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The present paper is a novel contribution to the field of bioinformatics by using grammatical inference in the analysis of data. We
developed an algorithm for generating star-free regular expressions which turned out to be good recommendation tools, as they are
characterized by a relatively high correlation coefficient between the observed and predicted binary classifications.The experiments
have been performed for three datasets of amyloidogenic hexapeptides, and our results are compared with those obtained using
the graph approaches, the current state-of-the-art methods in heuristic automata induction, and the support vector machine. The
results showed the superior performance of the new grammatical inference algorithm on fixed-length amyloid datasets.

1. Introduction

Grammatical inference (GI) is an intensively studied area of
research that sits at the intersection of several fields including
formal languages, machine learning, language processing,
and learnability theory. The main task of the field is about
finding some unknown rule when given some elements:
examples and counterexamples.This presentation of elements
may be finite (in practice) or infinite (in theory). As this study
will be especially focused on obtaining a regular expression
from finite positive and negative data, the various models of
incremental learning and their decidability questions have
not been mentioned. The book by de la Higuera [1] can be
of major help on such theoretical aspects of grammatical
inference.

Here and subsequently 𝑆 = (𝑆
+
, 𝑆
−
) stands for a sample

where 𝑆
+
is the set of examples and 𝑆

−
is the set of counterex-

amples over a fixed alphabetΣ. Our aim is to obtain a compact
description of a finite language 𝐿 satisfying all the following
conditions: (i) 𝐿 ⊂ Σ

+, (ii) 𝑆
+
⊆ 𝐿, and (iii) 𝑆

−
∩ 𝐿 = 0. We

will consider a star-free regular expression (i.e., without the
Kleene closure operator) as the compact description of a
language 𝐿. It is worthy to emphasize that such a formulation

of an induction problem is justified by intended applications
in bioinformatics. A sample in biological or medical domains
consists of positive and negative objects (mainly proteins)
with certain properties, whereas a star-free regular expression
may serve to predict new objects.The data explored byTian et
al. [2] andMaurer-Stroh et al. [3] are good illustrations.They
consist of examples and counterexamples of amyloids, that is,
proteins which have been associated with the pathology of
more than 20 serious human diseases. In the experimental
part of the present paper, we are going to undertake an
examination of binary classification efficiency for selected
real biological/medical data. By binary classification, we
mean mapping a string to one out of two classes by means
of induced regular expressions (regex). For classification,
especially for two-class problems, a variety of measures has
been proposed. Since our experiments lie in a (bio)medical
context, the Matthews Correlation Coefficient is regarded as
a primary score, as the goal of this whole process is to predict
new strings that are likely to be positive.

There is a number of closely related works to our study.
Angluin showed that the problem of inferring minimum-
size regular expression satisfying (i), (ii), and (iii) remains
NP-complete even if a regex is required to be star-free
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(containing no “∗” operations) [4]. In our previous work
[5] similar bioinformatics datasets have been analyzed, but
with different acceptors—directed acyclic word graphs. Some
of classical automata learning algorithms like ECGI [6], 𝑘-
RI [7], and 𝑘-TSSI [8] could be applied to the problem, but
they do not make use of counterexamples. Many authors
advocated the benefit of viewing the biological sequences
as sentences derived from a formal grammar or automaton.
As a good bibliographical starting point, see articles by
Coste and Kerbellec [9], Sakakibara [10], and Searls [11].
In connection with this problem of data classification, it
is worth remembering that there is a field of computer
science that can be also involved, namely, machine learning
(ML), which includes such methods as classification trees,
clustering, the support vector machine [12], and rough sets
[13]. All above-mentionedMLmethods are aimed at compact
description of input data, though in various ways. In view
of our applications, they have, however, a drawback. The
problem is that they are not suited for variable-length data.

In the present algorithm a star-free regular expression
(SFRE) is achieved based on a learning sample containing the
examples and counterexamples (these examples and coun-
terexamples are also called positive and negative words). It
is a two-phase procedure. In the first phase an initial graph is
built in order to reveal possible substring interchanges. In the
second phase all maximal cliques of the graph are yielded to
build a SFRE.We have implemented our induction algorithm
of a SFRE and started applying it to a real bioinformatics
task, that is, classification of amyloidogenic hexapeptides.
Amyloids are proteins capable of forming fibrils instead of the
functional structure of a protein [14] and are responsible for
a group of diseases called amyloidosis, such as Alzheimer’s,
Huntington’s disease, and type II diabetes [15]. Furthermore,
it is believed that short segments of proteins, like hexapep-
tides consisting of 6-residue fragments, can be responsible
for amyloidogenic properties [16]. Since it is not possible to
experimentally test all such sequences, several computational
tools for predicting amyloid chains have emerged, inter alia,
based on physicochemical properties [17] or using machine
learning approach [18–21].

To test the performance of our SFRE approach, the fol-
lowing six additional programs have been used in experi-
ments: the implementation of the Trakhtenbrot-Barzdin state
merging algorithm, as described in [22]; the implementation
of Rodney Price’s Abbadingo winning idea of evidence-
driven state merging [23]; a program based on the Rlb state
merging algorithm [24]; ADIOS (for Automatic Distilla-
tion of Structure)—a context-free grammar learning system,
which relies on a statistical method for pattern extraction and
on structured generalization [25]; our previous approachwith
directed acyclic word graphs [5]; and, as an instance of ML
methods, the support vector machine [26].

A rigorous statistical procedure has been applied to com-
pare all the above methods in terms of a correlation between
the observed and predicted binary classification (Matthews
Correlation Coefficient, MCC). The proposed approach sig-
nificantly outperforms both GI-based methods andML algo-
rithm on fixed-length amyloid datasets.

2. Materials and Methods

2.1. Datasets. The algorithm for generating star-free regular
expressions SFRE has been tested over three recently pub-
lished Hexpepset datasets, that is, Waltz [3], WALTZ-DB
[27], and exPafig [5]. The first two databases consist of only
experimentally asserted amyloid sequences. Note that the
choice of experimental verified short peptides is very limited
since very few data are available. The Waltz dataset has been
published in 2010 and is composed of 116 hexapeptides known
to induce amyloidosis (𝑆

+
) and by 161 hexapeptides that

do not induce amyloidosis (𝑆
−
). The WALTZ-DB has been

prepared by the same science team in the Switch Lab from
KU Leuven and published in 2015. This dataset expands the
Waltz set to total number of hexapeptides of 1089. According
to Beerten et al. (2015), additional 720 hexapeptides were
derived from 63 different proteins and combined with 89
peptides taken from the literature [27]. In the WALTZ-
DB database, 244 hexapeptides are regarded as positive for
amyloid formation (𝑆

+
) and 845 hexapeptides as negative for

amyloid formation (𝑆
−
).

SFRE algorithm was also validated and trained on
database (denoted by exPafig), which was computationally
obtained with Pafig method [2], and then statistically pro-
cessed [5]. exPafig consists of 150 amyloid positive hexapep-
tides (𝑆

+
) and 2259 negative hexapeptides (𝑆

−
). As seen, the

database is strongly imbalanced.

2.2. An Algorithm for the Induction of a SFRE

2.2.1. Definitions

Definition 1. Σ will be a finite nonempty set, the alphabet. Σ+
will denote the set of all nonempty strings over the alphabet
Σ. If 𝑠, 𝑡 ∈ Σ

+, the concatenation of 𝑠 and 𝑡, written 𝑠𝑡, will
denote the string formed bymaking a copy of 𝑠 and following
it by a copy of 𝑡. If 𝐴, 𝐵 ⊆ Σ

+, then

𝐴𝐵 = {𝑠 | 𝑠 = 𝑡𝑢 for some 𝑡 ∈ 𝐴, 𝑢 ∈ 𝐵} . (1)

To simplify the representations for finite languages, we
define the notion of star-free regular expressions over alpha-
bet Σ as follows.

Definition 2. The set of star-free regular expressions (SFREs)
over Σ will be the set of strings 𝑅 such that

(1) 0 ∈ 𝑅 which represents the empty set;

(2) Σ ⊆ 𝑅; each element 𝑎 of the alphabet represents
language {𝑎};

(3) if 𝑟
𝐴
and 𝑟
𝐵
are SFREs representing languages 𝐴 and

𝐵, respectively, then (𝑟
𝐴

+ 𝑟
𝐵
) ∈ 𝑅 and (𝑟

𝐴
𝑟
𝐵
) ∈

𝑅 representing 𝐴 ∪ 𝐵, 𝐴𝐵, respectively, where the
symbols (, ), + are not in Σ.

We will freely omit unnecessary parentheses from SFREs
assuming that concatenation has higher priority than union.
If 𝑟 ∈ 𝑅 represents language 𝐴, we will write 𝐿(𝑟) = 𝐴.
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Definition 3. A sample 𝑆 over Σ will be an ordered pair 𝑆 =

(𝑆
+
, 𝑆
−
)where 𝑆

+
, 𝑆
−
are finite subsets ofΣ+ and 𝑆

+
∩𝑆
−
= 0. 𝑆
+

will be called the positive part of 𝑆, and 𝑆
−
the negative part of

𝑆. A star-free regular expression 𝑟 is consistent (or compatible)
with a sample 𝑆 = (𝑆

+
, 𝑆
−
) if and only if 𝑆

+
⊆ 𝐿(𝑟) and 𝑆

−
∩

𝐿(𝑟) = 0.

Definition 4. A graph 𝐺 is a finite nonempty set of objects
called vertexes together with a (possibly empty) set of
unordered pairs of distinct vertexes of 𝐺 called edges. The
vertex set of 𝐺 is denoted by 𝑉(𝐺), while the edge set is
denoted by 𝐸(𝐺). The edge 𝑒 = {𝑢, V} is said to join the
vertexes 𝑢 and V. If 𝑒 = {𝑢, V} is an edge of a graph 𝐺, then 𝑢

and V are adjacent vertexes. In a graph𝐺, a clique is a subset of
the vertex set 𝐶 ⊆ 𝑉(𝐺) such that every two vertexes in 𝐶 are
adjacent. By definition, a cliquemay be also composed of only
one vertex. If a clique does not exist exclusively within the
vertex set of a larger clique, then it is called amaximal clique.

Definition 5. Let Σ be an alphabet and let 𝐺 be a graph. Sup-
pose that every vertex in 𝐺 is associated with an ordered pair
of nonempty strings over Σ; that is, 𝑉(𝐺) = {V

1
, V
2
, . . . , V

𝑛
},

where V
𝑖
= (𝑢
𝑖
, 𝑤
𝑖
) ∈ Σ

+
× Σ
+ for 1 ≤ 𝑖 ≤ 𝑛. Let 𝐶 =

{V
𝑖
1

, V
𝑖
2

, . . . , V
𝑖
𝑚

} be a clique in 𝐺. Then

𝑟 (𝐶) = (𝑢
𝑖
1

+ 𝑢
𝑖
2

+ ⋅ ⋅ ⋅ + 𝑢
𝑖
𝑚

) (𝑤
𝑖
1

+ 𝑤
𝑖
2

+ ⋅ ⋅ ⋅ + 𝑤
𝑖
𝑚

) (2)

is a star-free regular expression over Σ induced by 𝐶.
For the simplicity’s sake, we also denote the set 𝐿(𝑢

𝑖
1

+

⋅ ⋅ ⋅ + 𝑢
𝑖
𝑚

) = {𝑢
𝑖
1

, . . . , 𝑢
𝑖
𝑚

} by𝑈 and the set 𝐿(𝑤
𝑖
1

+ ⋅ ⋅ ⋅ + 𝑤
𝑖
𝑚

) =

{𝑤
𝑖
1

, . . . , 𝑤
𝑖
𝑚

} by𝑊 in the context of 𝐶.

2.2.2. The Algorithm. In this section, we are going to show
how to generate a SFRE compatible with a given sample.
These expressions do not have many theoretical properties
but have marvelous accomplishment in the analysis of some
bioinformatics data in terms of classification quality.

Let 𝑆 = (𝑆
+
, 𝑆
−
) be a sample over Σ in which every string

is at least of length 2. Construct the graph 𝐺 with vertex set

𝑉 (𝐺) = ⋃

𝑠∈𝑆
+

{(𝑢, 𝑤) | 𝑠 = 𝑢𝑤, 𝑢, 𝑤 ∈ Σ
+

} (3)

and with edge set 𝐸(𝐺) given by

{(𝑢, 𝑤) , (𝑥, 𝑦)} ∈ 𝐸 (𝐺) ⇐⇒

|𝑢| = |𝑥| , 𝑢𝑦 ∉ 𝑆
−
, 𝑥𝑤 ∉ 𝑆

−
.

(4)

Next, find a set of cliquesC = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
} in 𝐺 such that

𝑆
+
⊆ ∑
𝑘

𝑖=1
𝑟(𝐶
𝑖
). For this purpose one can take advantage of

an algorithm proposed by Tomita et al. [28] for generating
all maximal cliques. Although it takes 𝑂(𝑛3

𝑛/3
) time in the

worst case for an 𝑛-vertex graph, computational experiments
described in Section 3 demonstrate that it runs very fast in
practice (a few seconds for thousands of vertexes). Finally,
return the union of SFREs induced by all maximal cliquesC;
that is, 𝑒 = 𝑟(𝐶

1
) + 𝑟(𝐶

2
) + ⋅ ⋅ ⋅ + 𝑟(𝐶

𝑘
).

In order to reduce the computational complexity of
the induction, instead of Tomita’s algorithm, the ensuing

(ba, bb)

(bb, bb)

(ab, ab)

(bab, b)

(bbb, b)

(aba, b)

(a, bab)

(b, abb)

(b, bbb)

Figure 1: A graph 𝐺 built from a sample 𝑆, according to definitions
(3) and (4).

randomized procedure could be applied. Consecutive cliques
𝐶
𝑖
with their catenations 𝑈

𝑖
𝑊
𝑖
are determined until 𝑆

+
⊆

⋃
𝑘

𝑖=1
𝑈
𝑖
𝑊
𝑖
. The catenations emerge in the following manner.

In step 𝑖 + 1, a vertex V
𝑠
1

= (𝑢, 𝑤) ∈ 𝑉(𝐺) for which 𝑢𝑤 ∉

⋃
𝑖

𝑚=1
𝑈
𝑚
𝑊
𝑚
is chosen at random. Let 𝑈

𝑖+1
= {𝑢} and𝑊

𝑖+1
=

{𝑤}. Then sets 𝑈
𝑖+1

and 𝑊
𝑖+1

are updated by adding words
from the randomly chosen neighbor of V

𝑠
1

, say V
𝑠
2

, and sub-
sequently by adding words from the randomly chosen neigh-
bor V
𝑠
3

of {V
𝑠
1

, V
𝑠
2

}, and so forth. In the end, a maximal clique
𝐶
𝑖+1

is obtained for which 𝐿(𝑟(𝐶
𝑖+1

)) = 𝑈
𝑖+1

𝑊
𝑖+1

. Naturally,
𝑒 = 𝑟(𝐶

1
)+𝑟(𝐶

2
)+ ⋅ ⋅ ⋅+𝑟(𝐶

𝑘
) fulfills 𝑆

+
⊆ 𝐿(𝑒), and the whole

procedure runs in polynomial time with respect to the input
size.

Here are some elementary properties of a resultant
expression 𝑒 and the complexity of the induction algorithm.

(i) 𝑆
−
∩ 𝐿(𝑒) = 0 is implied from (4).

(ii) If all strings in a sample have equal length, let us say ℓ,
then all strings from 𝐿(𝑒) also are of the same length
ℓ.

(iii) Let 𝑛 = ∑
𝑠∈𝑆

|𝑠|. A graph 𝐺, based on (3) and (4),
may be constructed in 𝑂(𝑛

3
) time. Determining a

set of cliques C and corresponding regular expres-
sions 𝑟(𝐶

1
), 𝑟(𝐶
2
), . . . , 𝑟(𝐶

𝑘
) also takes no more than

𝑂(𝑛
3
) time, assuming that the graph is represented

by adjacency lists. Thus, the overall computational
complexity is 𝑂(𝑛

3
).

2.2.3. An Illustrative Run. Suppose 𝑆 = ({bbbb, babb, abab},
{bbba, baba, baaa, abaa, aaba, aaab}) is a sample (one of
possible explanations for the input is, each a follows at least
one b). A constructed graph 𝐺 is depicted in Figure 1. It has
three maximal cliques and regardless of the method—either
Tomita’s or randomized algorithm was selected—all of them
would be determined in this case. The final SFRE induced by
the cliques is

𝑒 = (ab + ba + bb) (bb + ab) + (aba + bbb + bab) (b)

+ (b + a) (bab + bbb + abb) .
(5)

Among all words of length four over the alphabet {a, b} it
does not accept aaaa, baaa, abaa, bbaa, aaba, baba, abba,



4 Computational and Mathematical Methods in Medicine

bbba, aaab, but accepts baab, abab, bbab, aabb, babb,
abbb, bbbb.

2.3. Validation with Other Methods. The SFRE classification
quality over hexapeptides from three datasets was compared
to three state-of-the-art tools for heuristic state merging DFA
induction: theTrakhtenbrot-Barzdin statemerging algorithm
(denoted Traxbar) [22], Rodney Price’s Abbadingo winning
idea of evidence-driven state merging (Blue-fringe) [23],
Rlb state merging algorithm (Rlb) [24], and a context-free
grammar learning system ADIOS [25]. The compared set
of methods was extended by our previous approach with
directed acyclic word graphs (DAWG) [5] and the support
vector machine with linear kernel function (SVM) [26].

Trakhtenbrot and Barzdin described an algorithm for
constructing the smallest DFA consistent with a complete
labeled training set [29]. The input to the algorithm is the
prefix-tree acceptor which directly embodies the training
set. This tree is collapsed into a smaller graph by merg-
ing all pairs of states that represent compatible mappings
from string suffixes to labels. This algorithm for completely
labeled trees has been generalized by Lang [22] to produce
a (not necessarily minimum) machine consistent with a
sparsely labeled tree (we used implementations from the
archive http://abbadingo.cs.nuim.ie/dfa-algorithms.tar.gz for
the Traxbar and for the two remaining state merging algo-
rithms).

The second algorithm that starts with the prefix-tree
acceptor for the training set and folds it up into a compact
hypothesis by merging pairs of states is Blue-fringe.This pro-
gram grows a connected set of red nodes that are known to be
unique states, surrounded by a fringe of blue nodes that will
either bemerged with red nodes or be promoted to red status.
Merges only occur between red nodes and blue nodes. Blue
nodes are known to be the roots of trees, which greatly simpli-
fies the code for correctly doing a merge. The only drawback
of this approach is that the pool of possible merges is small,
so occasionally the program has to do a low scoring merge.

The idea that lies behind the third algorithm, Rlb, is as fol-
lows. It dispenses with the red-blue restriction and is able to
domerges in any order. However, to have a practical run time,
only merges between nodes that lie within a distance “win-
dow” of the root on a breadth-first traversal of the hypothesis
graph are considered. This introduction of a new parameter
is a drawback to this program, as is the fact that its run time
scales very badly with training string length. However, on
suitable problems, it works better than the Blue-fringe algo-
rithm. The detailed description of heuristics for evaluating
and performing merges can be found in Lang’s work [24].

ADIOS starts by loading the corpus (examples) onto a
directed graph whose vertexes are all lexicon entries, aug-
mented by two special symbols, begin and end. Each corpus
sentence defines a separate path over the graph, starting at
begin and ending at end, and is indexed by the order of its
appearance in the corpus. Loading is followed by an iterative
search for significant patterns, which are added to the lexicon
as new units. The algorithm generates candidate patterns by
traversing in each iteration a different search path, seeking
subpaths that are shared by a significant number of partially

aligned paths. The significant patterns are selected according
to a context-sensitive probabilistic criterion defined in terms
of local flow quantities in the graph. At the end of each
iteration, the most significant pattern is added to the lexicon
as a new unit, the subpaths it subsumes aremerged into a new
vertex, and the graph is rewired accordingly. The search for
patterns and equivalence classes and their incorporation into
the graph are repeated until no new significant patterns are
found. The Java implementation of ADIOS made available to
us by one of the authors was used in our experiments.

DAWG is a two-phase procedure. In the first phase, an
initial directed graph is built in a way that resembles the
construction of the minimal DFA, but nondeterminism is
also allowed. In the second phase, the directed graph is
extended in an iterative process by putting some additional
labels onto the existing arcs. The order of putting new labels
alters the results; hence a greedy heuristic has been proposed
in order to obtain the words most consistent with a sample.
We used the same implementation of DAWG as in our earlier
work on classification of biological sequences [5].

SVM constructs a hyperplane or set of hyperplanes in a
high-dimensional space, which can be used for classification,
regression, or other tasks. A good separation is achieved by
the hyperplane that has the largest distance to the nearest
training data points of any class (so-called functional mar-
gin), since, in general, the larger the margin, the lower the
generalization error of the classifier. In the experiments, we
took advantage of scikit SVM, a machine learning Python
library with default parameters [30].

2.4. Experiment Design and Statistical Analysis. To esti-
mate the SFRE’s and compared approaches’ ability to clas-
sify unseen hexapeptides repeated stratified 𝑘-fold cross-
validation (cv) strategy was used. Note that holdout method
is the simplest kind of cross-validation, but multiple cv is
thought to bemore reliable than holdout due to its evaluation
variance [31]. The simplest form of cross-validation is to split
the data randomly into 𝑘mutually exclusive folds, building a
model on all but one fold, and to evaluate the model on the
skipped fold. The procedure is repeated 𝑘-times, each time
evaluating the model on the next omitted fold. The overall
assessment of the model is based on the mean of 𝑘-individual
evaluations. Since the cv assessment would depend on the
random assignment samples, a common practice is to stratify
the folds themselves [32]. In a stratified variant of cv, the
pseudorandom folds are generated in such a way that each
fold contains approximately the same percentage of samples
of each class as the whole set. Although the cv is considered as
one of the most utilized validation methods, it is well known
that cv-based estimators have high variance and nonzero bias
[33–36]. It is therefore recommended to use a repeated cross-
validation approach [37].

The main problem with (repeated) cv is that the training
and test sets are not independent samples. Dietterich [31]
found that comparing algorithms on the basis of repeated
resampling of the same data can cause very high Type-I
errors. It means that statistical hypothesis test, like the stan-
dard paired 𝑡-test, incorrectly rejects a true null hypothesis
(so-called false positive). Note that cv can be viewed as a kind



Computational and Mathematical Methods in Medicine 5

of random subsampling. To correct the variance estimate of
dependent samples, Nadeau and Bengio [38] proposed the
following statistic of the corrected resampled 𝑡-test:

𝑡
𝑐
=

1/𝑛∑
𝑛

𝑗=1
𝑥
𝑗

√(1/𝑛 + 𝑛
2
/𝑛
1
) �̂�
2

, (6)

where 𝑥
𝑗
is the difference of the performance quality between

two compared algorithms on 𝑗-run (1 ≤ 𝑗 ≤ 𝑛). We assume
that in each run 𝑛

1
samples are used for training and 𝑛

2

samples for testing. �̂�
2 stands for the variance of the 𝑛

differences. This statistic obeys approximately Student’s 𝑡-
distributionwith 𝑛−1 degrees of freedom.Theonly difference
to the standard 𝑡-test is that the factor 1/𝑛 in the denominator
is by the factor 1/𝑛+𝑛

2
/𝑛
1
.The corrected resampled 𝑡-test has

the Type-I error close to the significance level and—opposite
to the McNemar test and the 5 × 2 cv test—low Type-II error
(i.e., the failure to reject a false null hypothesis). If we consider
test based on 𝑟-times 𝑘-fold cv, the statistic

𝑡
𝑐
=

1/ (𝑘 ⋅ 𝑟)∑
𝑘

𝑖=1
∑
𝑟

𝑗=1
𝑥
𝑖𝑗

√(1/ (𝑘 ⋅ 𝑟) + 𝑛
2
/𝑛
1
) �̂�
2

(7)

has 𝑘⋅𝑟−1 degrees of freedom and is called corrected repeated
k-fold cv test. To detect performance differentiation of com-
pared algorithms we use 10 × 10 cv scheme with 10 (instead
of 99) degrees of freedom. This scheme was shown [39] to
have excellent replicability. Note that, to perform multiple
comparisons involving a control method (i.e., SFRE), we are
supposed to control the family-wise error (FWER) [40, 41].
FWER is the probability of making Type-I error when testing
many null hypotheses simultaneously. Several methods of
relaxing the FWER have been proposed [42]. To keep the
probability of rejecting any true null hypothesis small, in our
experiments we applied Holm correction [43].

The predictive performance of algorithms was evaluated
with the confusion matrix and some of the figures of merit
associatedwith it. First, the following four scoreswere defined
as tp, fp, fn, and tn, representing the numbers of true pos-
itives (correctly recognized amyloids), false positives (non-
amyloids recognized as amyloids), false negatives (amyloids
recognized as nonamyloids), and true negatives (correctly
recognized nonamyloids), respectively. The following three
figures of merit were considered here, since they are widely
used.

The Sensitivity, also known as true positive rate, repre-
sents the percentage of correctly identified positive cases and
is defined as

Sensitivity =
tp

(tp + fn)
. (8)

Specificity, known is as true negative rate, represents the
percentage of correctly identified negative cases and is calcu-
lated as

Specificity =
tn

(tn + fp)
. (9)
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Figure 2: Performance comparison of ADIOS, Blue-fringe, DAWG,
Rlb, SFRE, SVM, and Traxbar methods on Waltz database [3].
Boxplots represent the MCC values obtained from 10 × 10 cross-
validation. The ratio of 𝑆

+
/𝑆
−
is 116/161.

Table 1: 𝑝 values for the comparison of the SFRE (the control
algorithm) with the other methods on Waltz database. The initial
level of confidence 𝛼 = 0.05 is adjusted by Holm procedure.

SFRE versus Unadjusted 𝑝 Holm 𝑝

ADIOS 1.872447𝑒 − 04 3.744893𝑒 − 04

Blue-fringe 5.341761𝑒 − 09 2.136704𝑒 − 08

DAWG 1.089587𝑒 − 13 6.537519𝑒 − 13

RLB 7.529027𝑒 − 12 3.764514𝑒 − 11

SVM 9.527442𝑒 − 03 9.527442𝑒 − 03

Traxbar 4.257174𝑒 − 07 1.277152𝑒 − 06

Matthews Correlation Coefficient is defined as

MCC =
(tp ⋅ tn − fp ⋅ fn)

√(tp + fn) (tp + fp) (tn + fp) (tn + fn)
. (10)

Note that several other scores derived from the confusion
matrix can be used for estimating the prediction reliability.
These three figures ofmerit, that is, Sensitivity, Specificity, and
Matthews Correlation Coefficient, seem to be indispensable
for the following reasons. Sensitivity and Specificity tend to be
anticorrelated andmonitor different aspects of the prediction
process. Both of them may range from 0 to +1, where
+1 means perfect prediction. Second, Matthews Correlation
Coefficient [44] considers both the true positives and true
negatives as successful predictions. MCC is always between
−1 and +1. A value of −1 indicates total disagreement, 0 ran-
domprediction, and+1perfect prediction.What is important
in our case is, MCC is resistant to imbalanced dataset.

3. Result and Discussion

Figure 2 and Table 1, Figure 3 and Table 2, and Figure 4 and
Table 3 summarize the performances of the SFRE algorithm
and compared methods on Waltz, WALTZ-Db, and exPafig
databases, respectively. The figures present boxplots rep-
resenting the MCC values obtained from 10 × 10 cross-
validation, whereas the tables give unadjusted and adjusted
by Holm procedure 𝑝 values for the comparison of the
SFRE algorithm (the control method) with the remaining
algorithms. Note that adjusted 𝑝 for each method and each
database is lower than desired level of a confidence 𝛼, 0.05, in
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Figure 3: Performance comparison of ADIOS, Blue-fringe, DAWG,
Rlb, SFRE, SVM, and Traxbar methods on WALTZ-DB database
[27]. Boxplots represent the MCC values obtained from 10 × 10
cross-validation. The ratio of 𝑆

+
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−
is 240/836.
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Figure 4: Performance comparison of ADIOS, Blue-fringe, DAWG,
Rlb, SFRE, SVM, and Traxbar methods on exPafig database [5].
Boxplots represent the MCC values obtained from 10 × 10 cross-
validation. The ratio of 𝑆

+
/𝑆
−
is 150/2259.

Table 2: 𝑝 values for the comparison of the SFRE (the control
algorithm) with the other methods on WALTZ-DB database. The
initial level of confidence 𝛼 = 0.05 is adjusted by Holm procedure.

SFRE versus Unadjusted 𝑝 Holm 𝑝

ADIOS 4.904483𝑒 − 13 1.961793𝑒 − 12

Blue-fringe 4.495071𝑒 − 10 4.495071𝑒 − 10

DAWG 4.838106𝑒 − 14 2.419053𝑒 − 13

RLB 3.326237𝑒 − 11 6.652474𝑒 − 11

SVM 1.703864𝑒 − 11 5.111592𝑒 − 11

Traxbar 9.161256𝑒 − 16 5.496754𝑒 − 15

Table 3: 𝑝 values for the comparison of the SFRE (the control
algorithm) with the other methods on exPafig database. The initial
level of confidence 𝛼 = 0.05 is adjusted by Holm procedure.

SFRE versus unadjusted 𝑝 Holm 𝑝

ADIOS 1.501499𝑒 − 05 4.504496𝑒 − 05

Blue-fringe 1.019785𝑒 − 08 4.079139𝑒 − 08

DAWG 4.319299𝑒 − 12 2.591579𝑒 − 11

RLB 7.401268𝑒 − 11 3.700634𝑒 − 10

SVM 3.295963𝑒 − 02 3.295963𝑒 − 02

Traxbar 1.368667𝑒 − 04 2.737334𝑒 − 04

our experiments. These 𝑝 values indicate that there are sig-
nificant performance differences between SFRE algorithm
and compared methods.

SFRE algorithm outperforms all other compared meth-
ods in terms of MCC over both experimentally asserted
datasets, Waltz and WALTZ-DB, and computationally gen-
erated exPafig. It is worth noting that all 𝑝 values except for
comparing with SVM algorithm are lower than not only 0.05,
but also the often used 0.01, hence confirming the superiority
of the SFRE.

Comparative analysis of the three figures of merit (Sen-
sitivity, Specificity, and Matthews Correlation Coefficient)
is summarized in Table 4. These quantities are reported
for seven compared predictors and three databases (Waltz,
WALTZ-DB, and exPafig). Numerical results reported in
Table 4 show that SFRE has the highest Average MCC (0.40)
followed by SVM (0.31), ADIOS and Traxbar (0.25), Blue-
fringe (0.22), and DAWG and Rlb (0.19). Furthermore, SFRE
has the highest MCC score compared to the other predictors
on each dataset (0.37, 0.38, and 0.44, resp.). Although the
results ofMCC score seem to be not high (at the level of 0.40),
it should be noted that many of the amyloid predictors are
reported to have similar or lower values [45]. It is also worth
mentioning that all methods have gained the highest MCC
values for the computationally generated exPafig dataset.

SFRE has a higher Specificity score than other methods
except SVM in case of WALTZ-DB (0.95 to 0.98, resp.) and
exPafig databases (both Spe of 1.00). These two predictors
have a very good capacity at predicting nonamyloid hexapep-
tides, with Spe higher than 0.90 for each database. The
counterpart is their poor Sensitivity. Concerning Sen score,
DAWG, our earlier proposal, has the highest value on each
database (0.90, 0.81, and 0.73, resp.). SFRE algorithm showed
a low Sensitivity for each tested dataset (0.30, 0.33, and 0.25,
resp.).

The evaluation of SFRE on three amyloidogenic hexapep-
tide datasets revealed its accuracy to predict nonamyloid
segments. We showed that the new grammatical inference
algorithm gives the best Matthews Correlation Coefficient in
comparison to six other methods, including support vector
machine.

4. Conclusions

In the present paper, the way in which regex induction may
support predicting new hexapeptides has been revealed. We,
therefore, studied the following problem: given a sample 𝑆 =

(𝑆
+
, 𝑆
−
), find a “general” star-free regular expression 𝑒 such

that 𝑆
+
⊆ 𝐿(𝑒), 𝑆

−
∩𝐿(𝑒) = 0, and 𝐿(𝑒)−𝑆

+
contain only strings

of “similar characteristics” to those of 𝑆
+
. To this end, a new

GI method has been proposed which is especially suited to
the fixed-length datasets.The conducted experiments showed
that our algorithm outperforms compared methods in terms
of a correlation between the observed and predicted binary
classification (MCC) and with real datasets taken from a
biomedical domain.

The proposed idea is not free from objections. Among the
most serious complications is the exponential computational
complexity of generating maximal cliques, which is the
second phase of the algorithm. However, it can be overcome
by using a proposed randomized procedure instead. Our first
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Table 4: Performance of compared methods onWaltz, WALTZ-DB, and exPafig databases in terms of Sensitivity (Sen), Specificity (Spe), and
Matthews Correlation Coefficient (MCC). The results are ordered by decreasing Average MCC (Ave MCC).

Method Waltz WALTZ-DB exPafig Ave MCC
Sen Spe MCC Sen Spe MCC Sen Spe MCC

SFRE 0.30 0.97 0.37 0.33 0.95 0.38 0.25 1.00 0.44 0.40
SVM 0.35 0.90 0.30 0.15 0.98 0.24 0.22 1.00 0.40 0.31
ADIOS 0.36 0.82 0.22 0.64 0.59 0.20 0.51 0.90 0.34 0.25
Traxbar 0.56 0.61 0.17 0.46 0.76 0.20 0.42 0.96 0.37 0.25
Blue-fringe 0.58 0.53 0.11 0.36 0.85 0.23 0.33 0.96 0.32 0.22
DAWG 0.90 0.13 0.04 0.81 0.47 0.24 0.73 0.80 0.30 0.19
Rlb 0.36 0.70 0.07 0.26 0.90 0.22 0.25 0.97 0.29 0.19

experiments on larger datasets uncovered that this is a good
direction for the future research.

The high Sensitivity of DAWG approach and high Speci-
ficity of SFRE method over tested databases suggest the
second direction of future research. These two classifiers
could be combined into a metapredictor having, hopefully,
both good Sensitivity and Specificity. Such meta-approaches
are reported to gain often better results in terms of aggregate
indicators (as MCC) than individual predictors [45].
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Mathématiques (JOBIM ’06), pp. 199–210, Bordeaux, France,
July 2006.

[10] Y. Sakakibara, “Grammatical inference in bioinformatics,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
27, no. 7, pp. 1051–1062, 2005.

[11] D. B. Searls, “The language of genes,” Nature, vol. 420, no. 6912,
pp. 211–217, 2002.

[12] E. Alpaydin, Introduction to Machine Learning, MIT Press,
Cambridge, Mass, USA, 2nd edition, 2010.

[13] L. Polkowski and A. Skowron, Rough Sets in Knowledge Discov-
ery 2: Applications, Case Studies and Software Systems, Physica,
1998.

[14] C. P. Jaroniec, C. E. MacPhee, V. S. Bajaj, M. T. McMahon,
C. M. Dobson, and R. G. Griffin, “High-resolution molecular
structure of a peptide in an amyloid fibril determined by magic
angle spinning NMR spectroscopy,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, no.
3, pp. 711–716, 2004.

[15] V. N. Uversky and A. L. Fink, “Conformational constraints
for amyloid fibrillation: the importance of being unfolded,”
Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics,
vol. 1698, no. 2, pp. 131–153, 2004.

[16] M. J. Thompson, S. A. Sievers, J. Karanicolas, M. I. Ivanova, D.
Baker, andD. Eisenberg, “The 3Dprofilemethod for identifying
fibril-forming segments of proteins,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 103, no.
11, pp. 4074–4078, 2006.

[17] S. J. Hamodrakas, “Protein aggregation and amyloid fibril
formation prediction software from primary sequence: towards
controlling the formation of bacterial inclusion bodies,” The
FEBS Journal, vol. 278, no. 14, pp. 2428–2435, 2011.

[18] J. Stanislawski, M. Kotulska, and O. Unold, “Machine learning
methods can replace 3D profile method in classification of



8 Computational and Mathematical Methods in Medicine

amyloidogenic hexapeptides,” BMC Bioinformatics, vol. 14, no.
1, article 21, 2013.

[19] O. Unold, “Fuzzy grammar-based prediction of amyloidogenic
regions,” JMLR: Workshop and Conference Proceedings, vol. 21,
pp. 210–219, 2012.

[20] O. Unold, “How to support prediction of amyloidogenic
regions—the use of a GA-based wrapper feature selections,” in
Proceedings of the 2nd International Conference on Advances in
InformationMining andManagement (IMMM ’12), Venice, Italy,
October 2012.

[21] B. Liu, W. Zhang, L. Jia, J. Wang, X. Zhao, and M. Yin, “Predic-
tion of ‘aggregation-prone’ peptides with hybrid classification
approach,” Mathematical Problems in Engineering, vol. 2015,
Article ID 857325, 9 pages, 2015.

[22] K. J. Lang, “Random DFA’s can be approximately learned from
sparse uniform examples,” in Proceedings of the 5th Annual
Workshop on Computational Learning Theory (COLT ’92), pp.
45–52, ACM, Pittsburgh, Pa, USA, July 1992.

[23] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the
abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm,” in Proceedings of the 4th
International Colloquium on Grammatical Inference, (ICGI ’98)
Ames, Iowa, USA, July 1998, pp. 1–12, Springer, 1998.

[24] K. J. Lang, “Merge Order count,” Tech. Rep., NECI, Montpelier,
Vt, USA, 1997.

[25] Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised
learning of natural languages,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 102, no.
33, pp. 11629–11634, 2005.

[26] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[27] J. Beerten, J. Van Durme, R. Gallardo et al., “WALTZDB: a
benchmark database of amyloidogenic hexapeptides,” Bioinfor-
matics, vol. 31, no. 10, pp. 1698–1700, 2015.

[28] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computa-
tional experiments,”Theoretical Computer Science, vol. 363, no.
1, pp. 28–42, 2006.

[29] B. Trakhtenbrot and Y. Barzdin, Finite Automata: Behavior and
Synthesis, North-Holland Publishing, 1973.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[31] T. G. Dietterich, “Approximate statistical tests for comparing
supervised classification learning algorithms,” Neural Compu-
tation, vol. 10, no. 7, pp. 1895–1923, 1998.

[32] S. Kotsiantis and P. Pintelas, “Combining bagging and boost-
ing,” International Journal of Computational Intelligence, vol. 1,
no. 4, pp. 324–333, 2004.

[33] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Proceedings of
the 14th International Joint Conference on Artificial Intelligence
(IJCAI ’95), vol. 2, pp. 1137–1143,Montreal, Canada, August 1995.

[34] U. M. Braga-Neto and E. R. Dougherty, “Is cross-validation
valid for small-sample microarray classification?” Bioinformat-
ics, vol. 20, no. 3, pp. 374–380, 2004.

[35] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and
R. Tibshirani, The Elements of Statistical Learning, vol. 2, no. 1,
Springer, Berlin, Germany, 2009.

[36] S. Arlot andA. Celisse, “A survey of cross-validation procedures
for model selection,” Statistics Surveys, vol. 4, pp. 40–79, 2010.

[37] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas, “Cross-
validation pitfalls when selecting and assessing regression and
classification models,” Journal of Cheminformatics, vol. 6, no. 1,
article 10, 2014.

[38] C. Nadeau and Y. Bengio, “Inference for the generalization
error,”Machine Learning, vol. 52, no. 3, pp. 239–281, 2003.

[39] R. R. Bouckaert and E. Frank, “Evaluating the replicability
of significance tests for comparing learning algorithms,” in
Advances in Knowledge Discovery and Data Mining, H. Dai,
R. Srikant, and C. Zhang, Eds., vol. 3056 of Lecture Notes in
Computer Science, pp. 3–12, Springer, 2004.
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