 8 

datasets seem to have significantly lower overlap compared with the 100_1.0 reference 

tracts. The highest overlap values (0.90 and 0.91) are found for the 100_1.5 at LMAX = 8 and 

100_1.0 at LMAX = 6 datasets. A clear pattern of lower overlap is observed with a decrease 

in spatial resolution, for all number of directions and all LMAX values, with all datasets of 

2.5 mm resolutions having an overlap <0.7, except for 100_2.5 at LMAX = 8. For datasets 

with 75 directions, the LMAX value used seems to have a relatively little effect, with overlap 

values w.r.t. the reference being around 0.75–0.85. However, there is some indication that 

use of lower LMAX on the datasets with 50 and 75 directions gives a greater overlap than 

using the highest possible LMAX value.

Anatomical correspondence—Visually, the fiber bundles in all these cases are very 

similar (Fig. 14). The most pronounced difference is whether a lateral branch is included, as 

also seen in Fig. 4. The effect of spatial resolution on overlap seems to arise mostly from a 

difference in cross-section along the entire tract length.

Cortical visitation—The tract visitation maps of where in the cortical areas the tracts end 

up is shown in Fig. 15. These results appear very consistent concerning angular resolutions 

for 75 and 100 gradient directions and all values of LMAX. These patterns of visitation also 

appear reproducible at spatial resolutions down to 2.0 mm. The tracts from the 50 directions 

lack the contiguity that the higher angular resolution datasets show, whereas all 2.5 mm 

datasets show less well-defined areas. It is also apparent that the M1–M1 tracts end more 

medially than the CST (Figs. 12 and 15).

Discussion

The purpose of this work was to give an overview of how different degrees of angular and 

spatial resolutions impact fiber tractography results. We used the latest-generation 3D DWI 

pulse sequence to acquire diffusion MRI data at 1 mm isotropic resolution with a HARDI 

acquisition scheme comprising 100 gradient directions. Reconstructions of this high-

resolution dataset were subsequently generated with a lower angular resolution, a lower 

spatial resolution, or both.
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Methodological validation

Prior to comparing datasets with different angular and spatial resolutions, a statistical 

validation was performed. The volumetric overlap between fiber bundles from two nearly 

identical datasets is in the range of 0.84–0.95, depending on the structure of interest (Fig. 4). 

The excellent structural correspondence between these different reconstructions can be 

appreciated along the length of the bundle. The differences in volumetric overlap are mostly 

caused by individual fiber tract pathways deviating from the core bundle.

The different reconstructions analyzed in this work could be considered as some variants of 

test–retest or intra-subject repeatability, and our overlap values are in the same range as the 

previously reported reproducibility of tractography (e.g., Ciccarelli et al. 2003; Heiervang et 

al. 2006; Malykhin et al. 2008; Kristo et al. 2013a, 2013b). For multi-fiber tractography, 

Dice scores are known to be relatively low between scan–rescan tests, with a recent study by 

Kristo et al. (2013b) showing overlap values of around 0.6 in both the AF and CST. The 

methodological validation experiment (Fig. 4) resulted in much higher overlap values of 

0.84 for the AF and 0.90 for the CST. This indicates that the minor difference between the 

two test–retest datasets used here can cause small perturbations in fODF estimation that 

cause mismatch in the reconstructed fiber bundles.

Comparisons of test–retest between deterministic and probabilistic tensor-based 

tractography show that the latter generally has a lower reproducibility for tract volume and 

overlap (e.g., Heiervang et al. 2006; Malykhin et al. 2008), which is also observed in this 

work for CSD-based tractography of the CST.

Analysis of reconstructed datasets

From Figs. 5-8 it is most obvious that the volumetric overlap between fiber bundle 

reconstructions shows large variations between bundles, with the CST and M1–M1 tracts are 

more reproducible across subsets than the AF. At the regions where these fibers cross, the 

CST is the dominant fiber population, and is the easiest to model accurately with low 

angular resolutions. The non-dominant fiber populations, the AF and the lateral projections 

of the corpus callosum, are known to be less accurate at lower angular resolutions (Vos et al. 

2013b) and consequently produce erroneous tract reconstructions (Fig. 9).

Ultimately, objective metrics of cortical visitation and anatomical correspondence would aid 

in quantitative evaluation of these aspects, but no such metrics exist. The difficulty here, for 

instance for cortical visitation, is that these metrics should evaluate both the proportion of 

visited voxels as well as the location within the gyrus, as one would want the distinction 

between a large convex medial visitation area and a more irregularly-shaped and thin 

visitation area that covers the entire gyrus.

Arcuate fasciculus

Only the datasets with 75 and 100 directions using LMAX = 6 and 8 show the AF bundle as 

completely as it is in the reference dataset (Fig. 10); all other combinations of angular 

resolution seem inadequate in varying ways (Fig. 9). In the tracts that were reconstructed 

properly only minor differences could be observed, mostly in cortical projections off the 
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temporal section, with the exception of the three lowest spatial resolutions at LMAX = 8 in 

the 75 direction datasets, possibly as a result of a complex interplay between partial 

voluming and SNR at these lower resolutions. The highest overlap values when varying 

spatial or angular resolution are around 0.75–0.77, for those closest in parameters to the 

reference. This is still lower than the overlap in the test–retest bundles, which was 0.84. This 

decrease is likely caused by the higher number of individual tracts branching off from the 

AF at the various spatial or angular resolutions.

Corticospinal tracts

Overlap values for the CST are generally higher than the AF but demonstrate similar 

patterns. With respect to the 100_1.0 LMAX = 8 dataset, highest overlap values are obtained 

in tract reconstructions from datasets with very similar parameters. Clear decreases in 

overlap can be observed at low spatial resolution, with the most systematic differences being 

how the inferior part of the CST is reconstructed. Superiorly, there are few systematic 

differences in how much of the M1 gyrus is intersected by the CST (Fig. 12). The largest 

areas were intersected when the highest usable LMAX was used per number of gradient 

directions. However, the 50_LMAX = 6 datasets showed equal penetration to the 100_LMAX 

= 8 datasets, which were both superior to the 75_LMAX = 8 datasets, showing no clear 

consistency with respect to number of DWIs. The maximum overlap values for deterministic 

tracking of 0.88 were for 100_1.0_LMAX = 6 and 100_1.5_LMAX = 8, and can be regarded 

as being in the same range as the overlap of 0.90 in the test–retest case. Similarly for the 

probabilistic CST, the highest overlap of 0.80 (left) and 0.74 (right) are at the same subsets, 

and strongly match the test–retest values of 0.81 and 0.75, respectively.

The overlap values show asymmetry between the left and right bundles, in both the 

deterministic and probabilistic reconstructions (Figs. 6 and 7), with higher overlap for the 

left fiber bundle, possibly caused by the left–right asymmetry observed in the cortical 

visitation (Figs. 12 and 13).

M1–M1 tracts

The variations between different spatial and angular resolutions seem to have the least effect 

on the M1–M1 tracts. Although overlap values do vary—mostly due to a change in the 

cross-section of the bundle—visual inspection shows very minor differences in tract 

morphometry and anatomy. Tract visitation in both M1 areas seems consistent for 75 and 

100 directions at all but a spatial resolution of 2.5 mm. Overlap values of 0.90 and higher 

are present for some datasets, indicating very comparable values with the test–retest data 

with an overlap of 0.94.

Comparison between bundles

The overlap scores varied substantially between different fiber bundles. Overlap between 

subsets was generally lower in the AF (topping at 0.77) than in the CST (with a 0.88 

maximum), with the M1–M1 tracts showing the highest overlap values (0.91). This pattern 

is also present in the test–retest experiments. The main reason for this is the complexity of 

the fiber structure investigated. The M1–M1 tracts are very strictly defined as going through 

the left and right M1 cortices, as shown in the Supplementary material. This allows for a 
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very little variation along the path of the bundle. Similarly, the CST is defined by passing 

through one of the M1 gyri and the cerebellar peduncles, which is also a very strict 

delineation. This allows for a bit more variability in the inclusion of small side-branches, as 

highlighted by the arrows and arrowheads in Fig. 11. In both the CST and the M1–M1, the 

tract-selecting ROIs were at the far edges of the bundles. Contrastingly, for the AF the tract-

selecting ROIs were rather medial to ensure that all relevant temporal, lateral, and frontal 

projections would be included (as shown in e.g., Catani et al. 2005; Catani and Thiebaut de 

Schotten 2008). This inherently allows for much variation in these projections—variations 

that are observed in Figs. 9 and 10 and results in Dice overlap values that are lower in the 

AF than in the CST and M1–M1.

Deterministic vs. probabilistic tractography of the CST

The corticospinal tracts were reconstructed with both deterministic and probabilistic CSD-

based tractography. In terms of volumetric overlap the patterns were very similar, albeit with 

relatively lower absolute overlap values for the probabilistic than deterministic results (Figs. 

7 and 6, respectively). The lower overlap in probabilistic than deterministic tractography is 

already present in the test–retest data (Table 1), likely caused by the inherently larger 

variability in the probabilistic method. In fact, the difference between test–retest Dice 

overlap and the variation as a result of different spatial or angular resolution seemed slightly 

lower for probabilistic than deterministic tractography. In terms of cortical visitation, the 

patterns vary between the two tractography types. Where deterministic tracking results in 

tracts that appear continuous, the probabilistic tracts show a more varied pattern that extends 

more laterally, spreading the tracts out thinly across more different areas of the gyrus at the 

expense of not always covering the full medial extent. One could regard this as an inherent 

characteristic of the probabilistic approach. At the highest angular resolution and LMAX = 8, 

the CSD model is assumed to describe the data as well as can be within these datasets, 

which would result in relatively sharp fODFs and thus low variability during the 

probabilistic tractography. At lower angular resolution or lower values of LMAX, the signal 

is noisier or less accurately described, respectively, resulting in a larger variability in the 

fODFs and thus a larger range of tract configurations. From the total number of seeded tracts 

in the brain stem there were twice as many tracts reaching the M1 gyrus in the 100 

directions dataset compared with the 25 and 50 direction datasets, indicating increased 

variability in fODF estimation and the probabilistic tracking approach in these lower angular 

resolution datasets resulting in a much larger spread than in high angular resolution datasets.

Trade-off between spatial and angular resolutions

The simulations of crossing, brushing, and kissing fibers (Fig. 1) show that the type of 

complex fiber configurations influences the trade-off between angular and spatial 

resolutions, as a high angular resolution could properly resolve crossings but not kissing, 

and vice versa for a high spatial resolution. The unknown ratio of these configurations at 

each location in the brain indicates the in vivo investigations which will likely be non-trivial.

For deterministic tractography, fiber bundles were mostly comparable over different spatial 

resolutions—up to certain limits—whereas decreases in angular resolution seemed to 

degrade tractography results more quickly. These results indicate that the gain in knowing 
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the fiber orientations in more detail is more beneficial than knowing fiber locations more 

accurately. This may infer that at lower spatial resolution the higher intra-voxel complexity 

over-rules the SNR boost achieved with larger voxels, resulting in a reduction of fODF 

accuracy. The cross-over of effects appears to occur at spatial resolutions of 2.5 mm, which 

do not seem to perform to the same high standard as the three higher spatial resolutions, 

neither in terms of volumetric overlap nor in anatomical correspondence.

For probabilistic tractography of the CST it would seem that the results are not as clearly in 

favor of angular resolution, with a more equal cortical visitation between the 75 and 100 

direction datasets than in deterministic tracking before reducing the coverage in the 50 

direction datasets. In line with the deterministic CST reconstructions, the effect of spatial 

resolution seems negligible on the cortical visitation. However an increase in voxel size to 

2.5 mm isotropic seems to reduce visitation patterns more strongly than in the deterministic 

experiments.

The results favoring high spatial resolutions arise only in anatomical accuracy in the 

brainstem for the CST (Fig. 11). The ability to correctly distinguish tracts from the 

corticospinal tracts and the medial lemniscus degraded more with decreasing spatial than 

with angular resolution. When aiming to map the different cortical areas and their respective 

projection fibers, making this distinction is critical. However, at the highest angular 

resolution (100 directions and LMAX = 8), this could be achieved at spatial resolutions of 

1.0, 1.5, and 2.0 mm.

Clearly, the balance between angular and spatial resolutions lies somewhere in the middle. 

Increasing the resolution from 2.5 mm—which is still common in many clinical studies—to 

2.0 mm is beneficial for anatomically accurate tractography results, as is most clearly 

apparent in the CST. Spatial resolutions higher than 2.0 mm only seem to benefit multi-fiber 

tractography methods if this would not include a decrease in angular resolution.

These results complement the results from Calabrese et al. (2014), who investigated this 

trade-off between angular and spatial resolutions ex vivo. They used six time-matched 

acquisition protocols with varying spatial and angular resolutions—ranging from 0.13 mm3 

and 12 directions to 0.6 mm3 and 257 directions—to investigate the trade-off for 

tractography in eight different fiber bundles in the ex vivo macaque brain. Their results 

show greatly varying results depending on the acquisition protocol, also finding an optimal 

balance at intermediate spatial and angular resolutions. Our setup and methodology differ 

from previous studies investigating the trade-off (Zhan et al. 2013; Calabrese et al. 2014), in 

that where those studies used six distinct time-matched acquisition protocols, we have opted 

for a single dataset to be reconstructed into more combinations of angular and spatial 

resolutions yielding a total of 16 different datasets. Further, for each of these datasets CSD 

modeling was performed with multiple values of LMAX where possible, whereas the works 

from Zhan et al. (2013) and Calabrese et al. (2014) used only one value of LMAX for ODF 

estimation or used a different diffusion modeling approach for each dataset. With datasets of 

different angular resolutions and SNR, as we use here, not making a decision about the 

model parameters a priori is an extra degree of freedom to understand the trade-off.
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Limitations

Angular resolution—An important factor in the angular resolution of the diffusion-

weighted signal is the b-value. The contrast between regions of high and low diffusivity 

increases with b-value, resulting in a higher effective angular resolution. For HARDI-based 

multi-fiber method, a b-value of 1000 s/mm2 is considered to be lower than optimal, but is 

commonly used for CSD-based tractography in more clinically-oriented studies (e.g., 

Metzler-Baddeley et al. 2011) as well as technical studies (e.g., Reisert et al. 2012; Jeurissen 

et al. 2013). In a comparative study on the performance of different multi-fiber methods at 

b-values in the order of b = 1000 s/mm2, CSD showed above average performance 

(Ramirez-Manzanares et al. 2011) making CSD the model of choice for our data. The high 

spatial resolution used in this work prevented the use of b-values in the range of 2000–3000 

s/mm2, which would have decreased SNR. The use of additional signal averages to increase 

SNR was not regarded as an option because this would double the already extreme scan 

time.

Performance of multi-fiber methods will generally increase with the number of acquired 

DWIs (Wedeen and Dai 2011), with possibly limited gains at high numbers of DWIs 

(depending on the chosen method). Therefore, tractography is expected to be more accurate 

with increasing numbers of gradient directions for the datasets with different angular 

resolutions used here, irrespective of the b-value used. If higher b-values would have been 

used in this work, the effective angular resolution would have increased for all datasets, 

allowing for better characterization of crossing fibers. Alternatively, similar results may 

have been obtained using fewer diffusion directions at a higher b-value (Tournier et al. 

2007; Vos et al. 2014). This is supported by preliminary analyses in a single dataset from the 

Human Connectome Project (HCP), as shown in the Supplementary material for the arcuate 

fasciculus reconstructed at different angular and spatial subsets using b-values of 1000, 

2000, and 3000 s/mm2. Similar to the 3D DWI data, using LMAX of 4 seemed not to capture 

the full complexity of the bundle as well as LMAX of 6 and 8. At b = 3000 s/mm2, results at 

75 and 90 directions yielded very comparable results, with a strong drop in AF 

reconstruction performance reducing angular resolution to 50 directions (Figs. S1-S3). With 

a b-value of 2000 s/mm2, there is a clear benefit of using LMAX = 8 over LMAX = 6, 

allowing the reconstruction the most frontal projections that are absent at LMAX = 6 (Fig. 

S4). At b = 1000 s/mm2, these most frontal projections are found with difficulty, mostly 

when the SNR is boosted by having a lower spatial resolution (Fig. S5). In all cases, having 

adequate angular resolution (either through b-value, number of directions, or used LMAX) is 

critical for reconstructing the AF. For a moderate b-value, 1000 s/mm2, many directions are 

required to do so (i.e., 90), whereas with higher b-values a reduction in number of directions 

is acceptable: for b = 2000, datasets with 75 and 90 directions performed very well using 

LMAX = 8, where the angular information captured in that data was represented as accurately 

as possible. At the highest b-value, this dependence on LMAX was reduced, possibly as a 

result of the increased angular contrast in the data (Tournier et al. 2013). A high spatial 

resolution aided in finding the cortical termination points in a more well-defined way, with 

some cortical projections lost at the lower spatial resolutions (some at 2.00 mm and more at 

2.50 mm).
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Spatial resolution

To create the lower resolution datasets, the acquired images were downsampled from the 1 

mm isotropic dataset, which does not yield exactly the same images as when they would 

have been acquired at these resolutions. For instance, higher resolutions introduce larger 

geometric distortions, and the longer readout time prolongs the echo time and thus lowers 

SNR. The first aspect is largely addressed by using the RGPM for EPI distortions, and 

should have limited influence. The prolongation of TE is inherent in higher in-plane 

resolutions, since a larger part of k-space is sampled. With a partial Fourier factor of 0.7 and 

high parallel imaging factor used in this work, the effective TE is only slightly increased 

compared with standard clinical acquisition with 2.5 mm isotropic resolution.

The 1 mm datasets were downsampling using straightforward linear interpolation. Much 

effort has been put into finding optimal ways of interpolation for upsampling of images, to 

aid in the detection of fine image boundaries from low-resolution data, (e.g., Lehmann et al. 

1999; Dyrby et al. 2014). The most recent diffusion MRI related work on this, by Dyrby et 

al. (2014), has shown that interpolation of the individual DWIs or through the tensor-model 

outperforms interpolation of quantitative maps, with higher-order interpolation methods 

performing better overall despite issues of ringing from overfitting. The interpolation steps 

used in this work, during tractrography, a model-based interpolation of the fODFs is in line 

with the well-performing methods from that work.

In this work, we have used a 3D multi-slab acquisition to acquire DWIs with a 1 mm 

isotropic resolution. To achieve true isotropic resolution, 3D acquisitions are preferred. Slice 

profiles for 2D imaging becomes worse for thinner slices, rendering an effective 1 mm thin 

slice difficult to acquire. The 3D multi-slab method does not suffer from these slice profile 

imperfections in the same way, yielding true isotropic resolution. Another benefit of the 3D 

acquisition is that it is more SNR efficient than conventional 2D imaging (Engstrom and 

Skare 2013). A downside is that the scan time is increased compared with 2D imaging, by 

the need to acquire different kz-encodes. To address this, Van et al. (2015) have proposed a 

SENSE-like reconstruction to reconstruct all 3D slabs simultaneously, providing an increase 

in speed of roughly 25–50%. It is important to note here that 3D multi-slab has a higher 

SNR per unit time, or SNR efficiency (Engstrom and Skare 2013), but the minimum scan 

time per volume is higher. Given that one needs at least 45 directions to use LMAX = 8 for 

CSD, the use of 3D multi-slab methods in clinical settings would require longer scan times 

than 2D single-shot EPI.

Another effect of varying spatial resolutions on tractography results is the varying extent of 

partial voluming of WM with non-WM signal, e.g., from gray matter or cerebrospinal fluid 

(CSF). For most single-shell diffusion methods it is a difficult challenge to correctly 

estimate ODFs in the presence of CSF, as e.g., shown by Parker et al. (2013), and our results 

may be affected by these differently for different spatial resolutions. Although multi-shell 

modeling approaches (e.g., Yeh et al. 2010; Jeurissen et al. 2014) can overcome these 

drawbacks, this was not included in our study as the extra shell in q-space would require 

another level of complexity in the trade-off, and the use of single-shell approaches still 

predominates in clinical settings.
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Generalization

The conclusions in this work are based on deterministic tracto-graphy results of one 

association (AF), one projection (CST), and one commissural (M1–M1) fiber bundle 

combined with probabilistic tractography of the CST. Generalization to other structures is 

likely to be possible for other major fiber bundles such as the uncinate fasciculus and parts 

of the pyramidal tracts other than the CST, given that sizes and configurations are roughly 

similar. These results may not be as easily generalized for smaller fiber bundles or fiber 

bundles of significantly differing configurations, such as the subcortical U-fibers and the 

optic radiation. Although we believe that our results may have been different for these 

structures, we have not included them because either there is as yet no definitive consensus 

on their exact anatomy, or their results in fiber tractography vary significantly (e.g., 

Sherbondy et al. 2008; Nilsson et al. 2010). Therefore, any results we would show on these 

bundles would be specific to the methodology, highly debatable, and thus of limited use to 

the community.

This study has used a single local diffusion modeling approach, CSD to model fODFs, with 

both deterministic and probabilistic tractography. Generalization across other fODF or 

dODF estimation methods or tractography algorithms is expected to be non-trivial, as 

methods behave differently under conditions or varying number of directions, SNR, and b-

value. As two examples, one could imagine another local modeling approach that may yield 

an overall better result than the one used in this study at very high angular resolutions but 

perform markedly worse at lower angular resolutions, or vice versa; or, similarly the more 

computationally expensive group of global tractography methods might outperform local 

tractography methods at low angular resolutions—benefitting greatly from the global 

approach—while yielding no benefits at high angular resolution.

Conclusion

While modeling techniques demand increases in angular resolution, the developments in 

diffusion acquisition often focus upon increasing spatial resolution. However, it is infeasible 

to increase both spatial and angular resolutions in clinically accepted scan times. As a result, 

the decision as to which of these two factors is most beneficial to invest scan time in 

becomes ever more relevant. In this work, we have given an overview of tractography 

results from datasets with varying spatial resolutions and different numbers of diffusion-

weighting directions. High spatial and high angular resolutions are the ultimate combination. 

If a trade-off must be made between: i) increasing spatial resolution past current standards, 

or ii) investing scan time in higher angular resolutions, our results suggest that fiber 

tractography benefits the most from high angular resolutions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
View of the three simulated complex geometries. The top row shows crossing or 

interdigitating fibers; the middle row brushing fibers; the bottom row shows kissing fibers. 

The left-most panel in each row is an illustration of how such a configuration looks, with the 

red cube indicating a 2 mm isotropic voxel in which such a configuration is simulated. The 

results are shown for four combinations of spatial and angular resolutions. To clearly 

indicate which tracts connect which branches, the tracts have been color-coded as: blue 

connects the top-right with the bottom-left; green connects top-left with bottom-right; red 

connects top-left with bottom-left; and yellow connects top-right with bottom-right. For the 

top two rows, with crossing and brushing fibers, the green and blue tracts are correct; for the 

bottom row, with kissing fibers, the red and yellow tracts are correct.
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Fig. 2. 
Image of the custom-made 3D-printed head holder on the scan subject’s head (a), shown 

from the side of the subject’s head with a black box over the face for anonymization. In b), 

the head holder is positioned in the coil.
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Fig. 3. 
Axial and coronal views (top and bottom rows, respectively) of the DEC-maps of datasets 

with 100 gradient directions reconstructed at four different spatial resolutions: 1.0, 1.5, 2.0, 

and 2.5 mm. The voxel volumes of these datasets are 1, 3.375, 8, and 15.625 mm3, 

respectively. For both rows, the left-most panel shows the entire slice at 1 mm resolution. 

For the axial view in the top row, the zoomed-in area shows the posterior half of one 

hemisphere; for the coronal view in the bottom row, the zoomed-in area shows one 

hemisphere. The green lines in the axial image indicate the shown coronal slices; the blue 

lines in the coronal image the shown axial slices. The differences in spatial resolution are 

strongly reflected in the amount of partial volume effect, as most clearly seen in the 

posterior part of the optic radiation (indicated by the arrows).
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Fig. 4. 
Test comparison of the fiber bundles between the two test sets with 99 directions, 1.0 mm, 

and LMAX = 8 for the M1–M1 tracts and right arcuate fasciculus (AF). The top panels show 

the bundles of one test set with 99 directions, the bottom row the other test set of 99 

directions. Of all five investigated bundles in this test example, the M1–M1 (shown on the 

left) has the highest overlap, 0.94, the right AF (shown on the right) the lowest, 0.84. Very 

minor changes can be observed along the cores of the bundles, with the largest differences 

for the M1–M1 in tracts branching of laterally (white arrowhead), and for the AF in its 

frontal and lateral temporal projections (white arrows).
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Fig. 5. 
Volumetric overlap between the AF fiber tracts reconstructed from datasets with different 

spatial and angular resolutions using deterministic tractography. The top panel shows 

overlap values for the left AF, the bottom panel for the right AF. The overlap values are with 

respect to the 100_1.0 mm tracts with LMAX = 8. For each panel, the rows indicate the 

LMAX values used, the columns indicate the angular and spatial resolutions of the data as 

indicated. Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.6.
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Fig. 6. 
Volumetric overlap between the CST fiber tracts reconstructed from datasets with different 

spatial and angular resolutions using deterministic tractography. The top panel shows 

overlap values for the left CST, the bottom panel for the right CST. The overlap values are 

with respect to the 100_1.0 mm tracts with LMAX = 8. For each panel, the rows indicate the 

LMAX values used, the columns indicate the angular and spatial resolutions of the data as 

indicated. Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.7.
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Fig. 7. 
Volumetric overlap between the CST fiber tracts reconstructed from datasets with different 

spatial and angular resolutions using probabilistic tractography. The top panel shows overlap 

values for the left CST, the bottom panel for the right CST. The overlap values are with 

respect to the 100_1.0 mm tracts with LMAX = 8. For each panel, the rows indicate the 

LMAX values used, the columns indicate the angular and spatial resolutions of the data as 

indicated. Overlap values (×100) are given in case of high overlap, i.e., ≥0.7.
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Fig. 8. 
Volumetric overlap between the M1—M1 fiber tracts reconstructed from datasets with 

different spatial and angular resolutions using deterministic tractography. The overlap values 

are with respect to the 100_1.0 mm tracts with LMAX = 8. For each panel, the rows indicate 

the LMAX values used, the columns indicate the angular and spatial resolutions of the data as 

indicated. Overlap values (×100) are given in case of moderate overlap, i.e., ≥0.7.
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Fig. 9. 
Tractography results of the right arcuate fasciculus a spatial resolution of 2.0 mm and all 

datasets with 25 (a) and 50 directions (b–d) and the datasets with 75 (e) and 100 (f) 

directions with LMAX = 4. Clear premature termination is visible in a), and insufficient SNR 

is present in the 50 direction dataset to use LMAX = 8 (d). The other datasets suffer from 

incorrect branching into the lateral projections of the corpus callosum, as indicated by the 

white arrowheads. Although examples from only the 2.0 mm datasets are shown for clarity, 

identical errors are present for other spatial resolutions for low angular resolution and low 

LMAX.
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Fig. 10. 
Tractography results of the right arcuate fasciculus for datasets with 75 and 100 directions at 

LMAX = 6 and 8 for all spatial resolutions. None of the errors present in the low angular 

resolution datasets (Fig. 9) are visible. The arrows indicate temporal projections that are 

missing in the 75 directions datasets with LMAX = 8 but are present in the other datasets. 

The arrowheads show anterior cortical projections in the datasets with high spatial resolution 

(1.0 and 1.5 mm) that are not found in the low spatial resolution cases (2.0 and 2.5 mm).
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Fig. 11. 
Tractography results of the corticospinal tracts for all combinations of spatial and angular 

resolutions and LMAX values. The inset in the bottom left corner shows the view angle. The 

green lines in the 100_1.0 panel indicate the bundle-selecting ROIs.
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Fig. 12. 
Visualization of where deterministic tractography fiber bundle of the bilateral CST end up in 

the M1 cortices. Each subpanel represents results from the different reconstructed datasets, 

with columns being different spatial resolutions and each row a combination of number of 

gradient directions and used LMAX, as indicated in the figure. White areas indicate voxels 

that were intersected by fiber tracts. The green line on the 100_1.0 LMAX = 8 panel indicates 

the ROI that selects the cortices. The inset in the top-left corner shows an overview of the 

axial slice, with the gyri of interest outlined in green.
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Fig. 13. 
Visualization of where probabilistic tractography fiber bundle of the bilateral CST end up in 

the M1 cortices. Each subpanel represents results from the different reconstructed datasets, 

with columns being different spatial resolutions and each row a combination of number of 

gradient directions and used LMAX, as indicated in the figure. White areas indicate voxels 

that were intersected by fiber tracts. The green line on the 100_1.0 LMAX = 8 panel indicates 

the ROI that selects the cortices. The inset in the top-left corner shows an overview of the 

axial slice, with the gyri of interest outlined in green.
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Fig. 14. 
Tractography results of the M1–M1 tracts for all combinations of spatial and angular 

resolution and LMAX values.
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Fig. 15. 
Visualization of where fiber tracts of the bilateral M1–M1 tracts intersect the cortical areas. 

Each subpanel represents results from the different reconstructed datasets, with columns 

being different spatial resolutions and each row a combination of number of gradient 

directions and used LMAX, as indicated in the figure. White areas indicate voxels that were 

intersected by fiber tracts. The green line on the 100_1.0 LMAX = 8 panel indicates the ROI 

that selects the cortices. The inset in the top-left corner shows an overview of the axial slice, 

with the gyri of interest outlined in green.
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Table 1

Dice overlap for test–retest experiment.

Mean [range]

AF Left 0.87 [0.86–0.88]

Right 0.86 [0.84–0.88]

M1–M1 0.95 [0.93–0.96]

CST (det) Left 0.92 [0.91–0.94]

Right 0.91 [0.90–0.93]

CST (prob) Left 0.81 [0.80–0.82]

Right 0.77 [0.76–0.79]

AF = arcuate fasciculus; CST = corticospinal tracts.

Neuroimage. Author manuscript; available in PMC 2017 April 01.


