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Abstract
Natural peroxisome proliferator-activated receptor-γ 
(PPAR-γ) agonists are found in food and may be im
portant for health through their anti-inflammatory 
properties. Curcumin (Cur) is a bright yellow spice, 
derived from the rhizome of Curcuma longa Linn. It has 
been shown to have many biological properties that 
appear to operate through diverse mechanisms. Some 
of these potentially beneficial effects of Cur are due to 
activation of the nuclear transcription factor PPAR-γ. 
It is reported (using in vitro  and in vivo  models) that 
Cur plays a potential role against several diseases. In 
this review article, we present the current literature on 
the effects of Cur on the modulation of inflammatory 
processes that are mediated through PPAR-γ.
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Core tip: In this short review, we highlight the potential 
antioxidant and anti-inflammatory properties of curcu
min (Cur), discussing its impact on peroxisome prolife
rator-activated receptor-γ (PPAR-γ) receptor function 
and its effects in vitro  and in vivo . Cur affects the 
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PPAR-γ  gene and prevents cell growth through effects 
on the cell cycle and induction of apoptosis. It is also 
well-established that Cur has anti-inflammatory effects 
in vivo  through regulation of the PPAR-γ receptor, which 
leads to the suppression of nuclear factor kappa B, a 
pro-inflammatory mediator.
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INTRODUCTION
Curcumin
Curcumin (diferuloylmethane) (Cur) is an orange 
pigment extractable from turmeric. Curcuma is derived 
from the word “Kourkoum”. Due to its color, curcuma 
is sometimes referred to in Europe as “Indian Saffron”. 
As a result of its chemical and biological properties, 
Cur is known to contain several potential important 
phytochemical compounds[1-5]. Cur is a lipophilic poly
phenol, is poorly soluble in water and stable at an 
acidic pH[6]. A critical review of Cur suggests that the 
compound has potential as a modulator of the activity 
of many vital bio-macromolecular targets involved in 
homeostasis of mammalian physiology[7]. Dietary poly
phenols have recently received more attention because 
of their potentially protective characteristics against 
metabolic diseases[8].
 
The properties of Cur
Cur has been reported to be safe at dosages of up 
to 8 g/d in human studies and there is no evidence 
of resistance. Nevertheless, bioavailability is a major 
concern as 75% of Cur is excreted in the stool[9,10]. 
Besides its dietary use, Cur has been considered to 
have beneficial properties, including anti-inflammatory, 
antioxidant, antineoplastic, pro and anti-apoptotic, 
anti-angiogenic, cytotoxic, immune-modulatory and 
antimicrobial effects, through the modulation of various 
kinds of targets, including growth factors, enzymes and 
genes such as STAT3, peroxisome proliferator-activated 
receptor-γ (PPAR-γ) and nuclear factor kappa B (NF-
κB)[11,12]. It also has a strong anti-inflammatory effect 
that inhibits several mediators of the inflammatory 
response[13-15]. Due to its low solubility in water and 
therefore poor oral bioavailability, nanoparticles and 
liposomes have been suggested as potential ways of 
improving its efficacy[16].

PPARs 
PPARs are a class of proteins that are usually activated 
by their respective ligands and function within the cell 
nuclei for controlling metabolism, development and 

homeostasis. PPARs heterodimerize with the retinoid 
X receptor and bind to PPAR responsive element in 
the regulatory region of target genes that function in 
different natural courses, such as adipogenesis, immune 
response and both cell growth and differentiation[17,18]. 
There are 3 major isoforms of PPARs in mammals, 
namely PPARα, PPAR-γ and PPARα/γ. PPAR-α can 
improve triglyceride concentration and also has some 
roles in energy homeostasis, whereas activation of 
PPAR-α/γ improves fatty acid hemostasis[19]. PPAR-γ is 
involved in lipid anabolism, adipocyte differentiation 
inflammation and immune response[20]. PPAR-α is 
triggered by a wide diversity of fatty acids or their 
metabolites and governs metabolic processes implicated 
in glucose and lipid metabolism and adipose mass 
control by modulating the expression of a huge quantity 
of target genes. Furthermore, PPAR-γ is a molecular 
target for anti-diabetic thiazolidinedione molecules that 
selectively bind this nuclear receptor to improve systemic 
insulin sensitivity and glucose tolerance. Accordingly, 
the specific position of PPAR-γ in systemic metabolic 
control is due to its pivotal role in the homeostasis 
control of glucose and lipid homeostasis, lipid storage 
and adipogenesis[21]. Lately, PPAR-γ has been recognized 
to be the major player with a key role in the immune 
response because of its capability to prevent the pro
duction of inflammatory substances[22].

Hepatic stellate cells and liver fibrosis 
Hepatic stellate cells (HSCs) are located near to hepatic 
epithelial cells. In a normal liver, HSCs contain many 
vitamin A lipid droplets. When the liver is injured, 
HSCs receive signals from damaged cells in the liver to 
change into activated myofibroblast-like cells[23,24]. In 
addition, HSCs secrete growth factors and help in the 
maintenance of liver cells. In liver disease, extended 
and frequent activation of HSCs causes liver fibrosis that 
may eventually result in organ failure and death[25,26]. 
Activation of hepatic HSCs is a key step in liver collagen 
production and fibrosis formation[27-31]. Hepatic fibrosis 
is also a necessary step in the development of hepatic 
cirrhosis. Thus, treatment of chronic liver diseases 
depends on the prevention and treatment of fibrosis[32]. 
Some studies showed that HSC activation significantly 
reduces the expression of PPAR-γ and that PPAR-γ 
agonists inhibit HSC activation, resulting in reduced 
expression of α-SMA and collagen, as well as reduced 
cell propagation and development of hepatic fibrosis. 
In normal liver tissues, PPAR-γ is expressed highly in 
quiescent HSCs. Moreover, increased PPAR-γ expression 
reduces the synthesis of HSC DNA and results in the 
diminished expression of collagen and the transforming 
growth factor (TGF)-1β. At the same time, PPAR-γ is 
also involved in the apoptosis of HSCs through a variety 
of mechanisms[33-36]. Some experiments have confirmed 
that Cur may prevent the proliferation of HSCs whilst 
also increasing their apoptosis[37]. A further study has 
shown that Cur increases the expression of PPAR-γ 
and revives the trans-activating activity in activated 
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HSC, which is essential for the anti-inflammatory and 
antioxidant effects on reserve for HSC propagation and 
growth[38] (Figure 1).

In this review article, we present the current 
literature to display the role of Cur on modulation of 
inflammatory processes that are mediated through 
PPAR-γ.

EFFECTS OF CUR ON PPAR-γ 
EXPRESSION IN HSCS AND HEPATIC 
FIBROSIS
HSCs are activated when gene expression and pheno
type changes render the quiescent cells responsive to 
other cytokines. Kupffer cells provide the potential source 
of paracrine stimuli for HSCs because they express 
TGF-β[24,25,39-41]. During HSC activation, regulatory 
pathways including epigenetic regulation of (NF-κB) and 
reduction in PPAR-γ expression modulate the expression 
of many genes, including TGF-1β and MMP-2[42-46].

Many in vitro studies have shown that Cur inhibits 
cell proliferation and induces apoptosis of stimulated 
HSC. However, the mechanism and action of Cur on 
HSC growth in vitro is not well defined. Numerous 
mechanisms have been recognized for the inhibition of 
TGF-1β signaling via Cur, including PPAR-γ activation. 
Cur inhibits NF-κB, leptin and insulin and mediates HSC 
activation by stimulating PPAR-γ activity[38,47-51] (Figure 
2).

Zheng et al[52] confirmed that inhibiting PPAR-γ stimu
lation abrogated the effects of Cur on the stimulation 
of apoptosis and prevention of the expression of ECM 
genes in activated HSC in vitro. They also showed that 
Cur repressed the gene expression of TGF-β receptors 
and disturbed the TGF-β signaling pathway in stimulated 
HSC, which is facilitated by PPAR-γ stimulation[52]. Zhang 

et al[37] established that Cur improved fibrotic injury and 
sinusoidal angiogenesis in the rodent liver when fibrosis 
was initiated by carbon tetrachloride. Cur decreased 
the expression of a number of angiogenic factors in the 
fibrotic liver. Moreover, in vitro investigation showed 
that the sustainability and vascularization of rodent 
liver sinusoidal endothelial cells and angiogenesis in 
rodents were not diminished by Cur. These findings 
demonstrated that HSCs could be a possible target for 
Cur. Moreover, other studies have shown that Cur can 
inhibit vascular endothelial growth factor expression in 
HSCs associated with interrupting the mammalian target 
of rapamycin pathway. PPAR-γ activation was reported 
to be essential for Cur to prevent the angiogenesis 
in HSCs. The authors determined that Cur reduced 
sinusoidal angiogenesis in liver fibrosis probably by HSCs 
via a PPAR-γ activation-dependent pathway. Also, other 
studies showed that PPAR-γ could be a target molecule 
for decreasing pathological angiogenesis in liver fibrosis 
for rodents[37]. These studies offer new perspectives 
into the mechanisms that underpin prevention of HSC 
activation by Cur and PPAR-γ ligands and inhibit HSC 
activation and liver fibrosis. To convert stimulated HSCs 
to a quiescent state or to induce apoptosis may be a 
dangerous approach for anti-fibrotic treatment.

EVIDENCE FOR THE PPAR-γ MEDIATED 
ANTI-INFLAMMATORY EFFECT OF CUR
It appears that the hydroxyl and methoxy residues 
of Cur are accountable for its antioxidant and anti-
inflammatory effects[53,54]. Some of the effects of Cur are 
through the JAK/STAT pathway, which can decrease pro-
inflammatory interleukins and cytokines. Moreover, Cur 
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Cur

PPAR-γ ↑

Cyclin D1 ↓ TGF-β signaling ↓Apoptosis ↑

Proliferation ↓

Cell growth ↓

ECM ↓

HSC activation ↓

Figure 1  Possible mechanisms, primarily the inhibition of hepatic 
stellate cell activation by peroxisome proliferator-activated receptor-γ 
after modulation with curcumin. PPAR-γ: Peroxisome proliferator-activated 
receptor-γ; HSC: Hepatic stellate cell; TGF: Transforming growth factor; Cur: 
Curcumin; ECM: Extracellular matrix.

Liver injury

PPAR-γ expression ↓

Synthesis of HSC DNA ↑

HSC activation ↑

TGF-β ↑ ECM ↑ Collagen ↑ α-SMA ↑

Liver fibrosis

Figure 2  Liver fibrosis creation followed down-regulating of peroxisome 
proliferator-activated receptor-γ after liver injury. As shown, decrease in 
PPAR-γ expression after liver injury causes an increase in HSC DNA expression 
and HSC activation. This regulation also results in increased expression 
of α-SMA, collagen, ECM and TGF-β and induces liver fibrosis. PPAR-γ: 
Peroxisome proliferator-activated receptor-γ; HSC: Hepatic stellate cell; TGF: 
Transforming growth factor; ECM: Extracellular matrix; α-SMA: α-smooth 
muscle actin.
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and they suggest that it was reached mostly through 
the down-regulation of NF-κB[4,16]. Most experiments 
have shown that the anti-inflammatory effect of Cur is 
attributed to PPAR-γ activation[64]. Recent experimental 
data have shown that Cur has an antitumor effect in 
pancreatic cancer by inhibiting propagation and down-
regulating NF-κB and its products[65]. Nevertheless, it 
is reasonable to suggest that Cur prompted an anti-
inflammatory effect through the up-regulation of PPAR-γ 
which is closely related to the NF-κB pathway. 

CONCLUSION
In this short review, we have highlighted the potential 
antioxidant and anti-inflammatory activities of Cur and 
discussed Cur’s significant impact on PPAR-γ receptor 
function. Cur prompts the expression of the PPAR-γ 
gene, causing its activation in cells to activate HSCs and 
hepatic fibrosis. This combined action of Cur and PPAR-γ 
prevents cell growth from the stimulation of the cell cycle 
and induction of apoptosis. It is also well-established 
that Cur has anti-inflammatory effects in vivo through 
regulation of the PPAR-γ receptor, which leads to the 
suppression of NF-κB, a pro-inflammatory mediator. 
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