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Long-Term Stability of Motor Cortical Activity: Implications
for Brain Machine Interfaces and Optimal Feedback Control
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The human motor system is capable of remarkably precise control of movements— consider the skill of professional baseball pitchers or
surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical
activity at multiple spatial and temporal scales by recording local field potentials (LFPs) and action potentials (multiunit spikes, MSPs) while two
monkeys controlled a cursor either with their hand or directly from the brain using a brain-machine interface. LFPs and some MSPs were
remarkably stable over time periods ranging from 3 d to over 3 years; overall, LFPs were significantly more stable than spikes. We then assessed
whether the stability of all neural activity, or just a subset of activity, was necessary to achieve stable behavior. We showed that projections of
neural activity into the subspace relevant to the task (the “task-relevant space”) were significantly more stable than were projections into the
task-irrelevant (or “task-null”) space. This provides cortical evidence in support of the minimum intervention principle, which proposes that
optimal feedback control (OFC) allows the brain to tightly control only activity in the task-relevant space while allowing activity in the task-
irrelevant space to vary substantially from trial to trial. We found that the brain appears capable of maintaining stable movement representations

for extremely long periods of time, particularly so for neural activity in the task-relevant space, which agrees with OFC predictions.

Key words: brain-machine interface; LFPs; minimum intervention; motor cortex; optimal feedback control; stability

(s

ignificance Statement

It is unknown whether cortical signals are stable for more than a few weeks. Here, we demonstrate that motor cortical signals can
exhibit high stability over several years. This result is particularly important to brain-machine interfaces because it could enable
stable performance with infrequent recalibration. Although we can maintain movement accuracy over time, movement compo-
nents that are unrelated to the goals of a task (such as elbow position during reaching) often vary from trial to trial. This is
consistent with the minimum intervention principle of optimal feedback control. We provide evidence that the motor cortex acts
according to this principle: cortical activity is more stable in the task-relevant space and more variable in the task-irrelevant space.

~

Introduction

Animals perform complex learned movements countless times
with little error. This consistent performance implies some level
of stability within movement representations in the motor cor-
tex. However, several experiments have also shown substantial
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variability in individual neuronal representations (Padoa-
Schioppa et al., 2004; Carmena et al., 2005; Rokni et al., 2007).
Here, we face an unanswered question of fundamental impor-
tance: at what spatial and temporal scales do stable representa-
tions exist? More specifically, do neurons have a constant
relationship with a given movement or is there some other mech-
anism through which highly variable neuronal signals produce
consistent movements?

The stability of motor cortical signals is also an important
issue in the design of brain—machine interfaces (BMIs), which
translate brain signals into controls for external devices such as
prosthetic arms. Stable BMI performance depends, at least partly,
on the stability of the input signals. However, it remains unclear
whether movement representations at the single-neuron level are
stable over long time periods (months to years). Prior studies
have found conflicting evidence of single-unit stability, with
some showing variability (Carmena et al., 2005; Rokni et al.,
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2007) and others showing stable properties over the course of a
few hours (Stevenson et al., 2011), days (Chestek et al., 2007), or
weeks (Ganguly and Carmena, 2009). Recently, numerous stud-
ies have used unsorted threshold crossings (multiunit spikes, or
MSPs) in both scientific and neuroprosthetic experiments
(Fraser et al., 2009; Chestek et al., 2011; Flint et al., 2013; Todo-
rova et al., 2014), yet the level of stability of these signals has not
been investigated. Local field potentials (LFPs) have long been
postulated to be more stable than spikes (Pesaran et al., 2002).
Indirect evidence of LFP stability over months to a year was sug-
gested by stable ensemble decoding performance both during
reaching (Chao et al., 2010) and in an online BMI (Flint et al.,
2013). However, it is still desirable to obtain direct evidence of
this stability in terms of the information that each individual
signal provides.

Here, we examine directly the stability of LFPs and MSPs in
the primary motor cortex (M1) of monkeys controlling a cursor
using either arm movements (hand control) or BMI control over
a period of months to years. Because the BMI translates M1 ac-
tivity directly into cursor movement, it removes any variability
that could be introduced along the efferent pathway between
motor cortex and muscles. Therefore, we can assess directly the
stability of M1 signals with respect to cursor movement. Overall,
we find that LFPs, and to a lesser extent MSPs, maintain stable
representations of cursor movement over very long time periods.

How can this finding be reconciled with reports of motor
cortical variability? The framework of optimal feedback control
(OFC) provides one potential explanation. OFC postulates that
the brain controls movement in a given task by correcting only
those errors that interfere with task objectives—the minimum
intervention principle (MIP). This is achieved by limiting vari-
ability in a “task-relevant” space (the space relevant to objectives)
and ignoring variability in a task-irrelevant or “task-null” space
(Scholz and Schéner, 1999; Todorov and Jordan, 2002). Here, we
investigated the differential stability of both LFPs and MSPs in
task-relevant and task-null spaces. We found that, over the long
term, stability is extremely high in the task-relevant space and
lower in the task-null space. These findings provide important
and novel cortical population-level evidence supporting OFC in
the neural control of movement.

Materials and Methods

Experimental methods. All procedures were approved by the Northwest-
ern University Institutional Animal Care and Use Committee. The be-
havioral training, surgical implantation, and recording methods for the
current study were described in detail in Flint et al. (2013). Briefly, two
adult rhesus macaques, one male and one female (Monkeys C and M),
were each trained to use a two-link manipulandum to move a cursor
(1-cm-diameter circle) within a rectangular planar workspace (20 X 20
cm) to sequential targets in a random target pursuit task (Fig. 1A4). The
choice of a random target task was motivated by our desire to sample
more of the kinematic workspace than would be sampled by a center-out
task. In each monkey, we surgically implanted a 96-electrode silicon array
(Blackrock Microsystems) into the primary motor cortex contralateral to
the arm used to control the cursor. We recorded LFPs and unsorted
threshold crossings (which we term here MSPs) during the reaching
behavior and built Wiener cascade decoders consisting of a linear Wiener
filter cascaded with a third-order polynomial (Westwick et al., 2006) to
relate end-point 2D velocity to MSP or LFP signals. LFP decoders were
built using features extracted from the continuous LFP signal (Flint et al.,
2012a). For each electrode, we calculated the local motor potential
(LMP) by averaging the time domain signal in 50 ms bins (Schalk et al.,
2007) and the spectral power in 5 frequency bands (0-4, 7-20, 70-110,
130-200, and 200-300 Hz) by using a fast Fourier transform on
Hanning-windowed, 256 ms segments. These features, binned at 50 ms
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intervals, were used to train a Wiener cascade BMI decoder. MSP decod-
ers were built from spike counts binned at 50 ms. LFP and MSP decoders
for BMI control were built on early epochs (10 min blocks) of hand-
controlled reaching behavior and then held static until the end of all data
collection for the entire study (hundreds of days). Monkeys C and M
used each static decoder for BMI control typically two or three times per
week. On most days, the monkeys had epochs of both hand control and
one or more types of BMI control (Flint et al., 2013). The monkeys’ arms
used in hand control were not restrained during BMI control, but the
manipulandum was removed. Their arm movements during BMI con-
trol were not stereotyped, differed from those when under hand control,
and tended to attenuate slightly in amplitude over days.

The dataset used in this study includes BMI control data that were
presented in a previous study (Flint et al., 2013), as well as hand control
data. Days 180—380 (Monkey C) and 50—250 (Monkey M) of hand con-
trol were recorded concurrently with the BMI control study.

Stability of single feature decoders. We used two measures of stability in
this study (see “Stability of ensemble tuning” section for details on the sec-
ond measure). The first approach is based on single feature decoders (SFDs),
which had been used earlier to evaluate single-unit stability over 1-2 d
(Chestek et al., 2007). SFDs are constructed by treating each feature of each
input signal as an independent input and calculating the ability of that single
feature to predict the output. Here, we built SFDs using the data from each
recording epoch over a period of 6 months for each feature (frequency band
power or LMP) used in LFP control and for each electrode used in MSP
control. SFDs were trained separately for hand control epochs, LFP control
epochs, and MSP control epochs. After each SFD was trained, we calculated
SED prediction accuracy using that SFD to predict the actual velocity in five
recording epochs from the end of the study’s data collection period (which
lasted months to years) and averaged the accuracy over those five epochs.
Prediction accuracy was defined as the coefficient of determination (R?)
between the actual cursor velocity (either hand- or brain-controlled) and the
velocity predicted by the SFD. Testing epochs were not used for SFD training
and training epochs were never used for prediction accuracy testing. In the
Results, we report SED R? values for each day of the study. To calculate the
prediction accuracy for a day, we computed the average R * obtained by using
the SFDs trained on all epochs from that day. Examples of single-feature
predictions are shown in Figure 1, Cand D. Figure 2A shows SFD prediction
accuracy for each day as a single column; for example, the leftmost column in
Figure 2A shows the SFD prediction accuracy for all features on day 1 of the
study. During hand control, SED R? values measured the accuracy of pre-
dictions made by a single feature. During BMI control, the R* value for each
SED estimated the contribution of that feature to the BMI (population-level)
decoder.

The entire hand control dataset spanned 1040 d for Monkey C and 800 d
for Monkey M. Figure 2A shows an example color plot of R values (for
y-velocity) with N rows and D columns, where N is the number of included
features and D is the number of days in the study. Each column represents
the average performance for all SFDs trained on that day; the performance of
each SFD is obtained as an average over the five testing epochs. We com-
puted the correlation coefficient between each pair of columns in the N X D
matrix of Figure 24, producing the D X D color map of correlations shown
in Figure 2B. The SFD stability index (SIgp,) was then calculated as the mean
of the correlation map across rows (or equivalently across columns), as seen
in Figure 2C (see also Fig. 3C,F); this is similar to the measure in Ganguly and
Carmena (2009). Overall, the color map (Fig. 2B) provides detailed infor-
mation about the stability of the individual features and the Slgg, provides a
summary of stability over all features over time.

Features included in the analysis. In this study, we analyzed the perfor-
mance of only those LFP features that were included in the decoder for
LFP-based BMI control. When analyzing MSP stability, we included only
those channels that corresponded to included LFP features so that stability
indices calculated for both LFPs and MSPs would be based on signals from
the same electrodes. As the multielectrode arrays aged, they developed leak-
age (or shunting) between some of the electrodes, likely due to insulation
degradation (Barrese et al., 2013). This shunting manifested itself as an un-
usually high correlation in the signals recorded from pairs of electrodes,
usually those that were physically adjacent on the array. In our analysis for
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Figure 1.

Random target pursuit behavior in hand control (4) and BMI control (B). BMI control was performed with either LFP features (B, left) or MSP firing rates (B, right). , D, Brief examples

of decoding actual Y velocity on the last day using single feature decoders built from 2 prior days (labeled “day” to the right of each trace) for hand (€) and brain (D) control. R refers to thefit between
the actual velocity (black) and the predicted velocity (gray). E, F, Example tuning curves in hand (E) and brain (F) control. As in Cand D, LFP curves are on the left and MSP curves are on the right.
Each plot shows three example curves as open circles or filled gray or black circles. For display, we normalized each tuning curve by subtracting its mean across bins and dividing by the SD. G, Example

MSP waveforms from one representative electrode during days 6, 69, and 174 of recording.

this study, we removed from consideration all channels that were shunted
with any other channel.

Stability of ensemble tuning. The second measure of stability used here
was based on the directional tuning of individual features, as in Ganguly
and Carmena (2009). Because movement velocities were in random di-
rections, we evaluated movement direction every 100 ms and grouped
these directions into 12 bins of 30° each. In each 10 min epoch, we
computed the mean of each spike rate and LFP feature value over all
movements that corresponded to each binned direction. This resulted in
a tuning curve with 12 components for each feature/spike in each epoch.
We computed the stability of the ensemble of tuning curves over all
features/spikes used in BMI control (as in Fig. 3 of Ganguly and Car-
mena, 2009). In other words, we calculated the correlation coefficient

between the ensemble of tuning curves of all features from each day
(averaged over all epochs in that day) and the ensemble of curves from all
other days to produce a color map of correlations over days (as for SFDs
in Fig. 2B). The ensemble tuning stability index (SI) was then calcu-
lated as the mean of these correlations across days (Fig. 3, bottom).

To provide an intuition about the meaning of a given value of Slg;, or
SI;p, we performed an analysis using simulated data. We started with an
actual ensemble tuning curve (the first column from Fig. 4K), added
noise with SD o to n of N total features, and computed the SI value for
each value of o (ranging from 0 to 1) and n (ranging from 2 to N)). We
then plotted these SI values in a color plot (Fig. 5). We also calculated the
o that was actually observed in our results from the single features (Fig. 5,
histogram overlay). Therefore, Figure 5 demonstrates how many features
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the R2 value between actual and decoded movements. Features (rows) are sorted within each feature type in descending order of average SFD performance. B, Correlation map for LFP SFD R?
performance. Each point in this color map represents the correlation coefficient between 2 d of the study (i.e., two columns of the maps in A). For example, the point in the top row of B designated
with an arrow corresponds to the correlation of the two columns in A designated with a double arrow. €, Sl over time for Monkey C; each circle is the average over all rows in a given columnin the

ensemble correlation map from B.

must vary, and by how much, to arrive at a particular value of the stability
index. We repeated the simulation for SIg;, with similar results.

Singular value decomposition analysis. To investigate the variability of
neural activity during BMI control in a more principled manner, we
performed a singular value decomposition (SVD) of the Wiener filter
matrix H. This was an M X (10N) matrix, where M is the number of
outputs (two in this case, for the two components of the velocity vector)
and 10 N is the number of inputs, given by the number N of neurons (or
features) multiplied by the 10 time lags (the number of taps in the Wiener
filter). At each time lag, the Wiener filter maps N inputs onto two outputs
using the transform h, where h is the subset of H that corresponds to a
single time lag. We used SVD to decompose h into a task-relevant space
(of dimension two) and a task-null space (of dimension N-2). Because
there were 10 time lags in our decoder, we calculated the SVD 10 times
(once for each h) and combined them as described below.

For each time lag, SVD decomposed & into a left orthonormal matrix
U, a scaling matrix > that contained the singular values along the diago-
nal, and a right orthonormal matrix V, such that:

h=U>V*

Where V™ refers to the transpose of V. Intuitively, U and V can be
thought of as rotation matrices and > as a scaling matrix. Therefore, SVD
can be thought of as a sequence of three geometrical transformations: a
rotation in input space (V™), a scaling along the new axes (2.), and a
rotation in output space (U). This resulted in 10 V matrices, one for each
lag, denoted as Vi 1 =i=10. In each case, the matrix V! captured the
corresponding task-relevant neural space through its first two singular
vectors; that is, its first two columns: v} or j = 1,2. The SVD has only
two nonzero eigenvalues because the linear filter maps the N dimensional
neural space into a 2D velocity space. For each lag i, the corresponding
null space, is the one spanned by the remaing N — 2 singular vectors, the
columns v}’ for3=j=n.

We projected each N-dimensional neural vector x, a vector of either
firing rates (during MSP-based BMI control) or LFP features (during
LFP-based BMI control), onto each of the singular vectors Vj’ The projec-
tions a; were thus defined as follows:

In a similar manner to the SFD analysis, for each BMI control epoch, we
built two decoders of the BMI-controlled cursor velocity, one based on
the first two projections {a‘i, aé}, for 1 =i = 10, and one based on the
remaining projections {a, ..., ay}, for 1 =i = 10. We evaluated the
performance of these decoders, one for each epoch, based on their ability
to predict the BMI-controlled cursor velocity in the last five epochs—the
same metric as in the SFD analysis. We measured the R* performance of
each of these decoders and averaged this performance over all epochs in
agiven day. We performed this analysis in congruent control modes: only
on MSPs for MSP-based BMI control and only on LFP features for LFP-

based BMI control. We used the coefficient of variation (CV) of the
performance over all days to quantify variability.

Results

We recorded LFPs and threshold crossings (MSPs) for an ex-
tended time period while two monkeys controlled a computer
cursor using either hand control with a 2D manipulandum (>3
years) or direct brain (BMI) control with LFPs or MSPs (~7
months). Table 1 summarizes the monkeys’ behavioral perfor-
mance during the hand control and BMI control tasks.

LFP and spike movement representations are stable

during reaching

We first investigated how long neural representations of movement
remain stable in the brain during natural motor tasks. SFD perfor-
mance for all LFP features and MSP units (the ensemble “map”) in
Monkey C is shown in Figure 3, A and B. During hand control, both
signal types were highly stable in Monkey M (Fig. 3 D, E), whereas
MSPs were less stable than LFPs in Monkey C. This was true both on
asingle-feature level (each row in Fig. 3A, D) and for the ensemble as
a whole (Fig. 3C,F). LFPs were significantly more stable than MSPs
during hand control for Monkey C. The mean (#SD) of the Slgp,
over all days was 0.92 = 0.05 for LFPs versus 0.77 % 0.10 for MSP
(p =107 % ttest). LFPs were also more stable than MSPs for Mon-
key M, by a small but statistically significant amount (SIgg, 0.98 =
0.02vs0.95 = 0.02; p = 10 °").

Ensemble tuning (ET), or directional tuning, of all LFP fea-
tures and MSP units during hand control is shown in Figure 3, G,
H, ], and K. The Sl for all LFP features and MSP units is shown
in Figure 31 (Monkey C) and Figure 3L (Monkey M). LFPs were
significantly more stable than MSPs in both monkeys during
hand control. The mean (=SD) of S over all days for LFPs was
0.75 + 0.20 and 0.38 = 0.14 for MSPs for Monkey C (p = 10 ~>9).
The mean of Sl over all days for LFPs was 0.79 * 0.19 and
0.45 * 0.08 for MSPs for Monkey M (p = 10~ ).

LFP and spike movement representations are stable during
BMI control

We next analyzed the stability of each signal type during BMI control
(Fig. 4). Similar to our results during hand control, we found that
Slgpp values indicated stable movement representations in both
LFPs and MSPs (Fig. 4C,F). For Monkey C, LFPs were significantly
more stable than MSPs (SIggp, 0.94 = 0.03 and 0.80 * 0.09, respec-
tively; p = 10~ '°). Monkey M exhibited very stable signals, with an
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performance map for Monkey C. G, Sl,, values reflect high stability for LFPs (green circles) and MSPs (magenta circles) during hand control in Monkey C. D, E, Same as A and B but for Monkey M. F,
Stability of LFPs was also slightly greater than that of MSPs in Monkey M. G, LFP ET map for Monkey Csorted by feature type. H, MSP ET map for Monkey C. /, Using Slg;, LFPs were still highly stable
and MSPs less stable. J, K, Same as G and H but for Monkey M. L, Sl¢; showing that the stability of LFPs was also greater than that of MSPs in Monkey M.

SIgpp of LEPs (0.99 = 0.001) that was slightly but significantly greater
than that of MSPs (0.98 =+ 0.01; p = 10~ *?). Using ensemble tuning,
a subpopulation of spikes was still stable over time (Fig. 4 H,K), but
the population was notably less stable than LFPs. For Monkey C,
SIgr was 0.97 = 0.01 and 0.51 * 0.01 for LFPs and MSPs, respec-
tively (p = 10~ ®"). For Monkey M, Sl was 0.97 = 0.03 and 0.57 +
0.02 (p=10""°).

To help clarify the meaning of Sl values, we computed the
SI;; as we introduced different levels of noise into a simulated
MSP dataset (Fig. 5). As an example, a value of 0.5 for S means
that if half the population (~30 features) is changing, then those
signals are varying with an SD (o) of ~0.11. Alternatively, if the
average o were ~0.2, an Sl of 0.5 would mean that ~20% of
the population is changing. For reference, we have superimposed
actual o values taken from our data (Fig. 5, histogram overlay).
Similar color maps and histograms were found for Slg, for MSPs
as well as for LFPs (data not shown).

LFPs are highly stable in the time domain and

high-frequency bands

The above results reflect the aggregate of multiple-frequency
bands and time domain (LMP) LFP features. The high-gamma
(70-300 Hz) band and LMP features contained most of the in-
formation about movement and contributed most to our decod-
ers (Flint et al., 2012b). Therefore, we investigated the stability of
the LMP and the three high gamma bands (y1: 70—115 Hz, y2:
130-200 Hz, and +y3: 200-300 Hz) that were used in the BMI
decoders by the monkeys during LFP-based BMI control (Fig. 6).
As anticipated from the monkeys’ stable BMI performance, the
LMP and high-gamma features were highly stable. This mirrored
the stability of the overall population (cf. mean values over time
in Fig. 4C). Interestingly, the y2 and y3 bands were even more
stable than the y1 band for Monkey C. This could suggest that
high-gamma signals, in particular, might provide highly stable
signals for studying neurophysiology and for controlling BMIs.
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LFP stability increases during early BMI decoder learning

The prior analyses examined the stability of LFPs during long-
term BMI use. To gain insight into what happens during the early
learning of a new LFP-based BMI decoder and to facilitate com-

Table 1. Summary statistics of reaching behavior (median = interquartile range)
in each epoch

Reaches/epoch Peak speed (cm/s)

Monkey C

Hand control 659 * 137 2713

LFP BMI control 85+ 22 35+20

MSP BMI control 12133 31+£20
Monkey M

Hand control 561 + 92 B *+14

LFP BMI control =17 38 £37

MSP BMI control 164 + 58 22 +16

parison with prior studies, we also examined the stability over a
short timescale. We selected data from the first 3 d of Monkey C’s
use of an LFP-based BMI decoder different from the one used in
the above analyses. We calculated the SIgpp, by dividing the data in
those 3 d into 80 epochs of ~2 min each and performing the SEFD
stability analysis as described previously. The LFPs stabilized on
day 2, after an accumulated task time of ~50 min. This was
followed by an extended period of high stability across days 2 and
3 (Fig. 7). This timescale of days for achieving stability is similar
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Figure 6.  Stability of selected LFP feature types during LFP-based BMI control. A, Mean
(==SD) Sl over all days for Monkey C (triangles) and Monkey M (circles). B, Mean Sl; for
Monkey C (triangles) and M (circles). Some error bars are not visible because they are smaller
than the marker sizes. Overall, LMP and high-gamma features were highly stable.
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Figure 7.  LFP stability increases quickly after the introduction of a new decoder. After the
introduction of anew decoder, the Sl increased sharply after ~45 min of BMI control. Dashed
lines denote boundaries between days of recording.
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be included to approach the level of stability achieved by the entire
population. We conducted a feature-dropping analysis to answer
this question. We randomly sampled F features from the population
of LFP or MSP features, where F varied from 1 to 50. For each group
of features, we calculated the Slgp, and repeated this 500 times. We
found that a small number of features, <20 in each case, sufficed to
achieve the Slgp, found for the entire population (Fig. 8). Therefore,
our metric was unlikely to overestimate stability due to the large
number of features in the ensemble.

Cortical stability is higher in the task-relevant space than in
the null space

The above analyses showed that LFPs and MSPs were stable over-
all, yet some neurons and features were more stable than others
(Fig. 3 B,E). To investigate these differences in a principled man-
ner, we examined the projections of LFP features and spikes into
two neural subspaces: task-relevant and task-null subspaces. We
hypothesized that, if the cortex used a strategy like the MIP of
OFC to control the BMI, then the activity in the task-null space
(or neural null space) should be much less stable than that in the
task-relevant space.

The mean R” of the a, , decoders (task-relevant space) was
much higher than that of the a3 5 decoders (Fig. 9C-F, null
space). Stability of the decoders based on task-relevant space fea-
tures was not surprising because, by definition, the task-relevant
space should be an excellent predictor of the full Wiener filter
output. What was not certain, however, was whether the variabil-
ity of the predictions would be lower in the task-relevant space
than in the task-null space (Fig. 9A). An alternative possibility
could have been for the variability to be equally low in both
spaces, which would have indicated that all components of cor-
tical activity were controlled with equal precision regardless of

task relevance (Fig. 9B).
We found that the task-relevant SFD

A B performance showed low variability, as

1 D - O- - 9- -0 - —Q measured by the CV (CV = 0.010 and

- - - ©--©0--6--0 gy O 9 -0 - - 1.8 X 10~ *for Monkeys C and M, respec-

R & tively; see Fig. 9C,D). This would be ex-

F)& ‘Y © pected from the stable and accurate BMI

c [ -D--0--0 - - performance previously reported by Flint

[ ©

2 @ et al. (2013). In contrast, the null space

SFD performance had much higher vari-

o ability (CV = 0.23 and 0.0026, respec-

tively, using spikes). Similar, but smaller,

05 differences were found for LFPs be-
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Number of features

Figure 8.

10-20 features.

to the timescale of map stabilization found using small ensembles
of spikes to control a BMI (Ganguly and Carmena, 2009).

Stability measures remain high even when using very

few features

Because we computed stability by simultaneously using a large num-
ber of features with more LFP features than spikes, one possible
concern could be that stability was overestimated due to averaging
effects. We therefore sought to determine how many features must

Number of features

LFPs (green points) and MSPs (magenta points) achieved stability with a small number of features. A, B, Feature-
dropping curves for Monkey C (4) and Monkey M (B). Each point represents Sl values for a feature set of size £ (horizontal axis),
averaged across days. Vertical lines show SD values, which were very small. For both LFPs and MSPs, the Sl indicates remarkable
stability even with very few features, approaching its population level (dashed horizontal lines) with the inclusion of as few as

tween null space (CV = 0.060 and
0.091) and task-relevant space (CV =
1077 and 6.7 X 10~ °) SFD perfor-
mances (Fig. 9E,F).

Principal components analysis of the
LFP features used in the decoders showed
that 13 (Monkey C) and 17 (Monkey M)
principal components were needed to ac-
count for 80% of the variance in these fea-
tures. This suggested that LFP activity in the null space did indeed
covary substantially with that in the task-relevant space. This
would explain the higher performance and lower variability of
the null space predictions for LFPs than for spikes.

We next tested whether any pair of null space projections
provided as stable an input to a decoder as the pair of task relevant
projections. This allowed us to determine whether the large dif-
ference in the number of « inputs to the decoder (2 vs 83) biased
the stability of the decoding. We repeated the decoder calculation
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Figure 9.  Stability in the task-relevant and task-null neural spaces. A, Expected decoding

performance if cortical activity adheres to the MIP in the task-relevant (using the v, , decoder;
solidline) and null spaces (using the ce; ,, decoder; dashed line). Mean null space performance
is lower than that in the task-relevant space and null space performance is much more variable.
B, Expected decoding performance if cortical activity does not adhere to the MIP. Here, null
space performance has lower mean but the same variance as performance in the task-relevant
space. C, D, Actual decoding performancein the task-relevant (v, ,), full task-null (5 _ ), and
partial task-null (c; ) spaces using MSP-based BMI data in Monkeys Cand M, respectively. The
task-relevant space performance was extremely high and stable, whereas the null space per-
formances were much more variable. The same was true for LFP-based BMI (E, F), but the null
space decoder in this case had much higher performance than for the MSP-based BMI.

using a random subsampling of two a projections in the null
space of LFP control in Monkey C. We repeated this random
subsampling 200 times to obtain a distribution of CVs and com-
pared it with the CV value obtained using {«;, a,} as decoder
input. The entire distribution of predictions based on 2D null
space projections had significantly higher CVs than those based
on task-relevant space projections (p = 0.005 using the cumula-
tive empirical distribution; Fig. 10). Therefore, the increased
variability found in the null space was not due to bias from the
higher number of « inputs to the decoder.

Discussion

The long-term stability of individual MSPs and LFPs in the motor
cortex had not been established previously. We found LFPs to be
highly stable, and MSPs somewhat less stable, over time scales
ranging from 3 d to 3 years. In general, LFPs and MSPs behaved
stably with respect to cursor movement controlled by either the
hand or the brain. LFPs were somewhat more stable than MSPs
during hand control and substantially more stable than MSPs
during BMI control. In particular, we found that signal stability
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Figure10.  Variability in the null space versus the task-relevant space. The (Vs of the decod-
ing performance over time for decoders based on two randomly selected null-space projections
(black bars) were significantly higher than the CV for a decoder based on the two task-relevant
projections (dashed line).

was much higher in the task-relevant space than the task-null
space, an observation consistent with the hypothesis of optimal
feedback control at the cortical level.

Stability at different spatial scales

Stability of movement representation would seem to be impor-
tant for overlearned, daily activities such as reaching for food.
However, it has been debated whether this high behavioral sta-
bility requires highly stable activity at the neuronal level (Chestek
et al., 2007; Ganguly and Carmena, 2009; Stevenson et al., 2011)
or if stability is a network-level phenomenon that arises despite
unstable representations in single neurons (Cohen and Nicolelis,
2004; Carmena et al., 2005; Rokni et al., 2007). Here, we found
evidence for stability of both MSPs and LEPs at the single-feature
level. Stability was higher at the mesoscopic (LFP) scale than at
the MSP scale and a subset of MSPs were much less stable. This
could suggest that the brain is capable of different levels of control
on mesoscopic (LFPs) and single-neuron scales (Ganguly and
Carmena, 2009), although it could also be due to signal averaging
at the mesoscopic scale.

Some apparent contradictions about stability in published re-
ports are likely due to differences in methods or analysis. For
example, Rokni et al. (2007) found variable preferred directions
(PDs) during a movement task, but measurement noise may have
played an important role in the apparent amount of PD variation
in that study (Stevenson et al., 2011). Two prior studies found
lower stability in ensemble-level, offline decoding (Flint et al.,
2013; Perge et al., 2014) than we saw previously with online BMI
control (Flint et al., 2013) or here using single-feature analyses. In
addition, movement representations may change with learn-
ing of a task (Cohen and Nicolelis, 2004; Chestek et al., 2007;
Mandelblat-Cerf et al., 2009). Ganguly and Carmena (2009)
showed that this phenomenon also occurs when learning a BMI
task using a small ensemble of neurons while requiring the hand
to remain stationary. In our study, as in Chestek et al. (2007),
monkeys performed overlearned control tasks. In addition, our
BMI decoders were biomimetic (trained on actual reaches) and
the monkeys” arms were not required to remain stationary during
BMI control. These differences may account for the minimal
and rapid early learning required for our BMI task based on
both behavioral performance (Flint et al., 2013) and on Slgg,
(Fig. 7). These aspects of our experiment also may have con-
tributed to the highly stable movement representations that
we found.
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One potential concern with our approach could be that our
stability indices were calculated across a large number of features
(or spikes), so the actual stability of individual signals may be
overestimated. To validate our population-level analysis, we re-
peatedly eliminated randomly selected inputs and recalculated
SIgpp (“feature dropping”). We found that the high degree of
signal stability observed for LFPs and MSPs was preserved even
when using a very low number of features to compute Slgy,
(Fig. 8). In some cases, even as few as five to six features provided
remarkably high stability and, generally, 20 features sufficed to
achieve population-level stability. We found a similar trend for
hand control results (data not shown).

Evidence supporting the minimal intervention principle
According to the MIP, the brain minimizes effort by controlling
only those movement components that are relevant to the task
goals while allowing variability in those movement components
that are unrelated to the task goals. This principle accounts for the
simultaneous observation of highly accurate control of move-
ments in a particular task with substantial trial-to-trial variability
in the way the limb or body moves while achieving the task goal
(Todorov, 2004). The principle predicts low variability in the
task-relevant space and higher variability in the task-null space, a
phenomenon that can be explained by optimal feedback control
(Todorov, 2004) among other models (Martin et al., 2009). Sub-
stantial evidence for this concept was found in modeling and
behavioral studies (Pandy et al., 1990; Scholz and Schéner, 1999;
Latash et al., 2001; Todorov and Jordan, 2002; Scott, 2004) and in
a myoelectric interface study (Nazarpour et al., 2012), although
some evidence against it also exists (Mosier et al., 2005; de Rugy et
al., 2012). Cortical electrophysiological evidence supporting the
OFC framework, but not the MIP, was presented previously in
the context of long-latency stretch responses (Pruszynski
and Scott, 2012). In the current study, direct BMI control using
signals from primary motor cortex provided a unique oppo-
rtunity to study cortical control strategies during voluntary,
goal-oriented behavior without the intervening levels of the neu-
romuscular system (spinal cord, muscle activations, joint biome-
chanical constraints, etc.). Although somatosensory feedback
was intact during BMI control, it did not inform the monkeys
about their performance in the BMI task. Therefore, we were able
to assess directly the relative variabilities in the “neural” null and
task spaces.

Neural patterns during BMI control were extremely stable in
the task-relevant space and more variable in the task-null space.
Although we expected that the task-relevant space would be high
performing and stable and that the null space would be lower
performing on average, there was no a priori reason that the
variability in the null space had to be greater. For example, the
brain could have controlled all of the neural signal components
with equal precision and this would have resulted in a neural null
space with low mean and low variance in performance (Fig. 9B).
Instead, we found low mean but high variance in the neural null
space performance (Fig. 9A). This finding is consistent with the
MIP.

This result was not due to bias from unequal dimensionality of
the input space. None of the 2D combinations of neural patterns
in the null space was as stable as those in the task-relevant space
(Fig. 10). These findings could provide an explanation for the
conflicting evidence of neuronal stability presented in some prior
studies. More importantly, this result provides evidence in sup-
port of the minimal intervention principle in the motor cortex
itself. More direct evidence of cortical signals’ consistency with
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the OFC framework would require an examination of trial-by-
trial variability in the task and null spaces. Because our experi-
ments were not designed to track trial-to-trial variability, further
investigation of short-term variability in the neural null and task
spaces is warranted.

Implications for decoding motor intent over long

time periods

By leveraging the ability to decode limb kinematics (Georgopou-
los et al., 1982; Moran and Schwartz, 1999) or kinetics (Evarts,
1968; Fagg et al., 2007; Flint et al., 2014) from cortical activity,
BMIs have the potential to restore lost function to individuals
with paralysis (Hochberg et al., 2006; Collinger et al., 2013; Ethier
et al., 2012). However, single-neuron action potentials are diffi-
cult to record over long time scales with silicon-based arrays and
those that are recorded over long times can exhibit substantial
nonstationarity in their amplitudes and waveforms (Chestek et
al., 2011; Simeral et al., 2011). This variability represents a signif-
icant roadblock to clinically viable BMIs. These issues have fueled
a push toward examining unsorted spikes (MSPs, also called
threshold crossings) and LEPs for decoding movement (Pesaran
etal., 2002; Mehring et al., 2003; Stark and Abeles, 2007; Jarosie-
wicz et al., 2008; Zhuang et al., 2010; Bansal et al., 2011; Chestek
et al., 2011; Slutzky et al., 2011; Flint et al., 2012a; Flint et al.,
2012b; Gilja et al., 2012; Flint et al., 2013; Nuyujukian et al., 2014;
Perge et al., 2014; Todorova et al., 2014). The results reported
here, and our prior results showing high long-term BMI perfor-
mance (Flint et al., 2013), indicate that it should be possible to
decode intended movement accurately over clinically useful time
spans, limited only by recording hardware rather than by inher-
ent instabilities in the neural signals. Although LFPs were more
stable than MSPs, this did not translate to higher BMI perfor-
mance (Flint et al., 2013), possibly because spikes were slightly
more informative overall. Adaptive decoding algorithms (Gilja et
al., 2012; Orsborn et al., 2014) may provide a way to counteract
changes that do occur in neural representations. Further, adap-
tation to BMI decoders is greatly facilitated when the cortical
modulations required to achieve control are within the “intrinsic
manifold” of the cortical activity (Sadtler et al., 2014). This result
was based solely on the analysis of neural activity and did not take
into account the decoder. The findings of Sadtler et al. (2014),
when combined with the results reported here, suggest that a
more judicious design of BMIs may make them both easier to
learn and more stable to use over long periods of time.

References

Bansal AK, Vargas-Irwin CE, Truccolo W, Donoghue JP (2011) Relation-
ships among low-frequency local field potentials, spiking activity, and
three-dimensional reach and grasp kinematics in primary motor and ven-
tral premotor cortices. ] Neurophysiol 105:1603-1619. CrossRef Medline

Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C, Franquemont L,
Donoghue JP (2013) Failure mode analysis of silicon-based intracortical
microelectrode arrays in non-human primates. ] Neural Eng 10:066014.
CrossRef Medline

Carmena JM, Lebedev MA, Henriquez CS, Nicolelis MA (2005) Stable en-
semble performance with single-neuron variability during reaching
movements in primates. ] Neurosci 25:10712-10716. CrossRef Medline

Chao ZC, Nagasaka Y, Fujii N (2010) Long-term asynchronous decoding of
arm motion using electrocorticographic signals in monkeys. Front Neu-
roeng 3.

Chestek CA, Batista AP, Santhanam G, Yu BM, Afshar A, Cunningham JP,
Gilja V, Ryu SI, Churchland MM, Shenoy KV (2007) Single-neuron sta-
bility during repeated reaching in macaque premotor cortex. J] Neurosci
27:10742-10750. CrossRef Medline

Chestek CA, Gilja V, Nuyujukian P, Foster JD, Fan JM, Kaufman MT,
Churchland MM, Rivera-Alvidrez Z, Cunningham JP, Ryu SI, Shenoy KV


http://dx.doi.org/10.1152/jn.00532.2010
http://www.ncbi.nlm.nih.gov/pubmed/21273313
http://dx.doi.org/10.1088/1741-2560/10/6/066014
http://www.ncbi.nlm.nih.gov/pubmed/24216311
http://dx.doi.org/10.1523/JNEUROSCI.2772-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16291944
http://dx.doi.org/10.1523/JNEUROSCI.0959-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17913908

3632 - J. Neurosci., March 23, 2016 - 36(12):3623-3632

(2011) Long-term stability of neural prosthetic control signals from sili-
con cortical arrays in rhesus macaque motor cortex. ] Neural Eng
8:045005. CrossRef Medline

Cohen D, Nicolelis MA (2004) Reduction of single-neuron firing uncer-
tainty by cortical ensembles during motor skill learning. ] Neurosci 24:
3574-3582. CrossRef Medline

Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ,
McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-
performance neuroprosthetic control by an individual with tetraplegia.
Lancet 381:557-564. Medline

de Rugy A, Loeb GE, Carroll TJ (2012) Muscle coordination is habitual
rather than optimal. ] Neurosci 32:7384-7391. CrossRef Medline

Ethier C, Oby ER, Bauman M]J, Miller LE (2012) Restoration of grasp fol-
lowing paralysis through brain-controlled stimulation of muscles. Nature
485:368—-371. CrossRef Medline

Evarts EV (1968) Relation of pyramidal tract activity to force exerted during
voluntary movement. ] Neurophysiol 31:14-27. Medline

Fagg AH, Hatsopoulos NG, de Lafuente V, Moxon KA, Nemati S, Rebesco
JM, Romo R, Solla SA, Reimer J, Tkach D, Pohlmeyer EA, Miller LE
(2007) Biomimetic brain machine interfaces for the control of move-
ment. ] Neurosci 27:11842—11846. CrossRef Medline

Flint RD, Ethier C, Oby ER, Miller LE, Slutzky MW (2012a) Local field
potentials allow accurate decoding of muscle activity. ] Neurophysiol
108:18—-24. CrossRef Medline

Flint RD, Lindberg EW, Jordan LR, Miller LE, Slutzky MW (2012b) Accu-
rate decoding of reaching movements from field potentials in the absence
of spikes. ] Neural Eng 9:046006. CrossRef Medline

Flint RD, Wright ZA, Scheid MR, Slutzky MW (2013) Long term, stable
brain machine interface performance using local field potentials and mul-
tiunit spikes. ] Neural Eng 10.

Flint RD, Wang PT, Wright ZA, King CE, Krucoff MO, Schuele SU, Rosenow
JM, Hsu FP, Liu CY, Lin JJ, Sazgar M, Millett DE, Shaw SJ, Nenadic Z, Do
AH, Slutzky MW (2014) Extracting kinetic information from human
motor cortical signals. Neuroimage 101:695-703. CrossRef Medline

Fraser GW, Chase SM, Whitford A, Schwartz AB (2009) Control of a brain—
computer interface without spike sorting. J Neural Eng 6:055004.
CrossRef Medline

Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neu-
roprosthetic control. PLoS Biol 7:e1000153. CrossRef Medline

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the rela-
tions between the direction of two-dimensional arm movements and cell
discharge in primate motor cortex. ] Neurosci 2:1527-1537. Medline

Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM,
Churchland MM, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A
high-performance neural prosthesis enabled by control algorithm design.
Nat Neurosci 15:1752-1757. CrossRef Medline

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH,
Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature 442:
164-171. CrossRef Medline

Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB
(2008) Functional network reorganization during learning in a brain-
computer interface paradigm. Proc Natl Acad Sci US A 105:19486—
19491. CrossRef Medline

Latash ML, Scholz JF, Danion F, Schoner G (2001) Structure of motor vari-
ability in marginally redundant multifinger force production tasks. Exp
Brain Res 141:153-165. CrossRef Medline

Mandelblat-CerfY, Paz R, Vaadia E (2009) Trial-to-trial variability of single
cells in motor cortices is dynamically modified during visuomotor adap-
tation. ] Neurosci 29:15053—15062. CrossRef Medline

Martin V, Scholz JP, Schéner G (2009) Redundancy, self-motion, and mo-
tor control. Neural Comput 21:1371-1414. CrossRef Medline

Mehring C, Rickert J, Vaadia E, Cardosa de Oliveira S, Aertsen A, Rotter S
(2003) Inference of hand movements from local field potentials in mon-
key motor cortex. Nat Neurosci 6:1253-1254. CrossRef Medline

Moran DW, Schwartz AB (1999) Motor cortical activity during drawing
movements: population representation during spiral tracing. ] Neuro-
physiol 82:2693-2704. Medline

Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA (2005) Remapping hand

Flint, Scheid et al. o Stability of M1 Activity in Movement and BMI

movements in a novel geometrical environment. J Neurophysiol 94:
4362—4372. CrossRef Medline

Nazarpour K, Barnard A, Jackson A (2012) Flexible cortical control of task-
specific muscle synergies. ] Neurosci 32:12349-12360. CrossRef Medline

Nuyujukian P, Kao JC, Fan JM, Stavisky SD, Ryu SI, Shenoy KV (2014)
Performance sustaining intracortical neural prostheses. ] Neural Eng 11:
066003. CrossRef Medline

Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Car-
mena JM (2014) Closed-loop decoder adaptation shapes neural plastic-
ity for skillful neuroprosthetic control. Neuron 82:1380—1393. CrossRef
Medline

Padoa-Schioppa C, Li CS, Bizzi E (2004) Neuronal activity in the supple-
mentary motor area of monkeys adapting to a new dynamic environment.
J Neurophysiol 91:449—-473. Medline

Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model
for maximum-height human jumping. ] Biomech 23:1185-1198.
CrossRef Medline

Perge JA, Zhang S, Malik WQ, Homer ML, Cash S, Friehs G, Eskandar EN,
Donoghue JP, Hochberg LR (2014) Reliability of directional informa-
tion in unsorted spikes and local field potentials recorded in human mo-
tor cortex. ] Neural Eng 11:046007. CrossRef Medline

Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal
structure in neuronal activity during working memory in macaque pari-
etal cortex. Nat Neurosci 5:805-811. CrossRef Medline

Pruszynski JA, Scott SH (2012) Optimal feedback control and the long-
latency stretch response. Exp Brain Res 218:341-359. CrossRef Medline

Rokni U, Richardson AG, Bizzi E, Seung HS (2007) Motor learning with
unstable neural representations. Neuron 54:653—666. CrossRef Medline

Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, Yu
BM, Batista AP (2014) Neural constraints on learning. Nature 512:423—
426. CrossRef Medline

Schalk G, Kubének J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG,
Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007) Decoding two-
dimensional movement trajectories using electrocorticographic signals in
humans. ] Neural Eng 4:264-275. CrossRef Medline

Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identify-
ing control variables for a functional task. Exp Brain Res 126:289-306.
CrossRef Medline

Scott SH (2004) Optimal feedback control and the neural basis of volitional
motor control. Nat Rev Neurosci 5:532-546. Medline

Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural
control of cursor trajectory and click by a human with tetraplegia 1000
days after implant of an intracortical microelectrode array. ] Neural Eng
8:025027. CrossRef Medline

Slutzky MW, Jordan LR, Lindberg EW, Lindsay KE, Miller LE (2011) De-
coding the rat forelimb movement direction from epidural and intracor-
tical field potentials. ] Neural Eng 8:036013. CrossRef Medline

Stark E, Abeles M (2007) Predicting movement from multiunit activity.
J Neurosci 27:8387—8394. CrossRef Medline

Stevenson IH, Cherian A, London BM, Sachs NA, Lindberg E, Reimer ],
Slutzky MW, Hatsopoulos NG, Miller LE, Kording KP (2011) Statistical
assessment of the stability of neural movement representations. ] Neuro-
physiol 106:764—774. CrossRef Medline

Todorova S, Sadtler P, Batista A, Chase S, VenturaV (2014) To sort or not to
sort: the impact of spike-sorting on neural decoding performance. ] Neu-
ral Eng 11:056005. CrossRef Medline

Todorov E (2004) Optimality principles in sensorimotor control. Nat Neu-
rosci 7:907-915. CrossRef Medline

Todorov E, Jordan MI (2002) Optimal feedback control as a theory of mo-
tor coordination. Nat Neurosci 5:1226-1235. CrossRef Medline

Westwick DT, Pohlmeyer EA, Solla SA, Miller LE, Perreault E] (2006) Iden-
tification of multiple-input systems with highly coupled inputs: applica-
tion to EMG prediction from multiple intracortical electrodes. Neural
Comput 18:329-355. CrossRef Medline

Zhuang J, Truccolo W, Vargas-Irwin C, Donoghue JP (2010) Decoding 3-D
reach and grasp kinematics from high-frequency local field potentials in
primate primary motor cortex. IEEE Trans Biomed Eng 57:1774-1784.
CrossRef Medline


http://dx.doi.org/10.1088/1741-2560/8/4/045005
http://www.ncbi.nlm.nih.gov/pubmed/21775782
http://dx.doi.org/10.1523/JNEUROSCI.5361-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/15071105
http://www.ncbi.nlm.nih.gov/pubmed/23253623
http://dx.doi.org/10.1523/JNEUROSCI.5792-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22623684
http://dx.doi.org/10.1038/nature10987
http://www.ncbi.nlm.nih.gov/pubmed/22522928
http://www.ncbi.nlm.nih.gov/pubmed/4966614
http://dx.doi.org/10.1523/JNEUROSCI.3516-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17978021
http://dx.doi.org/10.1152/jn.00832.2011
http://www.ncbi.nlm.nih.gov/pubmed/22496527
http://dx.doi.org/10.1088/1741-2560/9/4/046006
http://www.ncbi.nlm.nih.gov/pubmed/22733013
http://dx.doi.org/10.1016/j.neuroimage.2014.07.049
http://www.ncbi.nlm.nih.gov/pubmed/25094020
http://dx.doi.org/10.1088/1741-2560/6/5/055004
http://www.ncbi.nlm.nih.gov/pubmed/19721186
http://dx.doi.org/10.1371/journal.pbio.1000153
http://www.ncbi.nlm.nih.gov/pubmed/19621062
http://www.ncbi.nlm.nih.gov/pubmed/7143039
http://dx.doi.org/10.1038/nn.3265
http://www.ncbi.nlm.nih.gov/pubmed/23160043
http://dx.doi.org/10.1038/nature04970
http://www.ncbi.nlm.nih.gov/pubmed/16838014
http://dx.doi.org/10.1073/pnas.0808113105
http://www.ncbi.nlm.nih.gov/pubmed/19047633
http://dx.doi.org/10.1007/s002210100861
http://www.ncbi.nlm.nih.gov/pubmed/11713627
http://dx.doi.org/10.1523/JNEUROSCI.3011-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19955356
http://dx.doi.org/10.1162/neco.2008.01-08-698
http://www.ncbi.nlm.nih.gov/pubmed/19718817
http://dx.doi.org/10.1038/nn1158
http://www.ncbi.nlm.nih.gov/pubmed/14634657
http://www.ncbi.nlm.nih.gov/pubmed/10561438
http://dx.doi.org/10.1152/jn.00380.2005
http://www.ncbi.nlm.nih.gov/pubmed/16148276
http://dx.doi.org/10.1523/JNEUROSCI.5481-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22956825
http://dx.doi.org/10.1088/1741-2560/11/6/066003
http://www.ncbi.nlm.nih.gov/pubmed/25307561
http://dx.doi.org/10.1016/j.neuron.2014.04.048
http://www.ncbi.nlm.nih.gov/pubmed/24945777
http://www.ncbi.nlm.nih.gov/pubmed/12968016
http://dx.doi.org/10.1016/0021-9290(90)90376-E
http://www.ncbi.nlm.nih.gov/pubmed/2292598
http://dx.doi.org/10.1088/1741-2560/11/4/046007
http://www.ncbi.nlm.nih.gov/pubmed/24921388
http://dx.doi.org/10.1038/nn890
http://www.ncbi.nlm.nih.gov/pubmed/12134152
http://dx.doi.org/10.1007/s00221-012-3041-8
http://www.ncbi.nlm.nih.gov/pubmed/22370742
http://dx.doi.org/10.1016/j.neuron.2007.04.030
http://www.ncbi.nlm.nih.gov/pubmed/17521576
http://dx.doi.org/10.1038/nature13665
http://www.ncbi.nlm.nih.gov/pubmed/25164754
http://dx.doi.org/10.1088/1741-2560/4/3/012
http://www.ncbi.nlm.nih.gov/pubmed/17873429
http://dx.doi.org/10.1007/s002210050738
http://www.ncbi.nlm.nih.gov/pubmed/10382616
http://www.ncbi.nlm.nih.gov/pubmed/15208695
http://dx.doi.org/10.1088/1741-2560/8/2/025027
http://www.ncbi.nlm.nih.gov/pubmed/21436513
http://dx.doi.org/10.1088/1741-2560/8/3/036013
http://www.ncbi.nlm.nih.gov/pubmed/21508491
http://dx.doi.org/10.1523/JNEUROSCI.1321-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17670985
http://dx.doi.org/10.1152/jn.00626.2010
http://www.ncbi.nlm.nih.gov/pubmed/21613593
http://dx.doi.org/10.1088/1741-2560/11/5/056005
http://www.ncbi.nlm.nih.gov/pubmed/25082508
http://dx.doi.org/10.1038/nn1309
http://www.ncbi.nlm.nih.gov/pubmed/15332089
http://dx.doi.org/10.1038/nn963
http://www.ncbi.nlm.nih.gov/pubmed/12404008
http://dx.doi.org/10.1162/089976606775093855
http://www.ncbi.nlm.nih.gov/pubmed/16378517
http://dx.doi.org/10.1109/TBME.2010.2047015
http://www.ncbi.nlm.nih.gov/pubmed/20403782

	Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control
	Introduction
	Materials and Methods
	Results
	LFP and spike movement representations are stable during reaching
	LFP and spike movement representations are stable during BMI control
	LFPs are highly stable in the time domain and high-frequency bands
	LFP stability increases during early BMI decoder learning
	Stability measures remain high even when using very few features

	Discussion
	Stability at different spatial scales
	Evidence supporting the minimal intervention principle
	Implications for decoding motor intent over long time periods

