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Abstract
The brain is a complex network system that has the 
capacity to support emotion, thought, action, learning 
and memory, and is characterized by constant activity, 
constant structural remodeling, and constant attempt 
to compensate for this remodeling. The basic insight 
that emerges from complex network organization is that 
substantively different networks can share common 
key organizational principles. Moreover, the interdepen
dence of network organization and behavior has been 
successfully demonstrated for several specific tasks. 
From this viewpoint, increasing experimental/clinical 
observations suggest that mental disorders are neural 
network disorders. On one hand, single psychiatric 
disorders arise from multiple, multifactorial molecular 
and cellular structural/functional alterations spreading 
throughout local/global circuits leading to multifaceted 
and heterogeneous clinical symptoms. On the other 
hand, various mental diseases may share functional 
deficits across the same neural circuit as reflected in the 
overlap of symptoms throughout clinical diagnoses. An 
integrated framework including experimental measures 
and clinical observations will be necessary to formulate 
a coherent and comprehensive understanding of 
how neural connectivity mediates and constraints the 
phenotypic expression of psychiatric disorders.
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Core tip: Increasing evidences suggest that mental 
diseases are neural network disorders. Neurites and 
synapses represent the sub-cellular elements organizing 
these networks, and the molecules that regulate their 
formation, retraction and adaptive remodeling may 
contribute to the pathology of mental disorders. Various 
syndromes may share alterations of functional net
work leading to symptoms overlapping through clinical 
diagnoses.
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INTRODUCTION
Despite their great diversity of morphology, most 
vertebrate nerve cells exhibit distinctive polarized 
structures with a single long axon and a specific dendritic 
arbor depending on their location. The axon/dendrite 
identity that influences the synaptic genesis and inputs 
that each neuron can integrate emerges as a convergent 
product of specific pattern of growth, branching and 
retraction and is differentially regulated at multiple 
points, including the control of the number of primary 
branches and their mode and frequency of branching by 
inhibitory (e.g., Sema3, Nogo-A) and permissive [e.g., 
brain derived neurotrophic factor (BDNF); fibroblast 
growth factor (FGF)][1-4] factors. Moreover, neurons 
do not connect indiscriminately between themselves 
but form an intricate non-random highly selective 
short [the hippocampal-prefrontal cortex (HIP-PFC) or 
hippocampal-amygdala-prefrontal cortex circuits][5,6] 
to long (the corpus callosum that connects the two 
cerebral hemispheres -facilitating an array of connective 
function- and influences higher cognition as well) range 
white matter axon fibers connections[7] producing charac
teristic networks capable of ensuring proper healthy 
behavior. The neuronal structure and neurotransmission 
in these networks, developed by interactions with the 
environment, are constantly remodeled via “activity-
dependent synaptic plasticity”[8] to process, store and 
transmit relevant information. Accordingly, abnormal 
changes in the production of neurotrophic factors and 
permissive or inhibitory guidance cues may induce 
structural and/or functional abnormalities which may 
alter information processing and consequently link 

neuronal network formation/maintenance to mental 
disease(s). Since psychiatric disorders have overlapping 
symptoms - e.g., cognitive impairment and emotional 
dysregulation that can be found in schizophrenia, 
depression and anxiety disorders it is likely that this 
similarity is the consequence of disruption in common 
brain circuits (e.g., hippocampus-prefrontal cortex) over 
time. In this review, we provide new molecular and 
cellular insights detailed from gene targeting/genome-
wide association data (GWAS)[9,10] that extend the 
understanding of mental diseases and improve their 
treatment, to network theories that highlight structural 
and functional brain connectivity. Structural connectivity 
corresponds to the anatomical neurites, synapses- 
connections between neural elements whereas the 
functional and effective connectivity refers to a statistical 
dependence between the physiological signals measured 
in each region and the influence that one region exerts 
over another respectively. We focus on two brain areas 
essential in the emotional and cognitive domains: The 
hippocampal formation (hipF) and the prefrontal cortex. 
Their functional coupling support multiple functions, 
including emotion, mood, memory, thinking about the 
past and future, self and others, which are altered in 
mental diseases.

MOLECULAR BASIS OF NEURONAL 
NETWORK GENESIS AND MAINTENANCE 
Neurogenesis and neuritogenesis 
The generation of neurons (neurogenesis) in various 
regions of the central nervous system depends on a 
carefully regulated process of neural progenitor cells proli
feration and differentiation. During early development, 
the neural tube wall constitutes a pseudo-stratified 
epithelium made of highly polarized neuroepithelial cells. 
The proper amount of neurons is spatially and temporally 
controlled by accumulative activities of numerous 
extra-/intra-cellular factors. At the onset of neurogenesis 
and initiated by extracellular regulators (Notch, bone 
morphogenetic proteins, BDNF/TrKB/p75, Wnt/
β-catenin/Sonic hedgehog)[11-13] and intracytoplasmic 
transcription factors (bHLH, Insm1, AP2γ, TRIM32)[14-16], 
these cells switch their identity and turn into radial glial 
cells (RG) expressing glutamate-aspartate transporter 
and brain-lipid binding protein[17]. They generate all 
diverse intermediate progenitor neurons and glial cells 
through orchestrations of numerous molecules (Nrg1, 
Foxg1, Retinoid acid)[18-20] and signaling mechanisms 
(Jack/Stat, Notch, BMP, FGF)[21-23]. Shortly after, the 
pro-neural factors (Ngn1/Ngn2/Ascl1, also known as 
Mash1)[24,25] and transcription factors (Salb2, Sima1Am2, 
Lhx2)[26-28] activate a generic program of neurogenesis, 
arrest the division of progenitor cells, suppress the 
alternative astroglial fate and select the neuronal fate. 
Subsequently, the newborn neurons extend neurites 
(neuritogenesis which begins with the concerted 
accumulation and organization of actin/microtubules) 
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and migrate to appropriate locations. However, due 
to heterogeneous neuronal phenotypes generated 
at different times, in different layers and locations, 
there is considerable heterogeneity in neuritogenesis 
mechanisms. This makes it difficult to observe in vivo 
although we found recently that collapsin-response-
mediator-protein (CRMP)3[29] has a profound influence 
on lamellopodia formation, neuritogenesis and dendritic 
arborization in vertebrate hippocampal neurons: The 
CRMP3-/- knock-out mice[30] display abnormal functional 
and structural neural networks associated with a delay 
in neurite outgrowth and alterations of dendrites and 
spines but not axon-morphology in hippocampal neu
rons during development that persist in adults. These 
alterations affect a subset of hippocampal circuits and 
hippocampal function: CRMP3-/- mice have a deficit in 
prepulse inhibition found in several mental diseases and 
abnormal long term potentiation (LTP). Such a bona fide 
mouse model is a critical first step towards exploring 
pathogenic mechanisms. There is increasing evidence 
that other CRMPs are involved in neurogenesis in the 
adult dentate gyrus and the olfactory system, and also 
regulate dendritic/axonal outgrowth[31-33]. Specifically, 
required for NT3-induced axon outgrowth/branching 
and linking kinesin to the Sra-1/WAVE cargo complex in 
axons, CRMP2 can convert established dendrites to axon 
or induce supernumerary axons[34] while mice lacking 
individual CRMP1, 4 or 5 present alterations in neuronal 
differentiation of specific brain areas and the behavior 
they control[35-37]. 

Another way to investigate neuritogenesis is using 
primary hippocampal neurons in culture. Few hours 
after plating, neurons start to extend minor neurites; 
then one of the multiple neurites extends rapidly 
and by morphological transformation generates the 
axon through stochastic selection; the other neurites 
mature into dendrites, leading to neuronal polarity. 
Live cell imaging using time-lapse video microscopy 
shows that the first two neurites have the highest 
potential to become axon. Because cultured neurons 
develop polarity without any presence of exogenous 
extracellular guidance/neurotropic cues, it has been 
suggested that an internal polarization program exists 
involving several intra-neuronal organelles and distinct 
repertoires of signaling molecules intrinsic to the neuron. 
Using that model, we reported that whereas neurons 
from heterozygous CRMP3+/- mice polarized and grew 
similarly to control wild type (WT), all CRMP3-/- neurons 
from homozygous CRMP3-/- littermates did not estab
lish neuronal polarity. Such impairment in neurites to 
progress from stage 1 to stage 2 represents a failure 
of neurite initiation. Moreover, the correlation between 
the levels of CRMP3 expression and its activation of L- 
and N-type of voltage-gated calcium channels suggests 
that the facilitatory role of CRMP3 on neurite initiation, 
dendritic development and plasticity may be mediated 
via Ca2+ influx[38]. Other factors such as neurotrophins, 
extracellular matrix proteins, attractant/repellent 
guidance cues and guide-post proteins are considered 

extrinsic signals. Interactions between these molecules 
can provide short/long range guidance information or 
stably change the intrinsic ability of a neuron to extend/
retract neurites during development or to engage 
them into an axono/dendritic differentiation path. It is 
tempting to suggest that similar players are required to 
refine neuritogenesis and to make synaptic connections 
(synaptogenesis) in vivo within the developing brain. 

Synaptogenesis and neuronal network genesis
Brain complexity comes from the large diversity and 
number of neurons and the variety and number of 
synapses where neurons transfer their electrical and/or 
chemical signals to other neurons/cells. Electrical and 
chemical synapses differ in the molecular mechani
sms supporting the transmission of information and in 
their morphological organization[39,40]. Their structure 
and composition vary across brain regions and their 
disruption in function and morphology may be involved 
in many neurological/mental diseases and after trauma. 
Electrical synapses are also a prerequisite for the 
chemical synapses formation in mammal brain during 
development. Within electrical synapses the gap junction 
channels processed by connexins and pannexins serve 
as conduits allowing a direct bidirectional communication 
and passage/exchange of metabolites, intracytoplas
mic messengers, and ions between the cytoplasm of 
two cells (Figure 1B). Within neuronal networks, these 
electrical synapses provide synchronous electrical 
activity and field potential oscillations. They mediate an 
important form of direct intercellular communication and 
allow rapid transfers of pre-synaptic excitatory electrical 
impulses to post-synaptic potentials throughout the 
intercellular gap by generating synchronous oscillations 
of gamma-frequency (30-70 Hz) rhythms important for 
field potential oscillation within neuronal networks and 
necessary for the interplay of neural populations involved 
in memory processes. 

In contrast, there is no cytoplasmic junction between 
two cells at the two chemical synaptic subtypes: The 
excitatory asymmetric (mainly glutamatergic; Figure 
1A) type Ⅰ synapse has marked postsynaptic den
sities (PSD) while the inhibitory symmetric (mainly 
GABAergic) type Ⅱ synapse has no thickened PSD. The 
genesis of chemical synapses is characterized by an 
enormous degree of complexity and diversity of protein-
protein interactions. Axonal presynaptic boutons of 
excitatory synapses contain round clear vesicles loaded 
with the neurotransmitter glutamate and connected with 
dendritic spines while inhibitory presynaptic boutons 
contain slightly smaller vesicles and are most abundant 
at the neuronal soma. In CNS, maturation and stabiliz
ation of synaptic structures depend on neurexins and 
neurolignins, the molecule pairs in the CAM family[41-43], 
while plasticity which allows an individual to adapt to 
a rapid changing environment through strengthening, 
weakening, pruning or adding synaptic connection- 
is partially dependent on BDNF, ephrin, Wnts, NgR1, 
semaphorins class 3 and non-coding RNAs[44-48]. The 
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these changes. Consistent with the view that network 
organization fundamentally influences brain diseases, 
many studies including connectomic approach, address 
the behavioral impairments that arise from network 
insults or dysfunction and challenge to predict patterns 
of disease spread and targets of intervention[50,51]. In 
various mental diseases, neuroimaging observations, 
diffusion tensor imaging, electroencephalography (EEG) 
and magnetoencephalography report altered structures 
and functions of PFC and hipF and deficits in functional 
integration between these two elements (Figure 2) 
suggesting overlapping pathogenic mechanisms. 

The PFC, which matures later in development than 
more caudal cortical regions, exerts “top-down” control 
of many cortical and sub-cortical areas; moreover some 
of its neuronal subpopulations exhibit complex dendritic 
arbor. Its development is characterized by growth in 
early childhood, decrease in adolescence and continued 
maturation in adulthood. It is well established in human 
that PFC is involved in language, maintenance of at
tention, executive functioning, organization of inputs 
from diverse sensory sources, coordination of goal-
directed behavior, socialization and moral decisions. 
HipF is structurally and functionally heterogeneous. The 
anterior and posterior parts receive/extend different 
afferent and efferent connections and play a role in 
various functions such as learning and memory, stress, 
spatial and emotional processing. The neuronal proje
ction from the HIP either directly -monosynaptic- or 
indirectly polysynaptic to the PFC is referred to as the 
hipocampal-PFC pathways (HIP-PFC). In rats, the 
direct monosynaptic HIP-PFC pathway originating from 
the CA1 and the subiculum projects to the anterior 
cingulated areas of the PFC through fimbria/fornix 
system. It exhibits activity-dependent synaptic plasticity 
such as LTP/LTD or depotentiation. Treatment with 

mechanisms contributing to the synaptic plasticity 
include structural remodeling of the synapse, structural 
reorganization of presynaptic active zone, postsynaptic 
density area, protein synthesis, signal transduction 
pathways, Ca2+ fluxes, kinases activities, neuronal 
activities, change in transmitters release and receptors 
trafficking. However, plasticity creates a significant 
challenge to the intrinsic architecture and integrity of 
neural networks which is counterbalanced by compen
satory regulatory mechanisms for maintaining neuronal 
homeostasis, leading to a balance between wiring 
plasticity and stability.

Synapses, the sites where two neurons connect 
and pass information, are the building blocks of the 
neuronal networks defined by “a set of elements 
with time-variant properties that interact with each 
other” and network dynamics defined by the real-time 
changes in response to internal and external stimuli. 
It should be noted however that information is not 
stored in a chemical form but is processed and retrieved 
by neuronal networks. The global neuronal network 
complexity can be defined as a dynamic interconnected 
functional system characterized by a series of simpler 
networks organized into increasingly effective local 
or global complex networks constrained however by 
the intrinsic structural brain architecture[49]. It has the 
capacity to support complex thought, action and learned 
behavior that any single neuron/element of the system 
would not be able to support alone and its resting-state 
reflects the stable and intrinsic functional architecture 
of the brain. Importantly, dysfunction of local networks 
may spread easily between linked elements, leading 
to pathological cascades that cause dedifferentiation or 
trans-neuronal degeneration and encompass large areas 
of the system. It may also lead to dynamic adjustments 
and reorganization of the other networks to compensate 
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Figure 1  Diagrams illustrate chemical (A) and electrical (B) synapses. At chemical synapses, neurotransmitters (black) released from axonal boutons bind to 
postsynaptic receptors (light blue) and trigger specific signaling pathways via activation of proteins (red) in postsynaptic cells with prominent postsynaptic densities 
component (grey area). The information transmission is unidirectional (black arrow). At electrical synapses, gap junction channels (blue) directly connect the two 
adjacent cells, thus enable the bidirectional passage of electrical currents (black arrows) carried by ions (green), and of small peptides (yellow) or second messengers 
(dark red).
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lidocaine disrupts its performance. However, fine details 
of the human HIP-PFC are lacking because direct 
powerful tract-tracing techniques cannot be applied. 
Within the hipF, neuroanatomical studies show that the 
ventral CA1 and subiculum also project to the basolateral 
amygdala (AmyG) which has a critical role in expression 
of fear and autonomic defense responses whereas 
recent works highlight the importance of distinct AmyG 
projections to other structures and their importance in 
controlling reward/learned behavior. Functional imaging 
in patients with major depressive disorder (MDD) and 
bipolar disorder (BP) shows that the rate of resting 
cerebral blood flow and glucose metabolism in AmyG 
is elevated and positively correlates with depression 
severity and relapse. In addition, the dual-projection 
of hippocampal neurons is crucial for coordinating PFC/
AmyG activity during memory retrieval. Meanwhile, 
AmyG neurons densely arborize within superficial layers 
of PFC and form synapses with layer Ⅱ pyramidal 
neurons. Disruption of the AmyG-PFC pathway increases 

choice of risky rewards suggesting that it is important for 
top-down control of emotion, anxiety and fear. Presently, 
it is well-established that patients suffering from a 
number of mental diseases, such as schizophrenia, 
major depression, bipolar and PTSD, display cognitive 
impairment, have structural abnormalities, disorganized 
neural networks and aberrant functional coupling within 
HIP/PFC/AmyG and their pathways[52-56]. 

NEURONAL NETWORK ABNORMALITIES 
IN MENTAL DISEASES
Schizophrenia 
Schizophrenia is a complex psychiatric disorder with 
variable symptomatology characterized by hallucin
ation, delusion, anhedonia and cognitive dysfunction. 
Studies of post-mortem brains provide patterns 
of abnormalities that reflect failures in early brain 
development and maturation which can be attributed to 
alterations in gene expression (NRG1/Akt/Dysbindin-1/
Reelin/COMT/DISC1) affecting neuronal differenti
ation[57-60], gene duplication (25q11-13, 16p11.2, 
16p13.1)[61,62] or deletions (2p53, 3q29, 15q13-q14, 
15p11.322q11.2)[63,64] . There is also evidence for contri
bution of multiple different epigenetic events [stress that 
activates the hypothalamic-pituitary-adrenal (HPA) axis 
and increases dopamine brain function, viral infection, 
DNA methylation, histone modification, non-coding 
RNAs]. Of note, recent proteomic, gene targeting, post-
mortem and SNP linkage studies include CRMP1 and 2 
in the list of schizophrenia susceptibility genes[65,66]. As 
schizophrenia typically starts in the late adolescence 
and as brain development is a continuous process, the 
remodeling of cortical and hippocampal structures and 
synaptic connections is thought to be critical. Indeed, 
patients with schizophrenia show structural anomalies 
in the HIP and cortical thinning in the PFC associated 
with aberrant functional coupling -i.e., reduced fractional 
anisotropy values in the superior longitudinal fasciculus 
white matter bundle between two areas during resting 
state or working memory present in both first-episode 
patients and persons at risk[67]. This scheme suggests 
that the dysfunction is not a consequence of the disease 
or treatment but is consistent with abnormal HIP/
PFC interaction. Precisely, it has been proposed that 
deficit in emotional regulation is likely dependent on 
the dysfunction of HIP, which contributes to aberrant 
dopaminergic synaptic activities in nucleus accumbens, 
which in turn influences PFC maladaptive processes 
leading to delusion and psychosis. To this extent, 
structural and functional vulnerability and abnorma
lities of GABAergic, glutamatergic serotoninergic and 
cholinergic synapses have been reported by several 
groups[68,69]. As synapses are ultimately linked to 
neurotransmitter release and their signal transduction 
and as spine morphology is closely linked to synaptic 
function, altered spine shape, size and density have 
multiple functional effects on neuronal networks, and 
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Figure 2  Localized interregional connectivity. Diagram shows pathway 
connections of hippocampus (blue), amygdala (dark red), thalamus (orange) 
and prefrontal cortex (green). HippoC-PFC pathway originating from the 
subiculum and the CA1 of the hippocampus to the PFC is unidirectional, direct 
in a monosynaptic manner in rodents and primates. HippoC-AmyG pathway 
shows bidirectional connection between ventral HippoC with AmyG and the 
pathway AmyG-PFC has also bidirectional connections. Together, both the 
HippoC and PFC are reciprocally connected with the AmyG and disruption of 
these pathways, anatomically or functionally may be a common origin of mental 
diseases. Moreover, there are bidirectional connections between PFC/HippoC 
with Thalamus. PFC: Prefrontal cortex.
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dendritic spine dysfunction may have an etiological 
role in schizophrenia. Several post-mortem studies 
reveal altered white matter myelination/projection 
and a profound reduction in spine density in the PFC 
of patients while the reduction in spine density found 
in the auditory cortex could potentially be associated 
with auditory hallucinations. Other evidence suggest 
that the heterogeneity of schizophrenia may originate 
from larger disturbances in neural elements of several 
interconnected brain circuits and structures[70] including 
HIP, parahippocampal gyrus, entorhinal cortex, AmyG, 
superior and transverse temporal gyri, prefrontal and 
anterior cingulate cortex, and several nuclei of the 
thalamus. Indeed normal neural structure in morpho
metric imaging may not guarantee normal function.

Bipolar disorder
Studies of physiopathology in BP have identified brain 
structural/functional and connectivity alterations asso
ciated with the prominent mood swings -i.e., alternating 
recurrent episodes of mania and depression with 
psychotic symptoms in some cases. Neuroimaging has 
convincingly showed that bipolar disorder (BP) is a brain 
disease involving multiple abnormal brain structures 
-AmyG, HipF, PFC, thalamus and basal ganglia- and 
neuronal circuits, particularly the limbic-AmyG-thala
mic-cortical pathways interconnected by excitatory 
glutaminergic projections and the limbic-cortical-
striatal-pallidal-thalamic circuits[71]. These two networks 
share components and regulate AmyG response in 
complex emotions such as melancholic feeling and 
neuroendocrine/diurnal rhythms. Functional imaging, 
which permits direct examination of functional brain 
structures, find decreased blood flow and metabolism 
in PFC during depression and a reverse increased 
metabolism during mania[72]. Additionally, postmortem 
histopathology shows reductions in cortex volume, 
glial cell counts, and neuronal size in PFC, AmyG, basal 
ganglia and dorsal raphe nuclei[73,74]. The reduction 
of glial cells oligodendroglia and microglia that a play 
critical role in modulating neurotransmission- provides 
new insights into possible key CNS cellular abnormalities 
in BP. Altogether, the altered brain structure/network 
characteristics suggesting that BP is a developmental 
disease and the identical-twin concordance rates/
adoption studies/family history confirm that it has a 
strong genetic component. The involvement of multiple 
genes and their epigenetic (psychosocial and environ
mental interaction)/epistasis (genes interaction) effects 
make the clear-cut elucidation of altered risk gene 
expression particularly challenging, although recently 
the Human Genome Project has helped to overcome 
some of these difficulties. Linkage and GWAS have 
reported many BP risk genes, including ANK3, ZNF804A 
(important for white matter integrity)[75], NCAN (cortical 
thickness)[76], TCF4 (ventricular volume)[77], CACNA1C 
(functional connectivity during executive task. CACNA1C 
encodes a subunit of the L-type voltage dependent 
calcium channel[78] that seems to be involved in the 

dendritic arborization activity of CRMP3 in HIP)[38], 
BDNF (executive function deficit, neurotrophic factor, 
plasticity)[79]. Importantly, meta-analyses of the poly
genic score profile indicate a large molecular overlap 
in vulnerability alleles for BP and schizophrenia. In 
BP, CRMP2 protein levels are decreased in the CA2/
CA3 areas and the frontal cortex whereas CRMP4 is 
decreased in HIP[80]. 

MDD 
MDD is often a recurrent and severe psychiatric disease 
characterized by decreased density in dendrites and 
dendritic spines in hippocampus that can be reversed by 
antidepressant treatments[81]. In the past, most studies 
have focused on mono-amine system. Another etiolo
gical hypothesis proposes that deficiency of neurotrophic 
factors may mediate depressive symptoms. BDNF is one 
such factor and there are numerous reports of reduced 
BDNF in MDD[82]. It has been suggested, in a gene-
environment interaction network analysis, that BDNF 
polymorphism may be involved in MDD. Other evidence 
which strengthens this hypothesis is provided by studies 
in BDNF mutant mice[83]. However there are enormous 
gaps in our understanding of MDD and looking beyond 
mono-amine and neurotrophic mechanisms to explore 
the complex neuronal network topologies influence[84] 
may bring new effective treatment. This notion has 
received considerable experimental support: (1) it has 
been shown that the level of CRMP2 important for growth 
cones formation and neurite arborization is decreased 
in the brain of patients with depression[85]; (2) recent 
neuroimaging studies highlight structural alterations in 
various brain areas of MDD patients[86] -predominately 
in the HIP and PFC, suggesting overlapping brain 
abnormalities between the main mental disorders- 
while the resting-state functional magnetic resonance 
imaging provides evidence of major change in HIP-PFC 
circuits[87] responsible for action responses, emotion, 
sleep, EEG synchronization, attention and memory; (3) 
the structural/functional abnormalities may contribute 
to disturbance in mood and cognition in MDD patients 
and strengthen the hypothesis that MDD is associated 
with the breakdown of the healthy neuronal networks 
circuitries; and (4) animal models of depression present 
similar neuronal dystrophy, reduced synaptic density in 
PFC and pyramidal cells of the HIP[83]. 

Post-traumatic stress disorders 
After exposure to a traumatic event, e.g., war-related 
events, physical assault, violence, a small percentage 
of individuals develop post-traumatic stress disorders 
(PTSD), characterized by re-experiencing the event with 
emotional numbing and hyper-arousal symptoms. The 
identification of structural brain abnormalities, biological 
and genetic risk in PTSD is required to identify the 
causal pathways, and inform treatment. Neuroimaging 
studies of PTSD patients reveal structural and functional 
alterations within HIP, AmyG, medial frontal cortex 
and bilateral orbito-frontal cortex[88]. The functional 
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connectivity studies show that PTSD patients exhibit 
diminished levels of connectivity between the posterior 
cingulated cortex region and the right superior frontal 
cortex and the left thalamus during the resting state[89]. 
Other biological findings detect the dysregulation of HPA 
axis and release of corticosteroids -critically involved in 
mediating the deleterious effect of stress including the 
decrease of dendritic spines density in HIP in line with 
the decrease of BDNF[90].

Neuropathic pain
Neuropathic pain (NP)[91] is linked either to peripheral 
nervous system lesions with drastic changes in gene 
expression pattern, protein interaction network and 
non-coding RNAs (i.e., likely induced by inflammatory 
molecules such as histamine, prostaglandins or 
bradikinin)[92,93] or in relay structures of CNS (i.e., 
arisen from metabolic disorders, traumatic injury or 
neurotoxicity)[94]. These changes can persist long after 
the initial injury (nerve loss, phantom limb). Common 
causes of NP are acute or chronic trauma, neurotoxins, 
diabetes, tumor compression, viral infections or side 
effect of chemotherapy. A systematic approach of NP 
is based on the characterization of all pain aspects, 
including emotional, behavioral, psycho-social, anato
mical, genetic and molecular genetic factors[95,96]. 
Neuroimaging studies provide evidence suggesting 
that NP is associated with structural, functional and 
neurochemical alterations distributed across multiple 
brain structures and networks[97]. However, because 
many environmental factors may interact with genetic 
polymorphism to influence pain perception, data from 
proteomic studies to elucidate genetic contribution to 
NP remain limited and inconsistent although diverse 
molecules (NMDA/AMPA/ P2X3 ion channel receptors, 
G-protein-coupled receptors, AnnexinV/CaM/CRMP2 
calcium signaling protein, N-type voltage-gated calcium 
channels CaV2.2, receptor tyrosine kinases, trkB for 
BDNF, non-coding RNAs)[98-101] can account for changes 
that arise in pathological pain states. 

TREATMENT OF NEURAL NETWORK 
DEFICITS AND NP 
Remodeling neuronal connectivity by transcranial 
magnetic stimulation 
Transcranial magnetic stimulation (TMS) consists of 
promoting a localized electric current through a localized 
magnetic field produced by a TMS-coil[102]. It is assumed 
that TMS and repetitive TMS have an inhibitory or 
facilitatory effect on neurons and neuronal networks. 
They can induce plasticity, modulate neurotransmission 
and increase neuroprotection against oxidative effect via 
BNDF/TrkB signaling system in the stimulated site and 
in other structures functionally connected with it[103-105]. 
These effects associated with magnetic stimulation 
-low intensity stimulation results in neurite sprouting 
and increase in synaptic contacts while high intensity 

stimulation has devastating effects- can be maintained 
as long as 6 mo after treatment[106]. Furthermore, it 
has been shown that TMS reduces structural, functional 
and behavioral abnormalities in ephrin-A2A5-/- mice but 
do not adversely affect the control WT[107]. Altogether, 
these observations suggest that TMS treatment may 
modulate synaptic strength not only locally but at 
distant sites, modulating the connectivity networks 
and offering the hope of a focal intervention capable of 
ameliorating the altered circuitries underlying psychiatric 
disorders. Indeed clinical trials directed to the treatment 
of major depression, schizophrenia, bipolar disorders, 
anxiety disorders, PTSD and neuropathic pain have 
supported a possible therapeutic effect of TMS alone or 
in combination with drugs[108]. Although the mechani
sms of TMS activity are hypothesized to be based on 
induction of neuronal firing, certain effects may be due 
to the cryptochrome (CRY)/photolyase family: Present 
in all cell nuclei, CRYs that contain magnetosensitive 
radical pairs may provide the abilities of cells to 
specifically respond to magnetic field[109,110].

Remodeling neuronal connectivity with selective 
modulation of BDNF/CRMPs expression
One of the most studied and best characterized neurotro
phins in CNS is BDNF. It has received remarkable 
attention from scientists because it is essential for 
neurogenesis, neuronal differentiation (including 
neuritogenesis/dendritic arborization, spine formation 
and axonogenesis via nonphosphorylated CRMP2), 
survival, migration, apoptosis, synaptic plasticity (via 
TrkB and p75NTR activation) and neuronal network 
formation, and from clinicians because it is required 
for normal development/functions of the brain and its 
expression is found decreased in several brain regions in 
post-mortem studies of patients with neurodegenerative 
and psychiatric diseases[60,79,81-83,111,112]. In physiological 
condition, BDNF activity depends on the activation of its 
downstream intracellular signaling cascades -Ras/MAPK, 
PLC-γ, PI3K/AKT. An additional level of regulation is 
provided by the balance between neurotrophic signaling 
through mature-BDNF/TrkB and apoptotic signaling 
through pro-BDNF/p75, which determines which 
connections are maintained within the neuronal network 
and which neurons are eliminated. Importantly, altered 
BDNF activity has been reported in brain pathology, 
particularly in limbic structure, AmyG, orbital and medial 
PFC and related keys circuits. Antidepressant activity 
seems to be linked to increasing levels of BDNF. Similar 
to BDNF, CRMPs express abundantly in the nervous 
system and while manipulations of their expression by 
RNAi, gene targeting or overexpression has confirmed 
their critical role in axono-dendritic growth and collapse, 
neuronal migration/survival and spinogenesis[29,30,33,34,36], 
other studies reveal that their expression is also 
altered in human pathologies including mental disor
ders[33,85,113-115]. Restoration of altered BDNF/CRMPs 
activities in these affected areas and/or affective 
circuits with newer and more refined/targeted immuno-
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pharmacological agents will likely yield more effective 
treatments, particularly in treatment-refractory cases, 
and greater understanding of the mechanisms under
lying mental disorders.

NP treatment with CBD3, a peptide derived from CRMP2
Presently, the understanding of the molecular and cellular 
mechanisms of NP is incomplete, and new concepts are 
needed to improve its treatment. Genetic and clinical 
studies have validated N-type voltage-gated calcium 
channels (CaV2.2) as targets for NP treatment[116-118] 
but selective blockers have potential serious side effects. 
Targeting protein interactions to direct channel block 
has been proposed[119]. This approach has yielded a 
novel peptide-derived therapeutic prototype for NP 
relief: A CRMP2-derived peptide (tat-CBD3; Figure 3) 
that disrupts the CaV2.2/CRMP2 interaction shows anti-
nociceptive activity in animal models of neuropathic 
pain[120]. The relative lack of toxicity provides evidence 
that CBD3 has therapeutic promise[121]. Recent efforts to 
optimize the peptide’s efficacy resulted in the generation 

of a myristoylated version of the peptide; myr-tat-CBD3 
-a myristoylated CBD3 peptide harboring a 14-carbon 
fatty acid, myristate, onto an N-terminal glycine[122]. 
N-myristoylation is a lipid anchor modification of 
eukaryotic and viral proteins targeting them irreversibly 
to locate to the membrane[123-125]. Tethering the CBD3 
peptide to the membrane through myristoylation 
confines its action(s) to the uncoupling of membrane 
CaV2.2-CRMP2 and blocks Ca2+ influx without affecting 
the CRMP2 functions mediated by interactions with other 
cytoplasmic proteins[126]. 

As summarized in Figure 3, the myr-tat-CBD3 
peptide is equal or better in its efficacy to tat-CBD3 
on reducing pain-related behaviors with pronounced 
reversal of mechanical hypersensitivity in a postoperative 
incisional pain model[127] at dose of 0.1 mg/kg in contrast 
to the lack of effect observed even at 20 mg/kg of tat-
CBD3[122]. Moreover sustained relief (> 6 wk) of NP was 
obtained with an AAV-targeted expression of CBD3 
peptide in rat DRG[128]. Both tat-CBD3 and myr-tat-CB3 
reduce pain-like behaviors without demonstrating any 
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Figure 3  A possible model for N-myristoylated collapsin response mediator protein 2 peptide’s actions on CaV2.2 trafficking and efficacy in neuropathic 
pain model. Application of an N-myristoylated tat-conjugated CRMP2 peptide (myr-tat-CBD3) results in membrane-delimited “rimming” of the peptide whereas the 
non-myristoylated version (tat-CBD3) appears to be spatially diffusely distributed in the cell cytoplasm. Analysis of penetration of peptides into GPMVs, which are 
“blebs” of membrane devoid of organelles and actin cytoskeleton, reveals an unrestricted distribution of the membrane sensitive dye (di-4-ANNEPDHQ) with tat-
CBD3, whereas the myristoylated peptide induces a lateral heterogeneity of the fluorescent signal resulting in dye aggregation into micro domains within these 
model membranes[122]. While CRMP2 has been demonstrated to exist as a tetramer, the oligomeric state of membrane proximal CRMP2 is as yet unknown; however, 
neither peptide appears to affect CRMP2 oligomerization[123]. Whereas the cells take up both forms of the peptide with similar efficiency, the myristoylated peptide 
demonstrates a lesser degree of efflux[124]. The apparent increase in retention of myr-tat-CBD3 translates into a superior potency and efficacy in inhibition of evoked 
calcium influx in sensory neurons presumably via greater uncoupling of CRMP2-CaV2.2 interactions at or juxta-membrane[125]. Increased inhibition of CaV2.2 surface 
trafficking induced by myr-tat-CBD3 compared with tat-CBD3 may account[126] for the more pronounced restriction of calcium influx imposed by the myristoylated 
peptide. Cdk5-phosphorylated CRMP2 has been demonstrated to have an enhanced interaction with CaV2.2[129]; however myr-tat-CBD3 does not affect the levels of 
Cdk5-phosphorylated CRMP2[127], thereby ruling out a role of phosphorylated CRMP2 in regulating calcium influx. CRMP2 binding to tubulin is strengthened by the 
peptides[130]; the consequences of this are currently unknown. Importantly, where tat-CBD3 is completely ineffective in reversing mechanical hypersensitivity in a rat 
neuropathic pain model (tibial nerve injury), the myristoylated peptide reverses this hypersensitivity when administered in vivo[122]. Neither peptide elicits any reward-
like addictive behaviors. GPMVs: Giant plasma membrane vesicles; CRMP: Collapsin response mediator proteins.
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reward-like potential. These experiments demonstrate 
the possibility of tailoring molecules that affect mem
brane targets for specific inhibition of CaV2.2-CRMP2 
interactions (Figure 3). 

CONCLUSION
Data from various basic science studies together with 
experimental/clinical studies suggest a correlative causal 
link between specific neural networks dysfunctions 
and mental disorders. However, one could argue that 
(1) a correlation between experimental and clinical 
observations is a correlative statement but not a causal 
demonstration; (2) an observed electrical current 
dysfunction may not support this common view of 
correlative network specificity because it can result from 
different network stimulations with many unknown 
parameters and consequently underspecifying any 
structural function; and (3) more direct experiments 
will be needed to consolidate these observations. This 
approach is critical since it may raise further technical 
inventions/interventions and challenges such as genera
ting new tools more powerful optogenetic/acousto-
optical deflectors approaches in animal models[131,132] 
to visualize, control and compute simultaneously single 
neuronal activity and neuronal circuitries, to integrate in 
parallel behavioral measures for a better treatment of 
mental diseases, less side-effects associated to newer 
psychotropic drugs and gene therapy[133-137], and more 
importantly a better understanding of the physiology 
and pathology of the human brain in healthy activity and 
abnormal behavior respectively. 
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