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Abstract 

Background: Ambient ozone (O3) pollution has increased globally since preindustrial times. At present, O3 is 
one of the major air pollution concerns in Thailand, and is associated with health impacts such as chronic 
obstructive pulmonary disease (COPD). The objective of our study is to estimate the burden of disease attributed 
to O3 in 2009 in Thailand based on empirical evidence. 

Methods: We estimated disability-adjusted life years (DALYs) attributable to O3 using the comparative risk 
assessment framework in the Global Burden of Diseases (GBD) study. We quantified the population attributable 
fraction (PAF), integrated from Geographic Information Systems (GIS)-based spatial interpolation, the 
population distribution of exposure, and the exposure-response coefficient to spatially characterize exposure to 
ambient O3 pollution on a national scale. Exposure distribution was derived from GIS-based spatial interpolation 
O3 exposure model using Pollution Control Department Thailand (PCD) surface air pollution monitor network 
sources. Relative risk (RR) and population attributable fraction (PAF) were determined using health impact 
function estimates for O3. 

Result: PAF (%) of COPD attributable to O3 were determined by region: at approximately, Northern = 2.1, 
Northeastern = 7.1, Central = 9.6, Eastern = 1.75, Western = 1.47 and Southern = 1.74. The total COPD burden 
attributable to O3 for Thailand in 2009 was 61,577 DALYs. Approximately 0.6% of the total DALYs in Thailand 
is male: 48,480 DALYs; and female: 13,097 DALYs.  

Conclusion: This study provides the first empirical evidence on the health burden (DALYs) attributable to O3 
pollution in Thailand. Varying across regions, the disease burden attributable to O3 was 0.6% of the total national 
burden in 2009. Better empirical data on local specific sites, e.g. urban and rural areas, alternative exposure 
assessment, e.g. land use regression (LUR), and a local concentration-response coefficient are required for future 
studies in Thailand. 

Keywords: ambient ozone pollution, population attributable fraction, geographic information system, spatial 
interpolation, burden of disease, disability adjusted life years 

1. Introduction 

Ground-level ozone or ambient ozone pollution (O3) is one of the major air pollution concerns at both national 
and global levels, which are associated with health impacts, such as premature mortality due to respiratory 
infection (Huang, Dominici, & Bell, 2005; Ito, Thurston, & Silverman, 2007; M. Jerrett et al., 2009). The Global 
Burden of Diseases study 2010 (GBD, 2010) (WHO, 2011) estimated that the burden attributed to O3 exposure 
distributions accounted for 0.2 million or 0.1% of global DALYs in 2010, approximately 6.3% larger than the 
burden in 1990 (Lim et al., 2012). A study by Anenberg et al (Anenberg, Horowitz, Tong, & West, 2010) using 
the chemistry transport model, estimated global annual respiratory mortality of 0.7 ± 0.3 million (6.3 ± 3.0 
million years of life lost), or 1.1% ± 0.5% of all respiratory mortalities were associated with O3 pollution. In 
addition, almost 80% of the total global O3 pollution impact in this study occurred in Asia. Since 1997, O3 has 
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dramatically exceeded the standard level in many areas of Thailand because of rapidly expanding cities, 
increasing population density, increasing trend in the number of fossil fuel vehicles and electricity generation 
(Ruchirawat, Settachan, Navasumrit, Tuntawiroon, & Autrup, 2007; Thanh & Lefevre, 2000). O3 can be formed 
in mega cities and carried toward rural areas and distributed across the country via atmospheric transport 
pathways, therefore, it is necessary to quantify the health burden of O3 pollution at the national level.  

Global estimates of ozone by the powerful chemistry transport model may be under or over-estimating the 
results because it does not use national level empirical data at the local level. Thailand has used O3 surface 
monitored measurements from the Pollution Control Department in recent years, which when used with data 
from geographic information system (GIS), can improve simulated O3 distribution at a specific level. GIS is a 
well-known program and has been used to estimate the exposure distribution in many environmental 
epidemiology studies including O3 pollution exposure (Moral García et al., 2010; Hunova, 2011; Nuckols & Lars 
Jarup, 2004; Verónica, 2013). To estimate the health burden attributed to O3 in Thailand, it is necessary to 
develop an accurate prediction of the distribution of O3 exposure values at non-measurement locations with the 
empirical data available at the local level.  

Our main objective was to estimate the attributable burden of disease due to O3 exposure in Thailand using the 
spatial interpolation of O3 concentrations, health impact function and calculated disability-adjusted life years 
(DALYs), which are a composite metric that measures both deaths and disabilities, combined with the 
comparative risk assessment method (Lim et al., 2012; Murray, 1994).  

2. Method 

2.1 Overall Approach to Estimating Burden Attributable to O3 

GBD uses the disability-adjusted life-year (DALY) as developed by the Burden of Disease workgroup at the 
World Health Organization (WHO) to quantify the burden of disease. DALY is the sum of the years of life lived 
with a disability (YLD) and years of life lost (YLL). Our methods are based on the GBD 2010 comparative risk 
assessment (Lim et al., 2012). We use an integrated method that combines exposure assessment based on surface 
monitoring measurements and comparative risk assessment (CRA) to quantify the burden of disease attributed to 
ambient O3 pollution as shown in Table 1. The comparative risk assessment method used to calculate the 
attributable burden due to O3 in this study is based on epidemiological evidence for O3 exposure. 
Exposure-response relationships for O3 are derived from epidemiological studies in GBD 2010, to calculate 
attributable fractions, and are then multiplied by disease burden, and expressed in DALYs attributable to O3 

(WHO, 2004). 

Essentially, the estimation of the burden attributable to O3 consists of three main steps: (1) measuring the total 
burden of disease associated with the risk factor at the population level, (2) estimating the population attributable 
fraction (PAF), and finally (3) applying the PAF to the total burden of disease. 

 

Table 1. Risk factors included, exposure variables, theoretical-minimum-risk exposure distributions, and 
outcomes affected 

Air 
pollution 
type 

Exposure 
definition 

Outcomes Subgroup 
Main data 
sources for 
exposure 

Exposure 
estimation 
method 

Theoretical 
minimum-risk 
exposure 
distribution 

Source of 
relative 
risks 

Ambient 
ozone 
pollution 

Ambient 
concentrations 
of ozone in air, 
measured in 
parts per 
billion 

COPD 
Age ≥25 
years 

Surface 
monitor 
measure-ments 

Surface 
monitor 
measurements 
and GIS 
interpolation 

33.3–41.9 parts 
per billion 

Jerrett and 
Colleague 
(M. Jerrett 
et al., 
2009) 

 

2.2 Data Sources 

2.2.1 O3 Exposure 

The most important part of the O3 concentration estimation is the extrapolation of pollutant levels at different 
spatial locations based on empirical data from air quality monitoring stations in Thailand. The monitoring 
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national air pollution data would be difficult to obtain. 

Inverse distance weighting (IDW) is a deterministic interpolation method and based on the nonlinear 
interpolation technique that uses a weighted average of the attribute values from nearby known value data to 
estimate the value of that attribute at unknown data locations. Moreover, IDW showed good results for 
assessment and monitoring of ambient air quality parameters (Dilip Kumar Jha, Sabesan, Anup Das, Vinithkumar, 
& Kirubagaran, 2011). 

The model formula of IDW interpolation is given by; 

 ܼ ൌ ∑ ሺ ೋೕ ሻ∑ ሺ భೕ ሻ                              (1)  

Zj is the estimated of O3 concentrations value at location j; 

Zi is the measured of O3 concentrations value at location i; 

dij is the distance from measured value at location i to the estimated value at location j; 

n is the number of O3 concentrations measured value points used for interpolation. 

In addition to the IDW method, several studies used the Kriging method to evaluate O3 exposure (Denby et al., 
2010; Gorai, Tuluri, & Tchounwou, 2014; Kethireddy, Tchounwou, Ahmad, Yerramilli, & Young, 2014; Roberts, 
Voss, & Knight, 2014). Kriging weights the distance between measured locations based on its spatial correlation 
to produce variograms and a covariance factor for predicting the unknown locations (Wong, Yuan, & Perlin, 
2004). In this study, cross-validation analysis was used to evaluate the performance of the spatial interpolation 
techniques and the uncertainty of the maps (Janssen, Dumont, Fierens, & Mensink, 2008); we used Pearson 
correlation (r) between the measured values at the monitoring stations and the model predictions. We assessed 
the model performance by statistical performance indicators comparing the Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE). The equation is given by;  				ܧܵܯ ൌ 	ටଵே∑ ሺ ܺேୀଵ െ ܺᇱሻଶ                                   (2) 

ܧܣܯ     ൌ	 ଵே ∑ | ܺ െ ܺᇱ|ேୀଵ 							                                   (3) 

Where, Xi, X′i and N are measured, estimated and number of variables. 

2.2.2 Relative Risks and Population Attributable Fraction 

The population attributable fraction (PAF) has long been used to estimate the proportion reduction of burden that 
can be attributed to specified risk factors (Levin, 1953; Rockhill, Newman, & Weinberg, 1998) . If these risk 
factors were eliminated, it can be concluded that the burden would be reduced from these risk factors. Generally, 
an exposure-based approach to determine the PAF attributed to O3 requires three components of data: the 
exposure of the O3, the population of exposure (Pe), and the exposure-response relationships or Relative Risk 
(RR). We calculated the health impact function for O3 based on a log-linear relationship between relative risk 
(RR) and concentrations defined by an epidemiological study (M. Jerrett et al., 2009). We used relative risk from 
this study because it is the first study that showed significant O3 long-term health impact. In addition, the GBD 
2010 only used RR from this study for their estimations. We assumed that the background O3 concentrations, the 
relationship between O3 and health impact in Thailand, are on the same scale as the GBD 2010. The health 
impact function was evaluated based on the relationship between relative risk (RR) and the change in O3 

concentrations, defined as follows; 					ܴܴ ൌ  ఉሺ௫ି௫బሻ                                      (4)ݔ݁	

Where β is the concentration-response coefficient (CR), which is the slope of the log-linear between O3 

concentrations and mortality, and x - x0 or Δx is the concentration change from baseline conditions (x0), defined 
as follows: 

X = Average annual 1-hours daily maximum O3 concentrations in 1997-2009 (ppb) 

X0 = Theoretical minimum or background concentrations (ppb) 

We calculated the burden of disease attributable to ambient O3 pollution by multiplying the total disease burden 
and the PAF which was determined by equation 5 (Murray, Ezzati, Lopez, Rodgers, & Vander Hoorn, 2003), 
where Pe is the population distribution of the exposure and RR is the relative risk.  
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disease burden (TB) estimates for the disease and the attributable fraction (PAF). We then estimated the disease 
burden attributable to O3 according to the formula: 

AB = PAF × TB                                    (7) 

PAF = Proportion of cases that attributed to O3. 

TB = Total COPD disease burden (DALYs).  

The total COPD disease burden (DALY) dataset was obtained from BOD Thailand (Thai BOD) (BOD, 2009), 
which published the national disease burden in Thailand (BOD, 2009). We assumed that the ratio of males to 
females (sex ratio), is on the same scale as the Thai BOD (Bundhamcharoen, Odton, Phulkerd, & 
Tangcharoensathien, 2011).  

3. Results 

We present a number of comparisons of the results using the different spatial modeling described in section 2. 
The statistical summary of model performance corresponding to Kriging and IDW interpolation methods are 
presented in Table 3. Considering the average from the O3 concentrations of 1997 and 2010, the mean predicted 
O3 concentration of IDW and Kriging in Thailand were: 108.25 ppb (95% CI, 108.1-108.4) and 99.7 ppb (95% 
CI, 99.5-99.8). In this case, IDW was shown to have an approximately 8.6% larger mean predicted concentration 
than the Kriging model. Both interpolation models showed that the average O3 concentrations in Thailand 
exceeded the standard. Furthermore, the IDW model showed the maximum O3 concentration to be approximately 
169.6 ppb, while the Kriging model gave 131.4 ppb, or a 29% difference. Figure 3 illustrates the cross validation 
between the measured values at the monitoring stations and the model predictions. For both models, the Pearson 
correlation of the IDW model (r = 0.272) was lower than the Kriging model (r = 0.5). In addition, the model 
performance assessments showed that the MAE and RMSE for O3 varied from 17.9 to 20.25 and 22.58 to 25.13, 
respectively. These results revealed that the Kriging interpolation method performed with 10-12% better 
accuracy than the IDW method, and clearly indicates that the Kriging provides optimal interpolation model for 
the exposure assessment based on the empirical dataset in the present study. In addition, the spatial distribution 
of O3 concentration from the IDW and Kriging model are presented in Figure 4. The Kriging model clearly 
indicates that the highest O3 concentration levels in the Central and Eastern regions with a range of 117-131 ppb 
and, the lowest levels in southern region, with a range of 69-83 ppb. 

We then calculated ΔX in six regions and discovered that the average ΔX values were between 64.7-84.9 ppb in 
Thailand (Table 4). We calculated the summation of PAF grids (Figure 4) by region, as shown in Table 4. Our 
best PAF estimation indicates that the western region had the lowest PAF value, or about 1.47% of the total 
COPD burden. The highest PAF value was located in the central region, which produced 9.6% of the total COPD 
burden reflecting the highest O3 concentration levels.  

Table 5 summarizes the entire attributable burden due to O3 pollution by region in Thailand. The total burden of 
disease in Thailand was 10.2 million DALYs, and the estimated total COPD burden in Thailand was 259,512 
DALYs (male: 204,312 DALYs; female: 55,199 DALYs) (BOD, 2009). Figure 5 illustrates the distribution of 
population attributable fractions (PAF) to COPD in Thailand. The Total COPD burden attributable to O3 among 
six regions was approximately 61,577 DALYs (0.6% of total DALYs) (male: 48,480 DALYs; female: 13,097 
DALYs). The highest attributed O3 burden was clearly located in the central region including the Bangkok 
Metropolitan Area. The burdens were approximately 9.6% of the total COPD burden, or about 24,812 DALYs, 
while the lowest attributed burden was located in the western region, which approximately 1.47% of total COPD 
burden, or about 3,804 DALYs. 
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Table 4. Population ≥ 25 years, change in concentrations, relative risk and population attributable fractions 

Region 
Pop ≥ 25 

(millions) 

Δx RR 
PAF gridi (% of total COPD 
DALYs) 

Mean 
95% CI for 
mean 

Mean 
95% CI for 
mean 

Mean 95% CI for mean 

Northern 3.9 64.7 57.9-71.4 1.29 1.26-1.32 0.0007 0.0006-0.0008 

Northeastern 13.7 60.8 58.8-62.7 1.27 1.26-1.28 0.0014 0.0013-0.00143 

Central 12.7 84.9 81.8-88.04 1.39 1.38-1.41 0.005 0.004-0.006 

Eastern 2.4 80.5 74-86.9 1.37 1.34-1.40 0.0014 0.0013-0.0015 

Western 1.9 83.97 76.7-91.2 1.39 1.35-1.43 0.0008 0.0007-0.0009 

Southern 5.2 43.5 40.4-46.6 1.19 1.17-1.20 0.00058 0.0005-0.0006 

 

Table 5. Attributable O3 burden in Thailand 

Region 
Attributable O3 burden (DALY) Total DALYs 

(millions) 
% of total DALYs 

Both sexes Male Female 

Northern 5,490  4,322  1,168  1.4 0.39 

Northeastern 18,430 14,510 3,920  3.3 0.55 

Central 24,813  19,535 5,278  3.0 0.83 

Eastern 4,531  3,567  963  0.7 0.69 

Western 3,804 2,995  809  0.5 0.77 

Southern 4,510 3,551  959  1.3 0.35 

Total 61,577  48,480 13,097  10.2 0.60 

 

4. Discussion 

This study estimated the health burden of diseases due to O3, using GIS interpolation models and health impact 
function, and followed the comparative risk assessment method (CRA) from the global burden of disease (GBD) 
study. This approach makes it possible to assess the burden attributable to empirical data sources for O3 exposure, 
e.g., surface monitor measurements, while taking into consideration the population exposure at the national level. 
Our results indicate that the burden of disease attributable to O3 is approximately 61,577 DALYs (0.6% of total 
DALYs) (male: 48,480 DALYs; female: 13,097 DALYs). The only source of relative risks due to O3 from the 
GBD study is Jerrett et al. (2009), a major cohort study in the United States and also the first study to show 
significant O3 exposure long-term health impacts.  

We estimated O3 exposure by two spatial exposure-modeling techniques, i.e., IDW and Kriging. The 
cross-validation technique was used to test the model accuracy from the air pollution exposure study 
(Thepanondh & Toruksa, 2011), because it does not require additional data collection from areas without an air 
surface monitoring station. It removes a known point from the interpolated dataset and the residual dataset is 
used to evaluate the prediction at the known point that it had been removed. The model performance indicator of 
each of the interpolation methods is shown in Table 4, and the predicted cross-validation data is shown in Figure 
2. Both interpolation techniques were useful for estimating the exposure from the unknown areas, but the results 
showed that the Kriging, which produced smaller RMSE and MAE values, performed better than IDW. Using 
the Kriging method as shown in Figure 4, an O3 concentration exposure map from spatial distributed 
interpolation was produced.  

From our study, the average ΔX value in Thailand = 69.3 ppb (95% CI 62-70). These figures are larger than 
Horowitz’s simulation at 10-25 ppb (Horowitz, 2006); Horowitz used the chemistry transport model to generate 
globally simulated O3 concentrations of 30-50 ppb in area of Thailand. To improve these results at the national 
level, increasing the number and distribution of monitoring stations is required in the future because of a lack of 
representative surface monitored data in some high population provinces (populations > 1 million) in Thailand. 
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For example, Ubon ratchathani, Udon Thani and Buriram in northeastern region, Nakhon Si Thammarat in 
southern region, all high population provinces, lack representative surface monitored data.  

Figure 4 illustrates how the population attributable fraction due to O3 exposure varies across Thailand. The 
population attributable fraction was the highest in the Central region (including Bangkok Metropolitan Area), 
most likely because the higher population distribution of exposure (figure 2) and O3 concentrations levels (figure 
4) are located in this region. Furthermore, we found that the spatial variation of population attributable fractions 
were generally more consistent with the population distribution of exposure than the O3 concentrations, similar to 
the previous study that suggested the exposure comes with population; no population, no exposure (Hao, 
Flowers, Monti, & Qualters, 2012). The highest attributable COPD burden due to O3 was located in Central 
region, or about 24,812 DALYs. This may be due to the population distribution of exposure and pollution levels, 
but also because the total COPD DALY in the Central region was consistently high as well. However, the 
Northern region, which had the highest COPD DALY in Thailand, had lower estimated O3 attributable disease 
burden than the Central region (5,490 DALYs). This may be because the O3 concentrations were slightly lower 
(64.7 ppb, 95% CI; 57.9-71.4) than the Central region (84.9 ppb, 95% CI; 81.8-88.04), the population 
distribution of exposure was relatively smaller than the Central region, and the major sources of air pollution 
which are associated with COPD in the Northern region may differ from the Central region (e.g. forest fire, and 
garbage burnings)(Sukitpaneenit & Kim Oanh, 2014; Wiwatanadate, 2014). 

In a previous study, GBD 2010 (Lim et al., 2012), estimated the disease burden attributable to O3 to be 
approximately 0.1% of the global DALYs (152,434 deaths: both sex) in 2010, our best estimate, however, is 
0.45-1%, depending on the province/region, or a total of 61,577 DALYs (0.6% of the total national disease 
burden). Our results indicate that our PAFs were slightly greater than the GBD study. One explanation may be 
that the exposure estimation method. GBD used the global chemistry transport models (Fiore, Dentener, Wild, 
Cuvelier, & Schultz, 2009; Stevenson et al., 2006) to estimate the distribution of O3. GBD did not link the 
available surface monitor data and statistical model to estimate exposure distribution similar to the fine 
particulate matter (PM2.5) in their study, which reflects a lack of available local empirical data. In addition, the 
estimations for the O3 disease burden in Thailand are approximate to the United Arab Emirates (UAE). Based on 
the air quality monitoring stations in the UAE, and the spatial exposure modeling technique, Ying Li et al. (Li et 
al., 2010) estimated that disease attributed to ground-level O3 exposure in UAE was approximately 0.8% (95% 
CI; 0.2–2%) of the total UAE disease burden in 2007.  

We note that our study has some inherent limitations, which need to be addressed. We rely on O3 pollution data 
from existing monitoring stations network. In addition, the exposure assessment based on the surface monitoring 
measurements may vary, depending on location, air quality monitoring stations density and seasonal variation in 
O3 pollution which may not be uniformly distributed across Thailand. For that reason, it is possible that our 
model was overestimates to simulate annual O3 exposure into large scale area (e.g. national scale). We 
recommend that future research should consider another ambient air quality model to simulate O3 concentrations, 
e.g. land use regression (Ryan & LeMasters, 2007) and photochemical modeling (Fann et al., 2012) to more 
accurately assess O3 pollution and population exposure on a national scale.  

In the study limitation, we assumed that the exposure was equal for all members of the population ≥ 25 years 
(AIHW, 2010). For that reason, it should be noted that using an urban/local area-weighting method to estimate 
population exposure (Zhang, Qi, Jiang, Zhou, & Wang, 2013) due to O3, and the higher resolution population 
dataset at a resolution of 30 arc-seconds (~1km), which allocating census block population and household 
information into regular latitude longitude grids (Balk et al., 2006), are required to improve the contribution on 
the Pe factor at the local level. 

Another limitation is that our study relies on the health outcome model from the GBD study (Lim et al., 2012), 
and also concentration–response coefficients (CR) from an epidemiological study (M. Jerrett et al., 2009) despite 
differences in health status, lifestyle, age structure, and medical care (Anenberg et al., 2010). Therefore, we did 
not account for short-term effects by the ambient O3 pollution, which is related to cardiovascular and respiratory 
mortality (e.g. Bell et al., 2004). These limitations may be eliminated in future research if local epidemiological 
studies are available. 

5. Conclusion 

Our study aims to estimate the disease burden attributed to ozone in Thailand. This study presents an integrated 
exposure assessment, using a spatial interpolation model from empirical data, population distribution exposure 
and health impact function to estimate national disease burden attributable to O3. Our study indicated that 
ambient O3 is one of the major air pollutants that exerts adverse effects on the environment and human health in 
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Thailand. The estimated COPD burden cause by O3 in our study was about 0.6% of the national burden each year. 
It is our hope that the results will initiate more precise O3 and/or other air pollution health burden estimations 
among scientists in future environmental health burden studies. Finally, this study provides the first national 
estimate and can inform decision-making by stakeholders and policy-makers to promote and manage a health 
co-benefit of green economy in the future.  
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