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Abstract

Alcohol and other drugs of abuse have significant impacts on the neuroimmune system. Studies 

have demonstrated that drugs of abuse interact with the neuroimmune system and alter 

neuroimmune gene expression and signaling, which in turn contribute to various aspects of 

addiction. As the key component of the CNS immune system, neuroimmune factors mediate 

neuroinflammation and modulate a wide range of brain function including neuronal activity, 

endocrine function, and CNS development. These neuromodulatory properties of immune factors, 

together with their essential role in neuroinflammation, provide a new framework to understand 

neuroimmune mechanisms mediating brain functional and behavioral changes contributing to 

addiction. This chapter highlights recent advances in understanding neuroimmune changes 

associated with exposure to alcohol and other drugs of abuse, including opiates, marijuana, 

methamphetamine, and cocaine. It provides a brief overview on what we know about 

neuroimmune signaling and its role in drug action and addiction.

1. INTRODUCTION

Alcohol and other drugs of abuse have profound impacts on a variety of neurobiology 

systems that are related to reward, stress, habit formation, and decision making, which 

accounts for the reinforcing and addictive properties of these drugs (Koob & Volkow, 2010). 

The burgeoning field of neuroimmune research has shown that the neuroimmune system 

modulates a variety of brain function and behaviors related to alcohol and drug addiction. 

Neuroimmune signaling acts in concert with neurotransmitter and neuropeptide systems that 

has far-reaching impact on normal brain function and dysfunction involving 

neurodegenerative diseases, neuropsychiatric disorders, and addiction (Deverman & 

Patterson, 2009; Frank, Watkins, & Maier, 2011; Haroon, Raison, & Miller, 2012; Mayfield, 

Ferguson, & Harris, 2013; Rogers, Mastroeni, Leonard, Joyce, & Grover, 2007; Stertz, 

Magalhaes, & Kapczinski, 2013). In addition to their primary role in mediating 

neuroinflammation, neuroimmune factors, such as cytokines and chemokines, are critical for 

a variety of brain functions. Expressed in neurons and glia, these molecules regulate 

synaptic function, mediate neuron–glia communication (Boulanger, 2009), interact with 
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neuroendocrine and neuropeptide systems, and regulate neurogenesis and CNS 

development. These findings offer new opportunities and a framework for exploring and 

understanding the role of the neuroimmune system in addiction.

2. NEUROIMMUNE MODULATION OF SYNAPTIC FUNCTION

Many immune molecules interact with neurotransmitter systems and play essential roles in 

modulating synaptic function. As a family of G-protein-coupled receptor systems, binding of 

chemokines to chemokine receptors triggers a cascade of signaling events, which 

subsequently modulate neurotransmitter release and activities of many receptors and 

channels. For example, chemokines CCL2 and CXCL-12 regulate the release of several 

neurotransmitters, including glutamate, GABA, and dopamine (Heinisch & Kirby, 2010; 

Rostene, Kitabgi, & Parsadaniantz, 2007). The chemokine receptor CCR2 cross-desensitizes 

GABAa and mu-opioid receptors (Rostene et al., 2007). In addition, activation of CXCR4 

by its ligand CXCL-12 triggers the release of glutamate from astrocytes (Cali, Marchaland, 

Regazzi, & Bezzi, 2008). Studies also demonstrated that proinflammatory cytokines regulate 

synaptic transmission and plasticity, and contribute to the maintenance of the homeostasis of 

neuronal networks. For example, TNFα differentially modulates trafficking of AMPA-type 

glutamate receptors and GABA receptors (Pribiag & Stellwagen, 2013, 2014; Stellwagen & 

Malenka, 2006). It regulates the synaptic strength by facilitating excitatory synaptic 

transmission, while decreasing inhibitory synaptic transmission. IL-1β signaling modulates 

long-term potentiation (Avital et al., 2003; Mori et al., 2014). Type I MHC regulates neural 

development and activity-dependent synaptic function (Shatz, 2009). In addition, as the key 

component of the neuroimmune system, microglia dynamically detect the brain 

environment, even at the resting state, and contribute to postnatal development, 

neuroplasticity, and circuit function (Kettenmann, Kirchhoff, & Verkhratsky, 2013; 

Parkhurst et al., 2013; Tremblay et al., 2011; Wake, Moorhouse, Miyamoto, & Nabekura, 

2013). It becomes clear that the bidirectional communication between neuron and microglia 

plays important roles in both normal brain function and neurobiological diseases 

(Kettenmann et al., 2013; Miyamoto, Wake, Moorhouse, & Nabekura, 2013; Pannell, 

Szulzewsky, Matyash, Wolf, & Kettenmann, 2014; Schafer, Lehrman, & Stevens, 2013). 

Thus, the neuroimmune system modulates synaptic functions by presynaptic, postsynaptic, 

and neural–glial mechanisms. Such actions of the neuroimmune system offer potential 

neuroimmune mechanisms for brain functional changes associated with alcohol and drug 

abuse that can alter neuroimmune signaling.

3. NEUROINFLAMMATION

Upon insult by environmental toxins or neuronal damage, microglia release a variety of 

neuroimmune factors exerting either neuroprotective or neurotoxic effects (Rivest, 2009). At 

the initial stage of the innate immune response, TNFα and IL1β are the two main cytokines 

that are produced by microglia. They exert neuroprotective effects by promoting the 

maturation of oligodendrocytes and increasing the secretion of neurotrophines. However, 

overactivated microglia releases numerous proinflammatory cytokines, chemokines, and 

inducible nitric oxide synthase, which synergistically mediate neuroinflammation. To 

counterbalance neuroinflammation, the brain produces antiinflammatory factors, such as 
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IL-10 and transforming growth factor-b1, to inhibit inflammatory responses. It is important 

to note that neuroinflammation may not only be provoked by pathological conditions but 

also can be trigged by increased neuronal activities, such as those associated with noxious 

stimuli, psychological stress, and epileptic seizures (Xanthos & Sandkuhler, 2014). In 

addition, neuroimmune factors mediate neurotoxicity through various other mechanisms. 

Notably, chemokine receptors CXCR4 and CCR5 are important mediators of HIV-

associated neurotoxicity (Kaul, Ma, Medders, Desai, & Lipton, 2007).

4. NEUROIMMUNE MOLECULES IN NEURODEVELOPMENT

Neuroimmune molecules are involved in all stages of neurodevelopment. They are 

expressed in both the developing and adult brain and play important roles in neuro- and 

gliogenesis, neuronal migration, axonal path finding, and sculpt neurocircuits (Guyon & 

Nahon, 2007; Paolicelli et al., 2011; Schafer et al., 2012). Dysregulation of CNS immune 

molecules at the early stage of brain development causes significant behavioral deficits, 

which are evident by the increased risk of several neurological disorders (Bilbo & Schwarz, 

2012; Canetta & Brown, 2012; Garay & McAllister, 2010). Cytokines and chemokines play 

diverse roles in embryonic brain development and adult neurogenesis. For example, gp130 

family cytokines and TNFα regulate neurogenesis, gliogenesis, and neuronal survival in the 

embryonic brain (Deverman & Patterson, 2009). Chemokine CXCL-12 is considered an 

indispensable chemoattractant for neuronal migration and axonal path finding in the 

developing nervous system (Guyon & Nahon, 2007). Disruption of certain chemokine 

receptors causes the malformation of granule cell layers of the cerebellum, the dentate gyrus, 

and cortical interneurons (Lu, Grove, & Miller, 2002). In the adult brain, cytokine TNFα 

and IL-6 inhibit neurogenesis (Monje, Toda, & Palmer, 2003), whereas the constitutive 

expression of IL-1β is critical for hippocampal neurogenesis. In addition, the chemokine 

CXCL-12 and its receptor CXCR4 are expressed in the subventricular zone and regulate 

migration and proliferation of progenitor cells (Tiveron et al., 2006). Evidence suggests that 

alcohol exposure disrupts cytokine profile during early neuronal differentiation and 

influences adult neurogenesis, and alters the neuroimmune gene expression in a brain 

regional-dependent manner (Camarillo, Kumar, Bake, Sohrabji, & Miranda, 2007; Crews & 

Nixon, 2009; Kane et al., 2014). In addition, adolescent binge drinking leads to persistent 

upregulation of innate immune signaling in the prefrontal cortex that correlates with adult 

neurocognitive dysfunction (Crews & Vetreno, 2011). The essential role of neuroimmune 

molecules in neurodevelopment and adult neurogenesis provide potential mechanisms to 

understand the effects of alcohol on CNS development.

5. NEUROIMMUNE FACTORS MODULATE NEUROENDOCRINE FUNCTION

The involvement of neuroimmune molecules in the regulation of neuroendocrine function is 

demonstrated in animal models and by human conditions of stress and depression. Increased 

levels of cytokines are associated with depression and sickness behavior (Dantzer, 

O'Connor, Freund, Johnson, & Kelley, 2008; Irwin & Miller, 2007). The underlying 

molecular and cellular mechanisms of these conditions are believed to be primarily due to 

the dysregulation of the HPA axis, as well as serotonergic and dopaminergic systems, by 

neuroimmune factors. A variety of cytokines have potent effects on the HPA axis by 
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regulating the release of neuropeptides and neurohormones, including corticotrophin release 

factor, ACTH, or cortisol (Hueston & Deak, 2014). Conversely, glucocorticoids induced by 

chronic stress have a significant impact on the neuroimmune system by regulating 

expressions of cytokines in the hippocampus, the prefrontal cortex, and the hypothalamus 

(Munhoz et al., 2006; Sorrells, Caso, Munhoz, & Sapolsky, 2009). In addition, several 

chemokines are expressed in the paraventricular nucleus of the hypothalamus and regulate 

the stress-related neuroendocrine responses, such as the release of arginine vasopressin 

(Callewaere et al., 2006; Callewaere, Banisadr, Rostene, & Parsadaniantz, 2007). One 

hallmark of alcohol and drug abuse and addiction is the dysregulated HPA axis. The ability 

of neuroimmune molecules in regulating the HPA axis suggests that neuroimmune 

molecules may play an integrative role in the close link between stress responses and 

addiction.

6. NEUROIMMUNE MECHANISM AND ADDICTION

Studies using animal models and postmortem human alcoholic brains suggest that alcohol 

exposure has a significant impact on the neuroimmune system. Expressions of several 

immune-related genes are altered in human alcoholic brains and are differentially correlated 

with the high and low alcohol consuming rodent lines (Flatscher-Bader et al., 2005; Liu et 

al., 2006; Mulligan et al., 2006). In addition, polymorphisms of genes encoding IL-1β and 

IL-1, as well as the gene for an antiinflammatory cytokine IL-10, are associated with the 

susceptibility to alcoholism (Marcos, Pastor, Gonzalez-Sarmiento, & Laso, 2008; Pastor, 

Laso, Romero, & Gonzalez-Sarmiento, 2005). Furthermore, a study using a mouse binge 

drinking model revealed a long-lasting increase of the chemokine CCL2 and the cytokine 

TNFα but a decrease of the anti-inflammatory cytokine IL-10 in the mouse brain (Qin et al., 

2008). Together, these studies provide molecular and cellular evidence that ethanol alters the 

neuroimmune system in the brain. Recent in vivo animal studies provide further evidence 

that neuroimmune modulation contributes to alcohol dependence. Interruption of certain 

neuroimmune gene expression (Blednov et al., 2005, 2012) or targeted disruption of TLR4 

in the central amygdala (Liu et al., 2011) reduced alcohol consumption. In addition, 

pharmacological suppressions of various neuroimmune signaling pathways reduce alcohol 

intake in different animal models (Bell et al., 2013; Mayfield et al., 2013). However, it 

remains largely unclear how neuroimmune alteration may contribute to alcohol dependence. 

Recent studies begin to shed light on this question. For example, binge and chronic alcohol 

exposure induce neuroimmune activation through TLRs and HMGB1 (Alfonso-Loeches, 

Pascual-Lucas, Blanco, Sanchez-Vera, & Guerri, 2010; Crews, Qin, Sheedy, Vetreno, & 

Zou, 2013); TLR4 and CD14 play an important role in the acute ethanol effects on 

GABAergic transmission in the central amygdala (Bajo et al., 2014), and cytokines facilitate 

alcohol withdrawal-induced anxiety via the CRF signaling in the central amygdala (Knapp 

et al., 2011; Whitman, Knapp, Werner, Crews, & Breese, 2013). In addition, human studies 

of alcoholics show positive correlations between alcohol craving and serum levels of 

cytokines and inflammatory endotoxins suggesting that activation of innate immune 

signaling may increase alcohol craving and consumption (Leclercq et al., 2012; Leclercq, De 

Saeger, Delzenne, de Timary, & Starkel, 2014). This is consistent with the animal studies 
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discussed above where injection of lipopolysaccharide increased alcohol consumption and 

deletion of immune-related genes decreased consumption.

Similar to alcohol, opiate drugs interact with the central immune system and glial activation 

can enhance the rewarding properties of opiates such as morphine (Bland, Hutchinson, 

Maier, Watkins, & Johnson, 2009). Glia activation results in the release of proinflammatory 

cytokines and chemokines, which can affect glia-neuronal signaling, modulate neuronal 

activity (i.e., dopamine release) and behavioral outcomes resulting from opioid exposure. A 

key proinflammatory cytokine, IL-1β, has been shown to be unregulated following morphine 

exposure (Raghavendra, Tanga, & DeLeo, 2004) and single nucleotide polymorphisms 

involved in increased IL-1β production have been associated with risk for opioid 

dependence in humans (Liu, Hutchinson, White, Somogyi, & Coller, 2009). Toll-like 

receptors that play an important role in induction of innate immunity have been shown to be 

important for modulating glia-neuronal signaling and in the reinforcing properties of opiates 

(Terashvili et al., 2008). Overall, a vast array of research has clearly demonstrated opioid 

exposure results in a complex pattern, and cascade of neuroimmune changes and interactions 

with neuronal signaling that modulates opioid-induced reward, dependence, withdrawal, and 

analgesia.

Cocaine's effects on central immune signaling involve indirect activation of glia-specific 

mediators and receptors involved in glutamate homeostasis. These changes have been linked 

to cocaine's rewarding effects (Chiamulera et al., 2001), withdrawal and long-term cocaine-

induced incubation of drug reinstatement behavior (Lu et al., 2009). In addition, brain 

region-specific administration of the chemokine, CXCL-12, and activation of the CXCR4 

receptor have been shown to modulate the behavioral effects of cocaine (Trecki & 

Unterwald, 2009).

Central immune signaling has also been shown to modulate the effects methamphetamine. 

Pharmacological agents that reduce glial activation, such as ibudilast, have been shown to 

attenuate methamphetamine-induced relapse (Beardsley, Shelton, Hendrick, & Johnson, 

2010). CNS exposure to methamphetamine results in activation of microglial, which has 

been linked to neurodegeneration through proinflammatory processes (Ehrlich et al., 1998; 

Gadient & Otten, 1997; McGuire et al., 2001). Evidence from animal models has shown 

microglia involvement in neurotoxicity associated with methamphetamine exposure, which 

results in damage to striatal dopaminergic terminals and, overall, a reduction in striatal 

dopamine (Thomas & Kuhn, 2005). Positron emission tomography imaging data have 

revealed significant increase in microglial cells in the brains of methamphetamine addicted 

individuals, further linking methamphetamine exposure to microglia activation and 

neurotoxicity (Sekine et al., 2008).

7. SUMMARY

Alcohol and other drugs of abuse have significant impacts on the neuroimmune system. 

Neuroimmune activation may contribute to addiction via a variety of mechanisms. The 

neuromodulatory properties of immune factors on neuronal activity, endocrine function, and 

CNS development provide a new framework to understand the role of neuroimmune 
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mechanisms mediating brain functional and behavioral changes contributing to addiction. 

Importantly, neuroimmune signaling pathways could provide novel drug targets for the 

treatment of addiction (Coller & Hutchinson, 2012; Mayfield et al., 2013). The chapters 

included in this volume highlight recent advances in understanding neuroimmune changes 

associated with the drugs of abuse, including on alcohol, opioids, methamphetamine, 

marijuana, and cocaine. In addition to providing a critical review on neuroimmune 

contributions to changes in brain function and behavior associated with addiction, important 

reviews and perspectives are provided on the alterations of neuroimmune system in FASD, 

comorbidity of HIV and addictive substances, and neuroimmune therapies for the treatment 

of addiction. Thus, this volume provides updated and timely information and 

characterization of neuroimmune mechanisms, at the molecular, cellular, and system, and 

how the mechanism impacts on behavior contributing to alcohol and drug addiction.
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