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Abstract

The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling 

disease progression due to its ability to describe noisy observations arriving irregularly in time. 

However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to 

very small models or requires unrealistic constraints on the state transitions. In this paper, we 

present the first complete characterization of efficient EM-based learning methods for CT-HMM 

models. We demonstrate that the learning problem consists of two challenges: the estimation of 

posterior state probabilities and the computation of end-state conditioned statistics. We solve the 

first challenge by reformulating the estimation problem in terms of an equivalent discrete time-

inhomogeneous hidden Markov model. The second challenge is addressed by adapting three 

approaches from the continuous time Markov chain literature to the CT-HMM domain. We 

demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease 

progression using a glaucoma dataset and an Alzheimer’s disease dataset.

1 Introduction

The goal of disease progression modeling is to learn a model for the temporal evolution of a 

disease from sequences of clinical measurements obtained from a longitudinal sample of 

patients. By distilling population data into a compact representation, disease progression 

models can yield insights into the disease process through the visualization and analysis of 

disease trajectories. In addition, the models can be used to predict the future course of 

disease in an individual, supporting the development of individualized treatment schedules 

and improved treatment efficiencies. Furthermore, progression models can support 

phenotyping by providing a natural similarity measure between trajectories which can be 

used to group patients based on their progression.

Hidden variable models are particularly attractive for modeling disease progression for three 

reasons: 1) they support the abstraction of a disease state via the latent variables; 2) they can 

deal with noisy measurements effectively; and 3) they can easily incorporate dynamical 

priors and constraints. While conventional hidden Markov models (HMMs) have been used 

to model disease progression, they are not suitable in general because they assume that 

measurement data is sampled regularly at discrete intervals. However, in reality patient 

visits are irregular in time, as a consequence of scheduling issues, missed visits, and 

changes in symptomatology.

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 March 23.

Published in final edited form as:
Adv Neural Inf Process Syst. 2015 ; 28: 3599–3607.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A Continuous-Time HMM (CT-HMM) is an HMM in which both the transitions between 

hidden states and the arrival of observations can occur at arbitrary (continuous) times [1, 2]. 

It is therefore suitable for irregularly-sampled temporal data such as clinical measurements 

[3, 4, 5]. Unfortunately, the additional modeling flexibility provided by CT-HMM comes at 

the cost of a more complex inference procedure. In CT-HMM, not only are the hidden states 

unobserved, but the transition times at which the hidden states are changing are also 

unobserved. Moreover, multiple unobserved hidden state transitions can occur between two 

successive observations. A previous method addressed these challenges by directly 

maximizing the data likelihood [2], but this approach is limited to very small model sizes. A 

general EM framework for continuous-time dynamic Bayesian networks, of which CT-

HMM is a special case, was introduced in [6], but that work did not address the question of 

efficient learning. Consequently, there is a need for efficient CT-HMM learning methods 

that can scale to large state spaces (e.g. hundreds of states or more) [7].

A key aspect of our approach is to leverage the existing literature for continuous time 

Markov chain (CTMC) models [8, 9, 10]. These models assume that states are directly 

observable, but retain the irregular distribution of state transition times. EM approaches to 

CTMC learning compute the expected state durations and transition counts conditioned on 

each pair of successive observations. The key computation is the evaluation of integrals of 

the matrix exponential (Eqs. 12 and 13). Prior work by Wang et. al. [5] used a closed form 

estimator due to [8] which assumes that the transition rate matrix can be diagonalized 

through an eigendecomposition. Unfortunately, this is frequently not achievable in practice, 

limiting the usefulness of the approach. We explore two additional CTMC approaches [9] 

which use (1) an alternative matrix exponential on an auxillary matrix (Expm method); and 

(2) a direct truncation of the infinite sum expansion of the exponential (Unif method). 

Neither of these approaches have been previously exploited for CT-HMM learning.

We present the first comprehensive framework for efficient EM-based parameter learning in 

CTHMM, which both extends and unifies prior work on CTMC models. We show that a 

CT-HMM can be conceptualized as a time-inhomogenous HMM which yields posterior state 

distributions at the observation times, coupled with CTMCs that govern the distribution of 

hidden state transitions between observations (Eqs. 9 and 10). We explore both soft 

(forward-backward) and hard (Viterbi decoding) approaches to estimating the posterior state 

distributions, in combination with three methods for calculating the conditional 

expectations. We validate these methods in simulation and evaluate our approach on two 

real-world datasets for glaucoma and Alzheimer’s disease, including visualizations of the 

progression model and predictions of future progression. Our approach outperforms a state-

of-the-art method [11] for glaucoma prediction, which demonstrates the practical utility of 

CT-HMM for clinical data modeling.

2 Continuous-Time Markov Chain

A continuous-time Markov chain (CTMC) is defined by a finite and discrete state space S, a 

state transition rate matrix Q, and an initial state probability distribution π. The elements qij 

in Q describe the rate the process transitions from state i to j for i ≠ j, and qii are specified 

such that each row of Q sums to zero (qi = Σj≠i qij, qii = −qi) [1]. In a time-homogeneous 
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process, in which the qij are independent of t, the sojourn time in each state i is 

exponentially-distributed with parameter qi, which is f(t) = qie−qit with mean 1/qi. The 

probability that the process’s next move from state i is to state j is qij/qi. When a realization 

of the CTMC is fully observed, meaning that one can observe every transition time 

( ), and the corresponding state , where s(t) 

denotes the state at time t, the complete likelihood (CL) of the data is

(1)

where  is the time interval between two transitions, nij is the number of 

transitions from state i to j, and τi is the total amount of time the chain remains in state i.

In general, a realization of the CTMC is observed only at discrete and irregular time points 

(t0, t1, …, tV), corresponding to a state sequence Y, which are distinct from the switching 

times. As a result, the Markov process between two consecutive observations is hidden, with 

potentially many unobserved state transitions. Thus both nij and τi are unobserved. In order 

to express the likelihood of the incomplete observations, we can utilize a discrete time 

hidden Markov model by defining a state transition probability matrix for each distinct time 

interval t, P(t) = eQt, where Pij(t), the entry (i, j) in P(t), is the probability that the process is 

in state j after time t given that it is in state i at time 0. This quantity takes into account all 

possible intermediate state transitions and timing between i and j which are not observed. 

Then the likelihood of the data is

(2)

where τv = tv+1 − tv is the time interval between two observations,  is an 

indicator function that is 1 if the condition is true, otherwise it is 0, τΔ, Δ = 1, …, r, 

represents r unique values among all time intervals τv, and C(τ = τΔ, yv = i; yv+1 = j) is the 

total counts from all successive visits when the condition is true. Note that there is no 

analytic maximizer of L, due to the structure of the matrix exponential, and direct numerical 

maximization with respect to Q is computationally challenging. This motivates the use of an 

EM-based approach.

An EM algorithm for CTMC is described in [8]. Based on Eq. 1, the expected complete log 

likelihood takes the form , where 

 is the current estimate for Q, and  and  are the expected state 

transition count and total duration given the incomplete observation Y and the current 

transition rate matrix , respectively. Once these two expectations are computed in the E-

step, the updated  parameters can be obtained via the M-step as
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(3)

Now the main computational challenge is to evaluate  and . By 

exploiting the properties of the Markov process, the two expectations can be decomposed as 

[12]:

where  if the condition is true, otherwise it is 0. Thus, the computation 

reduces to computing the end-state conditioned expectations  and 

, for all k, l, i, j ∈ S. These expectations are also a key step in CT-

HMM learning, and Section 4 presents our approach to computing them.

3 Continuous-Time Hidden Markov Model

In this section, we describe the continuous-time hidden Markov model (CT-HMM) for 

disease progression and the proposed framework for CT-HMM learning.

3.1 Model Description

In contrast to CTMC, where the states are directly observed, none of the states are directly 

observed in CT-HMM. Instead, the available observational data o depends on the hidden 

states s via the measurement model p(o∣s). In contrast to a conventional HMM, the 

observations (o0, o1, …, oV) are only available at irregularly-distributed continuous points in 

time (t0, t1, …, tV ). As a consequence, there are two levels of hidden information in a CT-

HMM. First, at observation time, the state of the Markov chain is hidden and can only be 

inferred from measurements. Second, the state transitions in the Markov chain between two 

consecutive observations are also hidden. As a result, a Markov chain may visit multiple 

hidden states before reaching a state that emits a noisy observation. This additional 

complexity makes CT-HMM a more effective model for event data, in comparison to HMM 

and CTMC. But as a consequence the parameter learning problem is more challenging. We 

believe we are the first to present a comprehensive and systematic treatment of efficient EM 

algorithms to address these challenges.

A fully observed CT-HMM contains four sequences of information: the underlying state 

transition time ( ), the corresponding state 

of the hidden Markov chain, and the observed data O = (o0, o1, …, oV) at time T = (t0, t1, …, 

tV). Their joint complete likelihood can be written as
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(4)

We will focus our development on the estimation of the transition rate matrix Q. Estimates 

for the parameters of the emission model p(o∣s) and the initial state distribution π can be 

obtained from the standard discrete time HMM formulation [13], but with time-

inhomogeneous transition probabilities (described below).

3.2 Parameter Estimation

Given a current estimate of the parameter , the expected complete log-likelihood takes the 

form

(5)

In the M-step, taking the derivative of L with respect to qij, we have

(6)

The challenge lies in the E-step, where we compute the expectations of nij and τi 

conditioned on the observation sequence. The statistic for nij can be expressed in terms of 

the expectations between successive pairs of observations as follows:

(7)

(8)

(9)

In a similar way, we can obtain an expression for the expectation of τi:

(10)
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In Section 4, we present our approach to computing the end-state conditioned statistics 

 and . The remaining step is 

to compute the posterior state distribution at two consecutive observation times: 

.

3.3 Computing the Posterior State Probabilities

The challenge in efficiently computing  is to avoid the 

explicit enumeration of all possible state transition sequences and the variable time intervals 

between intermediate state transitions (from k to l). The key is to note that the posterior state 

probabilities are only needed at the times where we have observation data. We can exploit 

this insight to reformulate the estimation problem in terms of an equivalent discrete time-

inhomogeneous hidden Markov model.

Specifically, given the current estimate , O and T, we will divide the time into V intervals, 

each with duration τv = tv − tv−1. We then make use of the transition property of CTMC, and 

associate each interval v with a state transition matrix . Together with the 

emission model p(o∣s), we then have a discrete time-inhomogeneous hidden Markov model 

with joint likelihood:

(11)

The formulation in Eq. 11 allows us to reduce the computation of 

 to familiar operations. The forward-backward algorithm 

[13] can be used to compute the posterior distribution of the hidden states, which we refer to 

as the Soft method. Alternatively, the MAP assignment of hidden states obtained from the 

Viterbi algorithm can provide an approximate distribution, which we refer to as the Hard 

method.

4 EM Algorithms for CT-HMM

Pseudocode for the EM algorithm for CT-HMM parameter learning is shown in Algorithm 

1. Multiple variants of the basic algorithm are possible, depending on the choice of method 

for computing the end-state conditioned expectations along with the choice of Hard or Soft 

decoding for obtaining the posterior state probabilities in Eq. 11. Note that in line 7 of 

Algorithm 1, we group probabilities from successive visits of same time interval and the 

same specified endstates in order to save computation time. This is valid because in a time-

homogeneous CT-HMM, , 

where tΔ = tv+1−tv, so that the expectations only need to be evaluated for each distinct time 

interval, rather than each different visiting time (also see the discussion below Eq. 2).
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Algorithm 1

CT-HMM Parameter learning (Soft/Hard)

1: Input: data O = (o0, …, oV ) and T = (t0, …, tV ), state set S, edge set L, initial guess of Q

2: Output: transition rate matrix Q = (qij)

3: Find all distinct time intervals tΔ, Δ = 1, …, r, from T

4: Compute P(tΔ) = eQtΔ for each tΔ

5: repeat

6:  Compute p(v, k, l) = p(s(tv) = k, s(tv+1) = l∣O, T,Q) for all v, and the complete/state-
 optimized data likelihood l by using Forward-Backward (soft) or Viterbi (hard)

7:  Create soft count table C(Δ, k, l) from p(v, k, l) by summing prob. from visits of same tΔ

8:  Use Expm, Unif or Eigen method to compute E nij ∣ O , T , Q  and E τi ∣ O , T , Q

9:
 Update qij =

E nij ∣ O , T , Q

E τi ∣ O , T , Q
, and qii = −Σi≠j qij

10: until likelihood l converges

4.1 Computing the End-State Conditioned Expectations

The remaining step in finalizing the EM algorithm is to discuss the computation of the end-

state conditioned expectations for nij and τi from Eqs. 9 and 10, respectively. The first step 

is to express the expectations in integral form, following [14]:

(12)

(13)

From Eq. 12, we define , while 

 can be similarly defined for Eq. 13 (see [6] for a similar construction). Several 

methods for computing  and  have been proposed in the CTMC literature. 

Metzner et. al. observe that closed-form expressions can be obtained when Q is 

diagonalizable [8]. Unfortunately, this property is not guaranteed to exist, and in practice we 

find that the intermediate Q matrices are frequently not diagonalizable during EM iterations. 

We refer to this approach as Eigen.

An alternative is to leverage a classic method of Van Loan [15] for computing integrals of 

matrix exponentials. In this approach, an auxiliary matrix A is constructed as , 

where B is a matrix with identical dimensions to Q. It is shown in [15] that 

, where n is the dimension of Q. Following [9], we 
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set B = I(i, j), where I(i, j) is the matrix with a 1 in the (i, j)th entry and 0 elsewhere. Thus 

the left hand side reduces to  for all k, l in the corresponding matrix entries. Thus we 

can leverage the substantial literature on numerical computation of the matrix exponential. 

We refer to this approach as Expm, after the popular Matlab function. A third approach for 

computing the expectations, introduced by Hobolth and Jensen [9] for CTMCs, is called 

uniformization (Unif) and is described in the supplementary material, along with additional 

details for Expm.

Expm Based Algorithm—Algorithm 2 presents pseudocode for the Expm method for 

computing end-state conditioned statistics. The algorithm exploits the fact that the A matrix 

does not change with time tΔ. Therefore, when using the scaling and squaring method [16] 

for computing matrix exponentials, one can easily cache and reuse the intermediate powers 

of A to efficiently compute etA for different values of t.

4.2 Analysis of Time Complexity and Run-Time Comparisons

We conducted asymptotic complexity analysis for all six combinations of Hard and Soft EM 

with the methods Expm, Unif, and Eigen for computing the conditional expectations. For 

both hard and soft variants, the time complexity of Expm is O(rS4+rLS3), where r is the 

number of distinct time intervals between observations, S is the number of states, and L is 

the number of edges. The soft version of Eigen has the same time complexity, but since the 

eigendecomposition of non-symmetric matrices can be ill-conditioned in any EM iteration 

[17], this method is not attractive. Unif is based on truncating an infinite sum and the 

truncation point M varies with maxi,tΔ qitΔ, with the result that the cost of Unif varies 

significantly with both the data and the parameters. In comparison, Expm is much less 

sensitive to these values (log versus quadratic dependency). See the supplemental material 

for the details. We conclude that Expm is the most robust method available for the soft EM 

case. When the state space is large, hard EM can be used to tradeoff accuracy with time. In 

the hard EM case, Unif can be more efficient than Expm, because Unif can evaluate only the 

expectations specified by the required end-states from the best decoded paths, whereas Expm 

must always produce results from all end-states.

Algorithm 2

The Expm Algorithm for Computing End-State Conditioned Statistics

1: for each state i in S do

2:  for Δ = 1 to r do

3:

  Di =
(e tΔA)(1:n),(n+1):(2n)

Pkl (tΔ)
, where A =

Q I (i, i)

0 Q

4:     E τi ∣ O , T , Q + = ∑(k ,l)∈L C(Δ, k , l)(Di)k ,l

5:   end for

6: end for

7: for each edge (i, j) in L do

8:  for Δ = 1 to r do
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9:

  N ij =
qij

(e tΔA)(1:n),(n+1):(2n)

Pkl (tΔ)
, where A =

Q I (i, j)

0 Q

10:     E nij ∣ O , T , Q + = ∑(k ,l)∈L C(Δ, k , l)(N ij)k ,l

11:   end for

12: end for

These asymptotic results are consistent with our experimental findings. On the glaucoma 

dataset from Section 5.2, using a model with 105 states, Soft Expm requires 18 minutes per 

iteration on a 2.67 GHz machine with unoptimized MATLAB code, while Soft Unif spends 

more than 105 minutes per iteration, Hard Unif spends 2 minutes per iteration, and Eigen 

fails.

5 Experimental results

We evaluated our EM algorithms in simulation (Sec. 5.1) and on two real-world datasets: a 

glaucoma dataset (Sec. 5.2) in which we compare our prediction performance to a state-of-

the-art method, and a dataset for Alzheimer’s disease (AD, Sec. 5.3) where we compare 

visualized progression trends to recent findings in the literature. Our disease progression 

models employ 105 (Glaucoma) and 277 (AD) states, representing a significant advance in 

the ability to work with large models (previous CT-HMM works [2, 7, 5] employed fewer 

than 100 states).

5.1 Simulation on a 5-state Complete Digraph

We test the accuracy of all methods on a 5-state complete digraph with synthetic data 

generated under different noise levels. Each qi is randomly drawn from [1, 5] and then qij is 

drawn from [0, 1] and renormalized such that Σj≠i qij = qi. The state chains are generated 

from Q, such that each chain has a total duration around , where  is the 

largest mean holding time. The data emission model for state i is set as N(i, σ2), where σ 

varies under different noise level settings. The observations are then sampled from the state 

chains with rate , where  is the smallest mean holding time, which should be 

dense enough to make the chain identifiable. A total of 105 observations are sampled. The 

average 2-norm relative error  is used as the performance metric, where  is a vector 

contains all learned qij parameters, and q is the ground truth.

The simulation results from 5 random runs are listed in Table 1. Expm and Unif produce 

nearly identical results so they are combined in the table. Eigen fails at least once for each 

setting, but when it works it produces similar results. All Soft methods achieve significantly 

better accuracy than Hard methods, especially when the noise level becomes higher. This 

can be attributed to the maintenance of the full hidden state distribution which makes it more 

robust to noise.
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5.2 Application of CT-HMM to Predicting Glaucoma Progression

In this experiment we used CT-HMM to visualize a real-world glaucoma dataset and predict 

glaucoma progression. Glaucoma is a leading cause of blindness and visual morbidity 

worldwide [18]. This disease is characterized by a slowly progressing optic neuropathy with 

associated irreversible structural and functional damage. There are conflicting findings in 

the temporal ordering of detectable structural and functional changes, which confound 

glaucoma clinical assessment and treatment plans [19]. Here, we use a 2D-grid state space 

model with 105 states, defined by successive value bands of the two main glaucoma 

markers, Visual Field Index (VFI) (functional marker) and average RNFL (Retinal Nerve 

Fiber Layer) thickness (structural marker) with forwarding edges (see Fig. 1(a)). More 

details of the dataset and model can be found in the supplementary material. We utilize Soft 

Expm for the following experiments, since it converges quickly (see Fig. 1(c)), has an 

acceptable computational cost, and exhibits the best performance.

To predict future continuous measurements, we follow a simple procedure illustrated in Fig. 

1(b). Given a testing patient, Viterbi decoding is used to decode the best hidden state path 

for the past visits. Then, given a future time t, the most probable future state is predicted by j 

= maxj Pij(t) (blue node), where i is the current state (black node). To predict the continuous 

measurements, we search for the future time t1 and t2 in a desired resolution when the 

patient enters and leaves a state having same value range as state j for each disease marker 

separately. The measurement at time t can then be computed by linear interpolation between 

t1 and t2 and the two data bounds of state j for the specified marker ([b1, b2] in Fig. 1(b)). 

The mean absolute error (MAE) between the predicted values and the actual measurements 

was used for performance assessment. The performance of CTHMM was compared to both 

conventional linear regression and Bayesian joint linear regression [11]. For the Bayesian 

method, the joint prior distribution of the four parameters (two intercepts and two slopes) 

computed from the training set [11] is used alongside the data likelihood. The results in 

Table 2 demonstrate the significantly improved performance of CT-HMM.

In Fig. 2(a), we visualize the model trained using the entire dataset. Several dominant paths 

can be identified: there is an early stage containing RNFL thinning with intact vision (blue 

vertical path in the first column), and at around RNFL range [80, 85] the transition trend 

reverses and VFI changes become more evident (blue horizontal paths). This L shape in the 

disease progression supports the finding in [20] that RNFL thickness of around 77 microns 

is a tipping point at which functional deterioration becomes clinically observable with 

structural deterioration. Our 2D CT-HMM model can be used to visualize the non-linear 

relationship between structural and functional degeneration, yielding insights into the 

progression process.

5.3 Application of CT-HMM to Exploratory Analysis of Alzheimer’s Disease

We now demonstrate the use of CT-HMM as an exploratory tool to visualize the temporal 

interaction of disease markers of Alzheimer’s Disease (AD). AD is an irreversible neuro-

degenerative disease that results in a loss of mental function due to the degeneration of brain 

tissues. An estimated 5.3 million Americans have AD, yet no prevention or cures have been 

found [21]. It could be beneficial to visualize the relationship between clinical, imaging, and 
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biochemical markers as the pathology evolves, in order to better understand AD progression 

and develop treatments.

A 277 state CT-HMM model was constructed from a cohort of AD patients (see the 

supplementary material for additional details). The 3D visualization result is shown in Fig. 

2(b). The state transition trends show that the abnormality of Aβ level emerges first (blue 

lines) when cognition scores are still normal. Hippocampus atrophy happens more often 

(green lines) when Aβ levels are already low and cognition has started to show abnormality. 

Most cognition degeneration happens (red lines) when both Aβ levels and Hippocampus 

volume are already in abnormal stages. Our quantitative visualization results supports recent 

findings that the decreasing of Aβ level in CSF is an early marker before detectable 

hippocampus atrophy in cognition-normal elderly [22]. The CT-HMM disease model with 

interactive visualization can be utilized as an exploratory tool to gain insights of the disease 

progression and generate hypotheses to be further investigated by medical researchers.

6 Conclusion

In this paper, we present novel EM algorithms for CT-HMM learning which leverage recent 

approaches [9] for evaluating the end-state conditioned expectations in CTMC models. To 

our knowledge, we are the first to develop and test the Expm and Unif methods for CT-

HMM learning. We also analyze their time complexity and provide experimental 

comparisons among the methods under soft and hard EM frameworks. We find that soft EM 

is more accurate than hard EM, and Expm works the best under soft EM. We evaluated our 

EM algorithsm on two disease progression datasets for glaucoma and AD. We show that 

CT-HMM outperforms the state-of-the-art Bayesian joint linear regression method [11] for 

glaucoma progression prediction. This demonstrates the practical value of CT-HMM for 

longitudinal disease modeling and prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) The 2D-grid state structure for glaucoma progression modeling. (b) Illustration of the 

prediction of future states from s(0) = i. (c) One fold of convergence behavior of Soft(Expm) 

on the glaucoma dataset.
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Figure 2. 
Visualization scheme: (a) The strongest transition among the three instantaneous links from 

each state are shown in blue while other transitions are drawn in dotted black. The line width 

and the node size reflect the expected count. The node color represents the average sojourn 

time (red to green: 0 to 5 years and above). (b) similar to (a) but the strongest transition from 

each state is color coded as follows: Aβ direction (blue), hippo (green), cog (red), Aβ + hippo 

(cyan), Aβ + cog (magenta), hippo+cog (yellow), Aβ + hippo + cog(black). The node color 

represents the average sojourn time (red to green: 0 to 3 years and above).
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Table 1

The average 2-norm relative error from 5 random runs on a 5-state complete digraph under varying noise 

levels. The convergence threshold is ≤ 10−8 on relative data likelihood change.

Error σ = 1/4 σ = 3/8 σ = 1/2 σ = 1 σ = 2

S(Expm,Unif) 0.026±0.008 0.032±0.008 0.042±0.012 0.199±0.084 0.510±0.104

H(Expm,Unif) 0.031±0.009 0.197±0.062 0.476±0.100 0.857±0.080 0.925±0.030
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Table 2

The mean absolute error (MAE) of predicting the two glaucoma measures.

MAE CT-HMM Bayesian Joint Linear Regression Linear Regression

VFI 4.64 ± 10.06 5.57 ± 11.11 * (p = 0.005) 7.00 ± 12.22 *(p ≈ 0.000)

RNFL 7.05 ± 6.57 9.65 ± 8.42 * (p ≈ 0.000) 18.13 ± 20.70 * (p ≈ 0.000)

*
( represents that CT-HMM performs significantly better than the competing method under student t-test).
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