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Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as
well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a
stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behav-
ioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can
represent both rhythmic and transient components of the signal, something not always possible using standard signal processing
techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe
a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to
capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual
cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for
generating all time-frequency power spectra are provided.

Introduction
Signals recorded from the brain often show rhythms at various
frequencies, which are associated with distinct behavioral states
(Buzsáki and Draguhn, 2004; Buzsáki, 2006). For example, alpha
rhythm (8 –12 Hz) is associated with a relaxed awake state (for
example, if eyes are closed), and gamma rhythm (center fre-
quency between 30 – 80 Hz) is related to high-level cognitive pro-
cesses (Buzsáki, 2006; Fries, 2009). Such rhythms can be readily
studied in the spectral domain by using the Fourier transform,
which decomposes a signal of a certain duration as a sum of
sinusoids of different amplitudes and phases (Fig. 1; see details
below). Brain signals, however, change rather rapidly. For exam-
ple, once a visual stimulus is presented, all visual areas, including
high-level areas such as inferotemporal cortex, become activated
in less than 150 ms (Schmolesky et al., 1998; Tamura and Tanaka,
2001). Indeed, even during fixation, visual information changes
with every microsaccade approximately three times every second
(Bosman et al., 2009). Therefore, spectral analysis should be done
only on short segments of the signal at a time, which is made
possible using techniques such as short time fourier transform
(STFT; see details below). However, a fundamental problem in

this case is that time and frequency components of a signal cannot
be determined with arbitrary precision—improving the spectral
resolution beyond a limit can only be achieved at the expense of
temporal resolution (and vice versa). Several different techniques
have been used to optimize the time–frequency trade-off. In this
review, we first introduce different techniques using a common
filter-bank interpretation (Allen and Rabiner, 1977; Portnoff,
1980; Smith and Barnwell, 1987; Vetterli, 1987), which allows a
direct comparison of these methods in the time–frequency space.
Next, we apply these techniques to the same signal so that the pros
and cons of each can be analyzed directly. Finally, we introduce
the matching pursuit (MP) algorithm and discuss some proper-
ties that allow us to improve the spectral and temporal resolution,
and compare it with other methods.

We applied all of the discussed signal processing techniques to
a local field potential (LFP) signal obtained from the primary
visual cortex of a monkey while a large grating (radius of 2.4°, 4
cycles per degree, �100% contrast, six different orientations sep-
arated by 30°; a total of 186 trials) was presented for 400 ms with
an interstimulus interval of 600 ms (for task and methodological
details, see Ray and Maunsell, 2011). Around each stimulus on-
set, we took a segment between �1.1475 and 0.9 s (total signal
duration, 2.048 s; sampled at 2 kHz) and analyzed using five
analysis techniques: STFT, multitaper method (MTM), wavelet
transform (WT), MP, and Hilbert–Huang transform.

Fourier transform
Spectral analysis has traditionally been done using the Fourier
transform (FT), which represents a signal as a sum of sinusoids at
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different frequencies. Equation 1 represents the FT of a time do-
main signal, f(t), where � is the angular frequency in radians per
second (Cohen, 1995).

f̂ ��� �
1

�2�
� f�t�e�j�t dt (1)

For example, consider the signal shown in Figure 1A and suppose
that we take the FT of the segment between 200 and 400 ms,
which shows a prominent oscillation [shown in blue; note that
because this signal is obtained by sampling the original continu-
ous signal at some fixed rate (2000 samples/s in this case), we
actually take the discrete Fourier transform (DFT) of the signal,
but in this manuscript we discuss all the methods in continuous
time domain only]. According to the theory of Fourier transform,
any finite energy signal can be decomposed as a linear combina-
tion of sine and cosine functions at different frequencies, which
are therefore the basis functions (by definition, any function in
the function space can be represented as a linear combination of
what are called “basis” functions of that space). Instead of using
sines and cosines with their corresponding scaling factors, we can
equivalently use a cosine function with a scaling factor and a
phase. For example, Figure 1B shows basis functions at 20
(black), 45 (red), and 100 Hz (green), while Figure 1C shows
these basis functions after appropriate scaling and phase shifting
(such that the original signal is the sum of all the scaled and
phase-shifted basis functions). The FT of a signal (Eq. 1) is a
complex number that represents, at each frequency (�), the cor-
responding scaling factor (Fig. 1D) and the phase (Fig. 1E). In
formal terminology, if we define the inner or dot product of two
complex functions f(t) and g(t) as �f, g� � �f(t)g*(t)dt (where * is

the complex conjugate), then FT is simply an inner product (or a
projection) of the signal with a complex exponential: �f, ej �t�, and
the magnitude of this inner product at each frequency (Fig. 1D)
gives the relative contribution of that frequency to the signal.

The energy of the signal, defined as ��f(t)� 2dt, is preserved after
the FT operation (total signal energy � ��f(t)� 2dt � ��f̂(�)� 2d�;
Parseval’s theorem). The square of the absolute value of the FT
amplitude, �f̂(�)� 2, is called the power spectral density (PSD) and
represents the power concentrated at different frequencies in the
signal (Fig. 1F; shown in a log scale because otherwise the power
at higher frequencies, which typically is only a small fraction of
the total signal power, is difficult to observe).

FT is a powerful tool that can highlight the dominant fre-
quency components present in a signal (for example, the oscilla-
tion in Fig. 1A is captured as a salient peak at �45 Hz in Fig.
1D,F). However, as the FT computes the overall amplitude/
phase at a frequency by integrating over the entire signal duration
(200 ms in this case), it does not indicate how this amplitude or
phase may be changing with time.

Short-time Fourier transform
To study the spectral properties of the signal as a function of time,
we used STFT (Ackroyd, 1971; Allen, 1977; Allen and Rabiner,
1977; Portnoff, 1980; Cohen, 1995), where the signal is essentially
broken down into short time segments of equal size and Fourier
analysis is carried out on each segment separately. Breaking the
signal into short segments is achieved through windowing, which
involves multiplying translated versions of a window function
with the signal. The STFT of the signal f(t) is computed as

f̂ h��, �� � �f�t�h�t � ��e�j�tdt (2)

Figure 1. FT analysis of the LFP signal. A, A sample LFP signal recorded from primary visual cortex. The segment taken for FT analysis is highlighted in dark blue. B, Examples of basis functions
available for the FT analysis at 20 (black), 45 (red), and 100 (green) Hz. C, Scaled and phase-shifted versions of the basis functions (shown in B). Scaling factors and phases are obtained from FT. D,
E, Magnitude (D) and phase (E) of the FT calculated on the LFP segment highlighted in A. The magnitude and phase of the basis functions are marked in their corresponding colors and used in the
equations shown in the legend of C. F, PSD of the LFP (in logarithmic scale). Note that we describe FT (and all other methods) in continuous time even though we perform the analyses on discrete
signals (and therefore use DFT).
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The time–frequency energy density spectrum, also called the
spectrogram, is obtained as the magnitude-square of the STFT,
�f̂h(�,�)� 2. The energy of STFT of the signal is the product of the
energies of the window function and the signal (Cohen, 1995), so
this transformation satisfies energy conservation if the window
has unit energy. However, the spectrogram is directly influenced
by the spectrum of the window function, as explained below.

Filter-bank interpretation
Equation 2 can be rewritten in the inner product form as

f̂ h��, �� � �f�t�, h�t � ��ej�t	 (3)

In this form, the STFT can be thought of as an inner product
between the signal and a series of windowed sinusoids given by
h(t � �)ej �t, which are the basis functions onto which the signal is
projected. For example, Figure 2A shows a zero-order Slepian
(also known as a discrete prolate spheroidal sequence, or DPSS)
window (Slepian, 1978; Moore and Cada, 2004) of 100 ms dura-
tion (this particular window is used in MTM, as explained in
more detail below), while Figure 2B shows the corresponding

basis functions with three different center frequencies at 20
(black), 50 (red), and 100 Hz (green). The spectrum of such
windowed sinusoids is obtained by convolution of the spectra of
the sinusoids (which is a delta function) and the window func-
tion, which, by the sifting theorem, is the spectrum of the window
centered at �. Since the energy of the windowed sinusoid is con-
centrated in a narrow band around �, it can be thought of as a
bandpass filter (a filter that only allows frequencies in a particular
band to pass) centered at �. Overall, STFT can be thought of as a
series of bandpass filtering operations (Allen, 1977; Allen and
Rabiner, 1977; Portnoff, 1980). Each filter has the same band-
width since window length remains unchanged, so it is also called
uniform filter-bank analysis.

For example, Figure 2C shows the same sample LFP signal as
Figure 1A, along with translated versions of the window function
(brown) and example copies of the basis functions from Figure
2B. The window is shifted with a time period of 100 ms (i.e., � is in
multiples of 100 ms), so there is no overlap between successive
windowed sections in this case, although this is just for the sake of
illustration (see below).

Figure 2. Signal decomposition using STFT. A, Zeroth-order Slepian taper of 100 ms duration. B, Three examples of basis functions available in the STFT analysis with center frequencies of 20
(black), 50 (red), and 100 (green) Hz. C, A sample of single-trial LFP signal (blue) recorded from primary visual cortex, along with the windowing operation using a 100-ms-long Slepian window
(brown). The window is translated with a time period of 100 ms. Basis functions in B are shown in the corresponding colors (the window and the basis functions are not to scale). D, Time–frequency
tiling diagram of STFT. The tiles corresponding to the three basis functions are shown in their respective colors. E, Spectrogram of LFP signal in using STFT with the windowing procedure represented
in C (in logarithmic scale).
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We can represent these filters in the time–frequency plane as
tiles, as illustrated in Figure 2D (the three basis functions in Fig.
2C are highlighted in their corresponding colors). The position of
the tile on the frequency axis is decided by the frequency of the
sinusoidal component (�) and on the time axis by the parameter
� in Equation 2, which is also called a translation parameter be-
cause it determines how much the window function is translated
(or shifted). The width and height of each tile remains the same
on the entire time–frequency plane for STFT. The spectrogram
(on a logarithmic scale), which is simply the square of the mag-
nitude of the projection on these basis functions, is shown in
Figure 2E. The transient activity related to stimulus onset can be
seen between 0 and 100 ms. Note that although we show only a
window-modulated cosine basis function in Figure 2C, there are
actually two orthogonal basis functions—a sine and a cosine,
inside each tile. The amplitude and phase of the STFT are ob-
tained from the projections of the signal on both these functions.

Time–frequency uncertainty principle
Time–frequency uncertainty principle puts a lower limit on the
area of the tiles shown in Figure 2D: shortening the width hori-
zontally (improvement in time resolution) necessarily leads to an
increase in the vertical length (degradation of frequency resolu-
tion), and vice versa.

The area of each time–frequency tile, at first glance, appears to
depend only on the signal length over which FT is computed. For
example, if the analysis window is 100 ms long, Fourier coeffi-
cients are obtained for every 10 Hz (1/T, where T is the duration
of the signal in seconds; also called the Rayleigh frequency), such
that each tile has an area of 1, regardless of the window being
used. The frequency resolution is such that the underlying sinu-
soids become orthogonal (sinusoid of 1/T Hz has exactly one
cycle in duration T, 2/T Hz has two cycles and so on; therefore,
sinusoids of frequencies 0, 1/T, 2/T, etc. form an orthogonal set).

The time–frequency uncertainty limit, which refers to the un-
certainty in the localization of the windowed basis function in
both spectral and temporal domains, depends on the shape of the
window as well. Formally, given any signal s(t), the total energy of
the signal can be computed as either ��s(t)� 2dt or ��S(�)� 2d�
(Parseval’s theorem). If we normalize the signal such that it has
unit energy, �s(t)� 2 and �S(�)� 2 can be thought of as probability
distribution functions representing how the signal energy is
spread in time and frequency domains. Standard deviation or
duration of a signal, �t, and root mean square bandwidth, ��, can
be computed as

�t � ��t2	 � �t	2, �� � ���2	 � ��	2 (4)

In Equation 4, �t� � �t�s(t)� 2dt, ��� � ���S(�)� 2d�, �t 2� �
�t 2�s(t)� 2dt, and �� 2� � �� 2�S(�)� 2d�. The time–frequency un-
certainty principle states that the time–frequency bandwidth
product can never be less than one-half; that is, �t�� �

1

2
(Cohen,

1989, 1995).
Regarding the resolution, there are three points worth noting.

First, the size of the tile depends on the choice of the window.
Time–frequency bandwidth product reaches the theoretical limit
of one-half only for a Gaussian window (Gaussian tiles are small-
est; Cohen, 1995). However, the energy of the basis function
inside a tile is not restricted to the tile alone—some of the energy
spreads beyond the tile (formally called “spectral leakage”). Dif-
ferent windows are, therefore, used to satisfy different resolution
and spectral leakage constraints (Oppenheim and Schafer, 2013).
For example, given a spectral bandwidth ��, the Slepian window

shown in Figure 2A has the highest spectral concentration within
the bandwidth. In other words, even though the Slepian tile is
slightly larger than a Gaussian tile, higher percentage of the total
window energy is inside the tile. Most of the commonly used
windows have good spectral concentration, so the choice of win-
dow is not as critical a factor as the window length as far as
resolution is concerned. We have used a Slepian window for
STFT computation only for comparison with MTM; other win-
dows give similar results.

Second, moving the window in small steps increases the num-
ber of time points in the STFT, but it does not improve the tem-
poral resolution. This is because the underlying basis functions
are not orthogonal when they are slightly shifted from each other,
so that the projections are highly correlated. In effect, it only
smooths the STFT. The temporal resolution is determined by
window properties (length and type) only.

Finally, zero padding (a procedure in which a series of zeros
are appended to a signal to increase its length) before computing
the spectrum does not improve the frequency resolution. Even
though the signal is made longer by adding zeros and appears to
have higher spectral resolution, the resulting spectrum is that of a
different signal (composed of the original signal and a series of
zeros). Specifically, the zero-padded signal is the product of the
true signal (of infinite duration, whose PSD we are interested in)
and a “rect” function (which takes a value of one for the duration
of the observed signal and zero outside). The resulting spectrum
is therefore the convolution of the true spectrum and the spec-
trum of a rect function (a sinc function). At best, zero padding
only smooths the spectrogram (Kay and Marple, 1981).

Figure 3, A and B, show STFT analysis using short (50 ms) and
long (200 ms) windows, respectively (with � � 1 ms). The first
column shows two example basis functions of center frequencies
100 and 50 Hz, respectively, while the second column shows the
tiling diagram [for simplicity, in all the tiling diagrams used in
this review, we have used the window length (T) as the tile width
and the corresponding Rayleigh frequency (1/T) as the tile
height, regardless of the window used, such that the area of each
tile is 1]. The plots on the right show time–frequency power
spectrum in logarithmic scale for a single trial (third column),
average spectrum across 186 trials (fourth column), and the
change in power from baseline (0.3 to 0.1 s before stimulus onset;
fifth column). The spectrogram computed using the short win-
dow shows the transient activity with high precision, but gamma
rhythm and the artifact due to second harmonic of the line noise
(120 Hz) are weak or absent (Fig. 3A). However, spectrogram
computed using the long window shows a salient gamma rhythm
(Fig. 3B). Even the 120 Hz line noise artifact can be seen in the
trial-averaged spectrogram. The transient activity is, however,
spread out in time. Thus, capturing both the transient and rhyth-
mic activities simultaneously with good resolution is not possible
with STFT.

Multitaper method
The spectrogram of a signal (as in Fig. 2E) yields a single value for
each tile that corresponds to the square of the inner product of its
basis function and the signal (magnitude is represented by the
color), but this value has high variability (Brillinger, 1972; Jarvis
and Mitra, 2001; Babadi and Brown, 2014). Therefore, typically, a
large number of signal repetitions are required to get a more
reliable estimate of the true spectrogram (for example, 186 spec-
trograms of the type shown in the third columns of Fig. 3, A and
B, and averaged to get the fourth columns). However, sometimes

3402 • J. Neurosci., March 23, 2016 • 36(12):3399 –3408 Chandran KS et al. • Comparison of Matching Pursuit with Other Methods



only a few signal repetitions are available, yielding a noisy esti-
mate of the true spectrogram.

MTM (Thomson, 1982; Park et al., 1987; Bokil et al., 2010;
Babadi and Brown, 2014) is a technique that allows us to increase
the size of the tile such that more than one basis function can be
placed inside each tile. These functions are orthogonal, so they
provide independent estimates of the inner product. For exam-
ple, if the size of the tile is increased by a factor of 3, 5 different
functions can be placed inside the tile (with energy localized rea-
sonably well inside). We can therefore trade-off the resolution
(size of the tile) with the reliability of the estimate (number of
basis functions that get averaged).

We performed MTM analysis using three windows (called
tapers) corresponding to a time-frequency bandwidth product
(TB) of 2 (Fig. 3C; for a formal description, see Methodological
details, below), with the same length of window as used in STFT
analysis (200 ms). Examples of basis functions are shown in the
first column of Figure 3C, which are sinusoids modulated by the
tapers used (lightly shaded envelopes). Black and red waveforms
show basis functions corresponding to zeroth- and first-order
Slepian tapers with center frequencies of 100 Hz (top) and 50 Hz
(bottom), respectively. The time–frequency energy spectrum us-
ing MTM has poorer spectral resolution than the corresponding
plots using STFT (Fig. 3, compare C with B) that makes it harder
to see the gamma rhythm or the line noise artifact at 120 Hz. The
MTM spectrogram has lower variability than STFT (the single-
trial estimate shown in the third column is closer to average esti-
mate shown in the fourth column for MTM), although it is
difficult to observe this in these plots.

Because a large number of stimulus repetitions (186) are avail-
able, there is little benefit of using MTM as compared with STFT
in this case. Indeed, given the transient nature of brain signals and
technical difficulties in improving frequency resolution, it is ad-

visable, wherever possible, to collect a large number of repeats of
a stimulus or behavioral condition rather than sacrificing fre-
quency resolution to improve the spectral estimate. Moreover,
since MTM is also a uniform filter-bank approach, all the tiles
covering the time–frequency space have the same shape and can-
not properly represent both transient and rhythmic components.
The key for improving the resolution is to use tiles of different
shapes to cover the time–frequency space, as discussed below.

Wavelet transform
If a signal has transients at high frequencies and sustained oscil-
lations at low frequencies, it might be better to use different types
of tiles at low and high frequencies. Such a representation is made
possible through the WT (Daubechies, 1990; Vetterli and Herley,
1992; Mallat, 2008), where we can use tiles with good frequency
resolution at lower frequencies and good time resolution at
higher frequencies, as shown in the tiling diagram in Figure 3D
(for a formal description, see Methodological details, below).

To illustrate the spanning of the time–frequency plane by
wavelet basis functions, we used the Morlet wavelet (Gaussian
modulated sinusoids). Basis functions corresponding to a center
frequency of 100 and 50 Hz, which are scaled versions of the same
function, are shown in the top and bottom panels in the first
column of Figure 3D. Like STFT and MTM, WT is also filter-
bank analysis, but the bandwidth of each filter varies with center
frequency.

In our WT analysis of the LFP signal, we used a dyadic decom-
position scheme where we chose desired center frequencies of the
wavelet that were equal to the sampling frequency divided by
powers of two (i.e., FS/2, FS/4, FS/8…, where Fs is the sampling
frequency) and computed the appropriate scale values for which
the wavelet coefficients were calculated (see the Matlab code
available at https://github.com/supratimray/SpectralAnalysis

Figure 3. Comparison of different spectral analysis techniques. From left to right; basis functions at 100 (top) and 50 (bottom) Hz, time–frequency tiling diagram, and time–frequency power
spectra (in logarithmic scale) of a single-trial LFP signal, averaged across 186 trials, and change in power from the baseline period. A–D, STFT with short zeroth-order Slepian window (50 ms; A), STFT
with long zeroth-order Slepian window (200 ms; B), MTM with three tapers of 200 ms duration (C), and WT using Morlet wavelet (D). See text for details. Note that the absolute values of the spectra
(third and fourth columns) are different for STFT/MTM and WT because of differences in implementation software, but the range is the same (4 orders of magnitude). The change in power (fifth
column), measured in decibels, is in the same range.

Chandran KS et al. • Comparison of Matching Pursuit with Other Methods J. Neurosci., March 23, 2016 • 36(12):3399 –3408 • 3403



Codes for details). In the time–frequency power spectra, higher-
frequency components of the transient related to the stimulus
onset are fairly well localized in time, but lower-frequency com-
ponents are not. Gamma rhythm is observed at �50 Hz, but the
frequency resolution is poorer. The 120 Hz noise is completely
missing in these plots.

Even though different tiles are available in WT, their position
in the spectrum is fixed with respect to frequency, such that it is
not possible to capture transient activity at low frequencies or
rhythmic activity at high frequencies (such as the line noise har-
monic at 120 Hz). Thus, we need an adaptive spectral analysis
technique that provides a customized tiling scheme to represent
LFP signals effectively in the time–frequency plane.

Matching pursuit algorithm
Figure 4, A–D, shows four different ways of tiling the time–fre-
quency space. Figure 4A involves decomposition using delta
functions, which has the best temporal resolution but no fre-
quency information, while Figure 4D is a Fourier decomposition,
which gives the highest spectral resolution but provides no tem-
poral information. Figure 4, B and C, correspond to STFT de-
composition using short and long windows. As discussed earlier,
while each one of these is a valid way of dividing the time–fre-
quency space, both transient activity and rhythmic activity can-
not be adequately captured with any of these decompositions.

MP (Mallat and Zhang, 1993) is a technique that allows us to
potentially use any tile from a large number of different types of
STFTs, including the extreme cases of delta and Fourier trans-
form, to represent the signal. This involves first creating a large
and redundant dictionary of tiles of different sizes, including all
the tiles shown in Figure 4, A–D, as well as other tiles of interme-
diate shapes. Then the tile that explains the maximum energy of
the signal (has the largest inner product) is picked up. The ex-
plained portion is removed from the signal and the process is
repeated. Eventually this method covers the time–frequency

space with customized tiles of different shapes depending on the
properties of the signal itself.

We performed 500 iterations of the MP algorithm (for a for-
mal description, see Methodological details, below). In the time–
frequency representation, 11 types of tiles with different scales
(ranging from 2 to 2048 samples in the time domain) were avail-
able, out of which two are shown in Figure 4, B and C (corre-
sponding to scales of 2 5 and 2 8 samples, or 16 and 128 ms). Delta
and Fourier decompositions (Fig. 4A,D), which can be thought
of as extreme cases with scales of 1 and 4096, were also available as
basis functions. Unlike WT, these tiles can occupy any position
on the time–frequency plane and their bandwidth does not de-
pend on the center frequency [note that we have assumed that the
width of the tile is equal to the scale (s) in the time domain and its
inverse (1/s) in the frequency domain to be consistent with the
tiling scheme used in STFT].

Figure 4, E–H, show the LFP signal (green), the selected basis
function (also called an “atom”; red), and the reconstructed sig-
nal at the n th iteration of MP (blue). Corresponding time–fre-
quency energy distributions up to the n th iteration are shown in
Figure 4, I–L. Here, the tile corresponding to the n th atom is
shown in a black rectangle (the octave number is shown on top).
The atom shown in Figure 4, G and K, captures part of the stim-
ulus onset transient, while the atom in Figure 4, H and L, captures
part of the gamma rhythm.

Figure 5, A–C, show the time–frequency spectra obtained
using MP for a single trial, averaged across all 186 trials and
change in power from baseline, respectively. In these plots,
gamma, transient activity, and the artifact at 120 Hz can be
seen with high precision. The artifact due to flickering of the
monitor (100 Hz) can also be seen clearly in Figure 5B, which
is not captured by any of the other methods described above.
This is because the noise and monitor artifacts are represented
by sinusoids that are 2.048 s long and therefore have a resolu-
tion of �0.5 Hz.

Figure 4. Explanation of the MP algorithm. A–D, Time–frequency tiling diagram of Dirac representation (A), Gabor function with a scale value of 32 (B), Gabor function with a scale value of 256
(C), and Fourier representation (D). All of these functions are members of the dyadic dictionary used in the MP analysis. E–H, Green traces are a single-trial LFP signal (same in all plots); red traces
are the atoms selected at second (E), fifth (F ), 14th (G), and 16th (H ) iterations; blue traces are partial signal approximation up to that iteration. I–L, The WVD-derived time-frequency spectra up
to second, fifth, 14th, and 16th iterations of MP algorithm in logarithmic scale. The selected atoms are highlighted by a black rectangle.
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Apart from using customized tiles, there are two other
forms of customization that improve resolution. First, in
STFT, MTM, and WT, the same set of tiles is used for all the
stimulus repeats. Therefore, when we average across repeats,
we only average the values in each tile. In MP, because each
repeat is potentially associated with a different set of tiles,
averaging across repeats also averages out the shapes of the
tiles. Second, in other methods, smoothing is achieved by tak-
ing small steps in the time domain (as explained above), but
this form of smoothing depends on the shape of the window
and their temporal overlap, which are fixed parameters. In
MP, if the number of iterations exceeds the number allowed by
the time–frequency uncertainty principle, it also leads to
smoothing, but here even the smoothing is customized. These
customizations allow us to capture stimulus onset transients,
rhythms, and stimulus artifacts at high resolution without any
violation of the time–frequency uncertainty principle.

There are some important issues and limitations to MP. First,
the choice of the dictionary elements is left to the user and there-
fore the dictionary elements should be selected so as to suit the
signal to be analyzed. In an earlier study, we compared the per-
formance of MP with different types of dictionaries and showed
that the averaged time–frequency energy spectrum does not
critically depend on the choice of dictionary, at least for the data
used in that study (Ray et al., 2003). Second, since MP chooses
atoms in a greedy fashion, if the algorithm chooses a wrong atom
in an iteration, it goes on correcting this mistake in the subse-
quent iterations (this problem is discussed with an example in
Chen et al., 2001). Algorithms like basis pursuit (Chen and
Donoho, 1994; Chen et al., 2001), which is a non-greedy ap-
proach, can be explored to address this issue. Third, MP requires
a large convergence time (Pati et al., 1993). Finally, if two simul-
taneously recorded signals are decomposed using MP, it is diffi-
cult to compare phase coupling across frequencies because a
different set of atoms are used in the decomposition of each sig-
nal. This is particularly important in neurophysiological studies,
where the consistency of phase relationships at a particular fre-
quency across repeats (which can be quantified using a metric
called coherence) is often of primary importance. In such cases,
either methods such as MTM could be used, or MP can be used to
first decompose the signal in different frequency bands by recon-
structing parts of the signal from atoms that have center fre-
quency in a specified range (Ray et al., 2008), followed by an
estimation of the phase consistency of the filtered components
(which are now in the same frequency range). Another option is
to perform MP simultaneously on multiple channels to find com-
mon signal structures (which would be represented by a common

atom) present in multiple channels (called multichannel match-
ing pursuit; Durka et al., 2005).

The methods described so far use predefined basis functions
and the projections of the signal (or the residue, as in MP) on
them in the process of signal decomposition. We show that MP is
particularly well suited to represent the various temporal and
spectral characteristics of the LFP signal. In the documents pro-
vided with the codes and data (see Methodological details, be-
low), we discuss an empirical method, the Hilbert–Huang
transform, which does not use predefined basis functions and the
corresponding signal projections, but instead decomposes signals
using an adaptive technique.

Conclusion
This study compares popular spectral analysis methods with MP
algorithm in studying signals like LFP, which have components oc-
curring at different instants and at varied time scales (or frequency).
To extract these features faithfully, a method with good localization
capability (or resolution), flexibility in resolution across the time–
frequency plane, and an adaptive way of decomposing the signal is
required. MP, which combines the robust theoretical structure of
Fourier-based methods with an adaptive technique to select the basis
functions, satisfies these properties and yields meaningful time–fre-
quency representation of the signals.

The main strength of MP is its ability to represent sharp
transients in the signal. Since such transients have been diffi-
cult to capture using traditional signal-processing methods, a
paradigm where the behavioral state of the subject is held
constant for several seconds (for example, by asking the sub-
ject to maintain fixation at a point on the screen while visual
stimuli are presented for long durations) is typically used, and
the first few hundred milliseconds after stimulus onset are
simply excluded from analysis to avoid response transients.
While this paradigm is useful for studying sustained oscilla-
tory responses, it does not capture the complexity of natural
vision where we make eye movements every �300 ms (that
presents a new image on the retina; Bosman et al., 2009) and
significant processing occurs within the first few hundred mil-
liseconds of stimulus onset. MP has been shown to be very
useful in the analysis of gamma oscillations generated by stim-
uli that are presented for short durations in rapid succession
(Ray et al., 2013). Another situation where MP is particularly
useful is in the study of spike–LFP interactions, because MP
can capture the sharp transient associated with a spike by a
Gaussian with a width of a few milliseconds (Ray et al., 2008,
2011; Ray, 2015). However, when focusing on the relationship
between the phases of sustained oscillations in different brain

Figure 5. The time–frequency power spectra using MP decomposition in logarithmic scale. A–C, The spectrum of single-trial LFP signal (A), averaged across 186 trials (B), and change in power
from the baseline period (C).
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areas, which requires estimation of coherence, methods such
as MTM are more useful. Overall, adaptive methods such as
MP are better suited for analyzing highly nonstationary sig-
nals, and development of such adaptive techniques that have
less a priori assumptions regarding the nature of the signal is
key towards understanding cognitive functions from brain
signals.

Methodological details
Multitaper method
STFT spectral estimates have high variability (which does not
decrease even if the window length is increased), because es-
sentially we are trying to estimate a continuous function (an
infinite set of points) with finite data (Brillinger, 1972; Jarvis
and Mitra, 2001; Babadi and Brown, 2014). MTM, introduced
by David J. Thomson in 1982 (Thomson, 1982), provides a
trade-off between spectral resolution and variance. Further,
the window (taper) used in MTM has very good spectral con-
centration, which reduces the bias in the spectral estimate due
to spectral leakage.

In MTM, multiple spectrograms are created from the signal
using a set of orthogonal window functions. The average of these
spectra gives the Multitaper time-frequency energy spectrum.
The multitaper spectral estimate (SMT(�,�)) of a signal f(t) is
defined as

SMT��, �� �
1

K�m�1

K � �f�t�hm�t � ��e�j�tdt � 2 (5)

In Equation 5, K is the number of windows used in the analysis
and hm is the m th window. We start by setting the time–frequency
bandwidth product to a number TB (greater than or equal to 1;
TB � 1 reduces to STFT), thus using tiles that are TB times larger
in the frequency domain than STFT tiles (Fig. 3C). The window
functions are chosen to maximize the spectral concentration
within the chosen bandwidth, which yields DPSS or Slepian win-
dows (or tapers). The zeroth-order Slepian taper looks like a
Gaussian window function, but as the order increases, the tapers
become more oscillatory (Fig. 3C, first column). Since the Slepian
tapers are orthogonal to each other, MTM averages mutually
independent spectral estimates, which in turn reduces the vari-
ance of the spectrum. The number of tapers (K) that have good
spectral concentration and can be used in the MTM analysis is
K � 2TB � 1. Informally, this represents the maximum number
of functions that can be placed inside each tile with their energy
reasonably localized inside the tile.

Wavelet transform
Unlike STFT and MTM, WT uses time–frequency tiles with dif-
ferent heights and widths to build the spectrum of the signal, f(t).
The basis functions used in this method are scaled and translated
versions of a single function, known as the mother wavelet. A
function 	(t) is called a wavelet if it has a zero average (�	(t)dt �
0), normalized energy (�	� � 1), and is sufficiently well localized
in time (Mallat, 2008).

The continuous wavelet transform (CWT) of a signal f(t) is
then defined as

Wf�u, s� � �f�t�
1

�s
	*�t � u

s 	dt (6)

Here, 	(t) is the mother wavelet function. A family of wavelet
functions is formed through scaling the mother wavelet by a fac-

tor s and translating by a factor u (
1

�s
is the energy normalization

constant). CWT is the projection of the signal on this wavelet
family. The time-scale power distribution (Scalogram) of the sig-
nal f(t) is obtained by squaring the CWT, �Wf(u,s)� 2.

Since a wavelet is a zero average function, the amplitude of its
spectrum at origin, i.e., at zero frequency, is zero. So the spectrum
is equivalent to that of a bandpass filter. Bandwidth of this filter is
determined by the scaling parameter. The filter has large band-
widths for lower values of scales (and vice versa). In fact, each

member in the wavelet family,
1

�s
	 �t � u

s 	 has the same

Q-factor (ratio of center frequency to bandwidth). Consequently, in the
time–frequency plane, low-frequency wavelets have a better frequency
resolution than the high-frequency ones (which, conversely, have better
temporal resolution). Using different scales for the mother wavelet cov-
ers the entire frequency axis. By converting scales to the corresponding
frequency values, the time-scale power spectrum can be transformed
into a time–frequency power spectrum.

Matching pursuit
MP is a greedy algorithm that decomposes a signal into a linear
combination of waveforms called atoms that are well localized
in time and frequency. An example of such waveforms is the
Gabor function (Gaussian-modulated sinusoidal function),
which has the least time–frequency bandwidth product. A dic-
tionary of time–frequency atoms is created by shifting (u),
scaling (s), and modulating (
) a single atom. One can thus
form an over-complete or a redundant dictionary, and MP
then decomposes the signal using atoms picked iteratively
from this redundant dictionary as per certain selection crite-
ria. Let the index � represent the scale, translation, and mod-
ulation parameters, i.e., � � (s, u, 
). Then the dictionary
elements can be defined as,

g��t� �
1

�s
g �t � u

s 	ej
t (7)

Here,
1

�s
is the normalization constant that guarantees that the

energy of the atom is unity. MP initializes the decomposed signal
to zero and the residue (error after approximation) to the signal
itself (given a signal f, the first residue is R 0f � f). At each itera-
tion, MP picks up an atom from the dictionary that maximizes
the inner product with the residue. Specifically, at the (n 
 1) th

iteration, the atom is chosen as follows:

Rnf � �Rnf, g�n	g�n � Rn
1f

g�n � arg maxg�i�D��Rn f, g�i	� (8)

Here, D refers to the dictionary used for MP decomposition.
After m iterations, the signal is approximated as

f � �n�0

m�1
�Rn f, g�n	g�n � Rmf (9)

Although the selected atoms are not orthogonal to each other, the
residue after each iteration is orthogonal to the atom selected at
that iteration (in Eq. 8, g�n is orthogonal to Rn 
1f). This is an
important property, which ensures that the energy of the residue
approaches zero as m approaches infinity, and the signal energy is
equal to the sum of the square of the inner products (for formal
proofs, see Mallat and Zhang, 1993).
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The time–frequency energy distribution is derived from the
Wigner-Ville distribution (WVD) (Cohen, 1989, 1995) of the
atoms selected in the MP decomposition (Mallat and Zhang,
1993)). WVD of a signal, f(t), is defined as

Wf�t, �� �
1

2�
�f *� t �

�

2	 f� t �
�

2	e�j�� d� (10)

If s(t) � a(t) 
 b(t), the WVD of f(t) is Ws(t,�) � Wa,a(t,�) 

Wb,b(t,�) 
 Wa,b(t,�) 
 Wb,a(t,�), where

Wa.b�t, �� �
1

2�
�a*� t �

�

2	b� t �
�

2	e�j�� d� (11)

Here, Wa,b and Wb,a are called the cross-terms, and Wa,a and Wb,b

are self-terms. Due to the energy conservation property of the
decomposition obtained by MP (see above), the self-terms com-
pletely represent the energy in the original signal. Therefore, we
can ignore the cross-terms of the traditional WVD. This property
is very desirable, since the representation now becomes devoid of
unnecessary cross-terms of WVD (Mallat and Zhang, 1993) and
gives a cleaner and physically more relevant time-frequency en-
ergy spectrum

Ef�t, �� � �n�0

� ��Rn f, g�n	�2 Wg�n �t, ����f� (12)

where �f� is the energy of the signal. In our analysis, we have used
the dyadic Gabor dictionary using real atoms, as originally pro-
posed by Mallat and Zhang (1993). This dictionary is defined as

g��t� � k���e
��� t�u

s 	 2

cos(
(t � u) � 
) (13)

where k(�) is the normalization constant. Given a signal f of
length N samples, a dyadic dictionary is created with � � {aj,
paj�u, ka�j�
} where a � 2, �u � 0.5, �
 � �, 0 
 j 
 log2N,
0 � p 
 N2�j 
1, and 0 � k 
 2j 
1 (Mallat and Zhang, 1993; Ray
et al., 2003). The parameter j is also called the octave of an atom
that varies from 1 to 11 for a signal of length of 4096. For real
atoms, the signal phase (
) that is otherwise hidden in the com-
plex exponentials becomes an explicit parameter to be optimized,
although in the algorithm provided by Mallat and Zhang (1993)
it is estimated by taking the inner product with complex Gabors
and recovering the phase from the coefficients. In addition, delta
and Fourier atoms are included.

While performing MP decomposition, it is important to take
a signal that is much longer than the duration of interest, because
the edges of the signal contain artifacts arising from an inherent
periodicity assumption of DFT (to compute DFT of a signal of
length N, we construct an infinitely long periodic signal of period
N by concatenating copies of the original signal and taking its
discrete Fourier series). Note that this is true for any decomposi-
tion technique, but the artifacts can be reduced by multiplying by
a window such that the edges of the signal are close to zero.
Because we do not use any explicit window in MP, it is advisable
to use a signal at least three times longer than the duration of
interest and study only the middle section.

The codes and data used for this paper can be found online.
The MP code for Windows, Mac OSX, and Linux is available at
https://github.com/supratimray/MP; the data and codes used to
generate Figures 3 and 5, as well as the spectral analysis using the
Hilbert–Huang transform, are available at https://github.com/
supratimray/SpectralAnalysisCodes.
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Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks.

Science 304:1926 –1929. CrossRef Medline
Chen S, Donoho D (1994) Basis pursuit. In: 1994 conference record of the

Twenty-Eighth Asilomar Conference on Signals, Systems and Comput-
ers, Vol. 1, pp 41– 44. Washington, DC: IEEE.

Chen S, Donoho D, Saunders M (2001) Atomic decomposition by basis
pursuit. SIAM Rev 43:129 –159. CrossRef

Cohen L (1989) Time-frequency distributions—a review. Proc IEEE 77:
941–981. CrossRef

Cohen L (1995) Time-frequency analysis. Upper Saddle River, NJ: Prentice
Hall.

Daubechies I (1990) The wavelet transform, time-frequency localization
and signal analysis. IEEE Trans Inf Theory 36:961–1005. CrossRef

Durka PJ, Matysiak A, Montes EM, Sosa PV, Blinowska KJ (2005) Multi-
channel matching pursuit and EEG inverse solutions. J Neurosci Methods
148:49 –59. CrossRef Medline

Fries P (2009) Neuronal gamma-band synchronization as a fundamental
process in cortical computation. Annu Rev Neurosci 32:209 –224.
CrossRef Medline

Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coher-
ency of sequences of action potentials. Neural Comput 13:717–749.
CrossRef Medline

Kay SM, Marple JSL (1981) Spectrum analysis—a modern perspective. Proc
IEEE 69:1380 –1419. CrossRef

Mallat S (2008) A wavelet tour of signal processing: the sparse way, 3rd ed.
New York: Academic.

Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency diction-
aries. IEEE Trans Signal Process 41:3397–3415. CrossRef

Moore IC, Cada M (2004) Prolate spheroidal wave functions, an introduc-
tion to the slepian series and its properties. Appl Comput Harmon Anal
16:208 –230. CrossRef

Oppenheim AV, Schafer RW (2013) Discrete-time signal processing. Upper
Saddle River, NJ: Pearson Education.

Park J, Lindberg CR, Vernon FL (1987) Multitaper spectral analysis of high-
frequency seismograms. J Geophys Res Solid Earth 92:12675–12684.
CrossRef

Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pur-
suit: recursive function approximation with applications to wavelet de-
composition. In: 1993 Conference Record of the Twenty-Seventh
Asilomar Conference on Signals, Systems and Computers, vol. 1, pp
40 – 44. Washington, DC: IEEE.

Portnoff MR (1980) Time-frequency representation of digital signals and
systems based on short-time fourier analysis. IEEE Trans Acoust Speech
Signal Process 28:55– 69. CrossRef

Ray S (2015) Challenges in the quantification and interpretation of spike-
LFP relationships. Curr Opin Neurobiol 31:111–118. CrossRef Medline

Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-
gamma activity in macaque visual cortex. PLoS Biol 9:e1000610. CrossRef
Medline

Ray S, Jouny CC, Crone NE, Boatman D, Thakor NV, Franaszczuk PJ (2003)
Human ECoG analysis during speech perception using matching pursuit:
a comparison between stochastic and dyadic dictionaries. IEEE Trans
Biomed Eng 50:1371–1373. CrossRef Medline

Chandran KS et al. • Comparison of Matching Pursuit with Other Methods J. Neurosci., March 23, 2016 • 36(12):3399 –3408 • 3407

http://dx.doi.org/10.1121/1.1912761
http://dx.doi.org/10.1109/TASSP.1977.1162950
http://dx.doi.org/10.1109/PROC.1977.10770
http://dx.doi.org/10.1109/TBME.2014.2311996
http://www.ncbi.nlm.nih.gov/pubmed/24759284
http://dx.doi.org/10.1016/j.jneumeth.2010.06.020
http://www.ncbi.nlm.nih.gov/pubmed/20637804
http://dx.doi.org/10.1523/JNEUROSCI.1193-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19641110
http://dx.doi.org/10.1126/science.1099745
http://www.ncbi.nlm.nih.gov/pubmed/15218136
http://dx.doi.org/10.1137/S003614450037906X
http://dx.doi.org/10.1109/5.30749
http://dx.doi.org/10.1109/18.57199
http://dx.doi.org/10.1016/j.jneumeth.2005.04.001
http://www.ncbi.nlm.nih.gov/pubmed/15908012
http://dx.doi.org/10.1146/annurev.neuro.051508.135603
http://www.ncbi.nlm.nih.gov/pubmed/19400723
http://dx.doi.org/10.1162/089976601300014312
http://www.ncbi.nlm.nih.gov/pubmed/11255566
http://dx.doi.org/10.1109/PROC.1981.12184
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1016/j.acha.2004.03.004
http://dx.doi.org/10.1029/JB092iB12p12675
http://dx.doi.org/10.1109/TASSP.1980.1163359
http://dx.doi.org/10.1016/j.conb.2014.09.004
http://www.ncbi.nlm.nih.gov/pubmed/25282542
http://dx.doi.org/10.1371/journal.pbio.1000610
http://www.ncbi.nlm.nih.gov/pubmed/21532743
http://dx.doi.org/10.1109/TBME.2003.819852
http://www.ncbi.nlm.nih.gov/pubmed/14656066


Ray S, Hsiao SS, Crone NE, Franaszczuk PJ, Niebur E (2008) Effect of
stimulus intensity on the spike-local field potential relationship in the
secondary somatosensory cortex. J Neurosci 28:7334 –7343. CrossRef
Medline

Ray S, Ni AM, Maunsell JH (2013) Strength of gamma rhythm depends on
normalization. PLoS Biol 11:e1001477. CrossRef Medline

Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD,
Leventhal AG (1998) Signal timing across the macaque visual system.
J Neurophysiol 79:3272–3278. Medline

Slepian D (1978) Prolate spheroidal wave functions, Fourier analysis,
and uncertainty—V: the discrete case. Bell Syst Tech J 57:1371–1430.
CrossRef

Smith MJT, Barnwell ITP (1987) A new filter bank theory for time-
frequency representation. IEEE Trans Acoust Speech Signal Process 35:
314 –327. CrossRef

Tamura H, Tanaka K (2001) Visual response properties of cells in the
ventral and dorsal parts of the macaque inferotemporal cortex. Cereb
Cortex 11:384 –399. CrossRef Medline

Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc
IEEE 70:1055–1096. CrossRef

Vetterli M (1987) A theory of multirate filter banks. IEEE Trans Acoust
Speech Signal Process 35:356 –372. CrossRef

Vetterli M, Herley C (1992) Wavelets and filter banks: theory and design.
IEEE Trans Signal Process 40:2207–2232. CrossRef

3408 • J. Neurosci., March 23, 2016 • 36(12):3399 –3408 Chandran KS et al. • Comparison of Matching Pursuit with Other Methods

http://dx.doi.org/10.1523/JNEUROSCI.1588-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18632937
http://dx.doi.org/10.1371/journal.pbio.1001477
http://www.ncbi.nlm.nih.gov/pubmed/23393427
http://www.ncbi.nlm.nih.gov/pubmed/9636126
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02104.x
http://dx.doi.org/10.1109/TASSP.1987.1165139
http://dx.doi.org/10.1093/cercor/11.5.384
http://www.ncbi.nlm.nih.gov/pubmed/11313291
http://dx.doi.org/10.1109/PROC.1982.12433
http://dx.doi.org/10.1109/TASSP.1987.1165137
http://dx.doi.org/10.1109/78.157221

	Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals
	Introduction
	Fourier transform
	Short-time Fourier transform
	Filter-bank interpretation
	Time–frequency uncertainty principle
	Multitaper method
	Wavelet transform
	Matching pursuit algorithm

	Conclusion
	Methodological details
	Multitaper method
	Wavelet transform
	Matching pursuit
	References

