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Abstract

Inbreeding depression refers to lower fitness among offspring of genetic relatives (1). This reduced 

fitness is caused by the inheritance of two identical chromosomal segments (autozygosity) across 

the genome, which may expose the effects of (partially) recessive deleterious mutations. Even 

among outbred populations, autozygosity can occur to varying degrees due to cryptic relatedness 

between parents (2). Using dense genome-wide SNP data, we examined the degree to which 

autozygosity associated with measured cognitive ability in an unselected sample of 4,854 

participants of European ancestry. We used runs of homozygosity—multiple homozygous SNPs in 

a row— to estimate autozygous tracts across the genome. We found that increased levels of 

autozygosity predicted lower general cognitive ability, and estimate a drop of 0.6 standard 

deviations among the offspring of first cousins (p = 0.003 - 0.02 depending on the model). This 

effect came predominantly from long and rare autozygous tracts, which theory predicts as more 

likely to be deleterious than short and common tracts. Association mapping of autozygous tracts 

did not reveal any specific regions that were predictive beyond chance after correcting for multiple 

testing genome-wide. The observed effect size is consistent with studies of cognitive decline 

among offspring of known consanguineous relationships (3). These findings suggest a role for 
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multiple recessive or partially recessive alleles in general cognitive ability, and that alleles 

decreasing general cognitive ability have been selected against over evolutionary time.

INTRODUCTION

General cognitive ability, traditionally measured through IQ-type psychometric tests, is a 

composite measure of cognition across multiple domains (4-6). It reliably predicts many life 

outcomes, such as health, longevity, social mobility, and occupational success (7-10). 

Decades of behavioral genetic research on general cognitive ability have shown moderate to 

high heritability estimates across development (11, 12), (13, 14). Results from GWAS and 

mixed linear models estimating variance components from SNPs suggest that the genetic 

variation underlying general cognitive ability is highly polygenic and mostly additive in 

nature (15-17). Furthermore, family studies have shown that offspring of consanguineous 

marriages have lower cognitive performance than the general population, supporting a role 

for inbreeding depression on general cognitive ability (3, 18-22).

The hypothesized cause of inbreeding depression, directional dominance of alleles that 

affect fitness, is thought to occur because selection acts more efficiently on additive effects 

than on recessive effects, which tends to bias deleterious effects toward a recessive mode of 

action (23). Inbreeding increases the probability that recessive/partially recessive deleterious 

mutations are homozygous by increasing the proportion of the genome that is autozygous 

(stretches of two homologous chromosomes in the same individual that are identical by 

descent). It is important to recognize that traits influenced by inbreeding depression are not 

predicted to have high levels of non-additive genetic variation; if inbreeding depression 

occurs because of the effects of rare, partially recessive deleterious mutations, most of the 

genetic variation will be additive (24, 25). While highly inbred individuals are autozygous 

for a substantial proportion of their genome (e.g. first cousin inbreeding leads to 6.25% 

average autozygosity genome-wide), autozygosity still occurs in outbred populations, albeit 

at lower levels, due to shared distant common ancestors between mates of no known 

relationship. Using high-density SNP arrays, the existence of autozygosity arising from 

distant inbreeding can be inferred using runs of homozygosity (ROH)—multiple 

homozygous SNPs in a row (2, 26, 27). To the degree that ROHs accurately measure 

autozygosity, ROHs capture not only homozygosity at measured SNPs, but also 

homozygosity at rare, unmeasured variants that exist within ROHs (28, 29). Thus, 

inbreeding estimates based on SNP-by-SNP excess homozygosity (Fsnp) capture the effects 

of homozygosity at common variants, while inbreeding estimates based on the proportion of 

the genome in ROHs (Froh) capture the effects of homozygosity at both common and rare 

variants.

To date, a number of studies have examined the effect of Froh burden and individual ROH 

regions on case/control and quantitative phenotypes, with early studies showing mixed 

results (30), including a non-significant Froh-cognitive ability relationship among 

individuals of European ancestry (N=2329) (31). Given the low variation in Froh among 

outbred samples, it is likely that these studies were underpowered (29). Investigations with 

larger samples have been more successful, finding increased Froh burden associated with 
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schizophrenia (32), height (33), and personality (34). Here, we present an analysis of Froh 
on general cognitive ability for 4854 individuals of European ancestry from eight samples, 

including five samples from the COGENT consortium (35). Understanding the contribution 

of autozygosity to individual differences in general cognitive ability can help elucidate the 

genetic architecture underlying this important and highly polygenic trait.

MATERIALS AND METHODS

Genetic and Sample quality control

Quality control (QC) procedures focused on properties that would be appropriate across a 

range of genotyping platforms that differed in SNP density. The main goal—analyzing runs 

of homozygosity to infer autozygosity—differed from the usual goal of finding associations 

between individuals SNPs and a phenotype, and so the procedures adopted were more 

stringent than those typically used in genome-wide association studies. Moreover, because 

so many SNPs (70-75% depending on the sample) were removed due to linkage 

disequilibrium pruning during ROH detection (see below), we could afford to use more 

stringent QC procedures, because dropped SNPs were likely to be in strong linkage 

disequilibrium with other nearby SNPs that were retained.

Table 1 lists the specific genotyping platforms used, with an average LD-pruned SNP 

density of 229K SNPs (range: 174K – 277K). The specific QC procedures and numbers of 

individuals or SNPs dropped at each step can be found in Table S4. Most steps are self-

explanatory, so only those needing clarification are discussed. Individuals whose self-

reported sex was discrepant from their genotypic sex were dropped, as these individuals 

might represent sample mix-ups. Individuals who self-identified as non-European ancestry 

were dropped, as both homozygosity and phenotypic measures might differ between 

ethnicities or across different levels of genetic admixture. We also merged the genotype data 

with HapMap2 reference samples (36), and removed anyone clearly outside of the European 

ancestry cluster. Finally, we did not remove individuals with excess genome-wide 

homozygosity as such individuals are more likely to be inbred and therefore informative for 

investigating the current hypothesis.

Runs of Homozygosity (ROHs) calling procedures

ROH were called in PLINK using the --homozyg command (37), which has been found to 

outperform other programs in accurately identifying autozygous segments (38). The current 

analysis incorporated the ROH tuning parameters recommended in Howrigan et al. (38). In 

particular, each dataset was pruned for either moderate LD (removing any SNP with R2 > 

0.5 with other SNP in a 50 SNP window) or strong LD (removing any SNP with R2 > 0.9 

with other SNP in a 50 SNP window). For moderate LD-pruned SNPs, the minimum SNP 

length threshold was set to 35, 45, or 50 SNPs. For strong LD-pruned SNPs, the minimum 

SNP length threshold was set to 65 SNPs. We did not allow for heterozygote SNPs, used a 

window size equal to the minimum SNP threshold, and allowed for 5% of SNPs to be 

missing within the window (38). In addition, PLINK's --homozyg-group and --homozyg-

match commands were used to find allelically matching ROH that overlapped at least 95% 

of physical distance of the smaller ROH. We chose the 65 SNP minimum pruned for strong 
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LD, as this parameter setting has been used in previous analyses (32). Primary Froh burden 

results, however, were similar for all four tuning parameters used (Table S1).

Froh genotype

Genome-wide ROH burden, or Froh, represents the percent of the autosome in ROHs. Froh 
was derived by summing the total length of autosomal ROHs in an individual and dividing 

this by the total SNP-mappable autosomal distance (2.77 × 109). The distribution of Froh in 

the sample is listed in Figure S1. Froh can be affected by population stratification (e.g., if 

background levels of homozygosity or autozygosity differ across ethnicities), low quality 

DNA leading to bad SNP calls, and heterozygosity levels that differ depending on, for 

example, genotype plate, DNA sources, SNP calling algorithm, or sample collection site. We 

controlled for covariates in two steps – within dataset and across the combined datasets. 

Within each dataset, we controlled for the first ten principal components generated from an 

identity-by-state matrix derived from a subset of SNPs (~50,000) within each dataset. We 

also controlled for age and age-squared within dataset when provided, as age information 

was not available in four of the eleven studies (Table 2). We used the linear model residuals 

from within each dataset as our Froh genotype moving forward. Across the combined 

samples, we controlled for gender, dataset, the percentage of missing calls - which has been 

shown to track the quality of SNP calls (39), and excess SNP-by-SNP homozygosity (Fsnp, 

from PLINK's --het command) - which can be used to test the effects of homozygosity at 

common but not rare variants.

General cognitive ability phenotype

Table 2 lists the sample characteristics and various measures of general cognitive ability 

employed (additional description in Supplementary information). Measures of general 

cognitive ability were standardized within each dataset (Figure S2). We controlled for 

potential confounds in same manner as the Froh genotype, regressing out the first ten 

principal components, age, and age-squared within each dataset, and dataset, gender, SNP 

missingness, and Fsnp across the combined dataset.

Froh burden analysis

To test the effect of Froh burden on general cognitive ability, we examined both fixed-effects 

modeling (i.e. lm() in R) and mixed-effects modeling treating dataset as a random effect (i.e. 

lmer() from the lme4 package in R). Both analyses showed very consistent results, and we 

used fixed-effects modeling approach for all analyses hereafter. For our primary analysis, we 

tested the effects of Froh after controlling for Fsnp as we have done previously (32), not 

only because this analysis provides information on the importance of rare recessive variants 

in particular, which are thought to be the primary cause of inbreeding depression (23), but 

also because controlling for Fsnp can increase power to detect Froh relationships in the 

presence of genotyping errors (29). We also report the effects of Froh not controlling for 

Fsnp. In follow up analyses, Froh burden was partitioned into short and long ROH as well as 

common and uncommon ROH according to median splits of both variables. Due to the 

variation in SNP density across dataset platforms (ranging from 300k to over 1 million 

SNPs), median splits for both length and frequency were calculated within each dataset (see 
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Table S2). Across all datasets, 34% of the total length of ROHs was composed of short 

ROHs and 66% was composed of long ROHs, whereas 38% of the total ROH length was 

composed of common and 62% was composed of uncommon ROHs.

ROH mapping analysis

To investigate whether specific genomic regions predicted general cognitive ability, we co-

opted the rare CNV commands used in PLINK, whereby each ROH segment was tested at 

the two SNPs defining the start and end position. At each position, all individuals with ROH 

overlapping the tested SNP were included as ROH carriers. General cognitive ability 

residuals, after controlling for all covariates, were used as the dependent variable. We 

restricted ROH mapping to positions where five or more ROHs existed across the sample, 

and derived statistical significance at each position from one million permutations in 

PLINK.

To derive a genome-wide significance threshold for multiple testing, we estimated the 

family-wise error rate directly from permutation. To do so, we ran 1000 permutations on the 

general cognitive ability phenotype and obtained empirical p-values in the same manner as 

above. We then extracted the most significant p-value from each permutation, and used the 

95th percentile (or 50th most significant p-value among the set) as our genome-wide 

significance threshold (p = 4e−6). Thus, under the null hypothesis, we had a 5% chance of 

observing a single genome-wide significant hit.

RESULTS

Figure 1 shows the parameter estimates of Froh predicting general cognitive ability within 

each dataset and combined across the full sample. In the combined sample, higher levels of 

Froh were associated, albeit modestly, with lower general cognitive ability (β = −9.8, t(4852) 

= −2.31, p = 0.02). This estimate suggests that every one percentage point increase in Froh 
corresponds to a ~0.1 standard deviation reduction in general cognitive ability, extrapolating 

to an expected ~0.6 standard deviation reduction among the offspring of first cousins. Our 

estimate was not driven by potential outliers in Froh, as it increased when we removed the 

33 individuals with no ROH calls and 5 individuals with > 6% Froh (β = −12.8, t(4814) = 

−2.68, p = 0.007), and was insensitive to ROH calling thresholds ≥ 50 consecutive 

homozygous SNPs (Figure S3). The relationship between Froh and general cognitive ability 

remained stable across models where covariates were removed in step-wise fashion or split 

by age groups or sex. In particular, the estimate for Froh on general cognitive ability was 

more significant when SNP-by-SNP homozygosity, Fsnp, was removed as a covariate (β = 

−9.9, t(4852) = −2.92, p = 0.003), whereas Fsnp did not itself predict general cognitive 

ability (β = −0.1, t(4852) = −0.04, p = 0.97), and suggests that homozygosity at rare variants 

drove the observed Froh effect. Finally, contrary to a previous report (31), we found no 

evidence for increased assortative mating or inbreeding at the upper tail of the cognitive 

ability distribution.

Additional analyses found that Froh from long ROH (β = −9.2, t(4852) = −2.15, p = 0.03), 

and rare ROH (β = −15.4, t(4852) = −2.56, p = 0.01) remain significant, whereas Froh 
estimates from short or common ROH did not (p > 0.30 for both, see Supplementary 
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Information for full analysis). Both short autozygous haplotypes, which arise from more 

distant common ancestry, and common autozygous haplotypes, which arise from chance 

pairing of common haplotypes segregating in the population, have had more opportunities to 

be subject to natural selection when autozygous. This may bias them to be less deleterious 

when autozygous than long or rare haplotypes.

In addition to Froh burden, we mapped individual ROH along the autosome to assess 

whether specific regions associate with general cognitive ability. Using PLINK, we mapped 

and analyzed ROH segments at their respective ends (i.e. the first and last SNP in the ROH), 

counting all overlapping ROH incorporating that SNP as ROH carriers. We observed 

minimal test statistic inflation across the genome (λGC = 1.02; QQ plot shown in Figure S5), 

suggesting that the integration of various sub-populations within the full sample were 

adequately controlled and did not inflate ROH mapping test statistics. Although we did not 

identify any specific ROH regions that surpassed strict genome-wide correction (Figure 2), 

we highlight sixteen regions with p < 0.001 as potential areas of interest (Table S3). Our top 

association, located on chromosome 21q21.1 (p = 5.4e−5, Figure S6), predicts lower general 

cognitive ability and has a distinct peak over USP25, a ubiquitin specific peptidase gene 

expressed across a variety tissues types, including brain (40).

DISCUSSION

After stringent quality control and the application of preferred methods for detecting 

autozygosity, we observe a significant, albeit modest, trend of autozygosity burden (Froh) 

lowering cognitive ability among outbred populations of European ancestry. Inbreeding 

among first cousins leads to an average Froh burden of 6.25%, and corresponds to a 

predicted drop of 9.19 IQ points in the current study, an effect consistent with previously 

detected effects from pedigree-based consanguineous inbreeding (3). In addition, we find 

that long and rare ROH are driving Froh association to general cognitive ability, as the 

relationship of Froh to general cognitive ability disappear when restricting to either short or 

common ROH, but remain when considering either long or rare ROH. At the level of 

individual ROH, however, we do not identify any specific autozygous loci that significantly 

predicted general cognitive ability after genome-wide correction.

There were several limitations to the current study that were largely a consequence of 

combining multiple datasets together. First, the operational construct of general cognitive 

ability differed somewhat between datasets (see Table 2 and Supplementary Information), 

and statistical power can be lost as a function of the degree of phenotypic heterogeneity in 

measured cognitive ability across samples. Second, the autozygosity – cognitive ability 

relationship might be mediated differentially across sites/datasets. For example, analysis of 

the Netherlands Twin Registry found that increased religiosity was associated with both 

higher autozygosity and lower rates of major depression in the Netherlands, which if 

unaccounted for, would have obscured the true relationship between major depression and 

autozygosity (41). More recent evidence in the same dataset found that increased parental 

migration mediated the relationship of education attainment to autozygosity (42). 

Unfortunately, these potential confounds are often unmeasured and were unavailable in the 

current study. Third, despite following strict QC procedures, the use of different genotyping 
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platforms affects ROH calls across datasets. Although dataset was included as a covariate, 

such differences add noise and reduce statistical power, and it is impossible to rule out all 

biases that could arise from such differences between datasets. Finally, we did not measure 

copy number deletions in our dataset, and hemizygosity due to deletions could be included 

in the Froh estimates. Previous studies, however, using deletions called from intensity data 

found that fewer than 0.3% of the total lengths of ROHs in their samples were actually 

hemizygous, suggesting that deletions had a minimal effect on the present results (2, 32).

Autozygosity is the most direct measure of inbreeding at the genetic level. It can help 

elucidate the genetic architecture underlying heritable traits like general cognitive ability and 

provide clues to the evolutionary forces that acted on alleles affecting the trait. Our results 

suggest that alleles that decrease cognitive ability are more recessive than otherwise 

expected, and are consistent with the hypothesis that alleles that lead to lower cognitive 

ability have, on average, been under negative selection ancestrally.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Forest plot of slope estimates and 95% confidence intervals of Froh predicting general 
cognitive ability
Points represent slope estimates and bars represent 95% confidence intervals. Datasets are 

color coded by the genotyping platform used. The three GAIN datasets were combined for 

clarity.
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Figure 2. ROH mapping manhattan plot predicting general cognitive ability
Top panel: −log10 p-values for ROH breakpoint regions predicting general cognitive ability. 

Regions with p-values below 0.001 are flagged for predicting lower cognitive ability (red) 

and higher cognitive ability (blue). The red dotted line is the genome-wide correction 

estimate, set at 4e−6, which is the top 5% of minimum p-values observed across 1000 

permutations. Bottom panel: ROH frequencies for each region across the autosome, with 

the highest frequency of ROH due to balancing selection in the MHC (chr6) and recent 

positive selection in lactase persistence gene region (chr2).
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