
Genome analysis

TIPR: transcription initiation pattern recognition

on a genome scale

Taj Morton1, Weng-Keen Wong1 and Molly Megraw1,2,3,*

1Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA,
2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA and 3Center for

Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on November 25, 2014; revised on July 31, 2015; accepted on August 3, 2015

Abstract

Motivation: The computational identification of gene transcription start sites (TSSs) can provide

insights into the regulation and function of genes without performing expensive experiments,

particularly in organisms with incomplete annotations. High-resolution general-purpose TSS

prediction remains a challenging problem, with little recent progress on the identification and

differentiation of TSSs which are arranged in different spatial patterns along the chromosome.

Results: In this work, we present the Transcription Initiation Pattern Recognizer (TIPR), a sequence-

based machine learning model that identifies TSSs with high accuracy and resolution for multiple

spatial distribution patterns along the genome, including broadly distributed TSS patterns that

have previously been difficult to characterize. TIPR predicts not only the locations of TSSs but also

the expected spatial initiation pattern each TSS will form along the chromosome—a novel capabil-

ity for TSS prediction algorithms. As spatial initiation patterns are associated with spatiotemporal

expression patterns and gene function, this capability has the potential to improve gene annota-

tions and our understanding of the regulation of transcription initiation. The high nucleotide reso-

lution of this model locates TSSs within 10 nucleotides or less on average.

Availability and implementation: Model source code is made available online at http://megraw.

cgrb.oregonstate.edu/software/TIPR/.

Contact: megrawm@science.oregonstate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription start sites (TSSs) and their associated promoter re-

gions play a critical role in the transcription of genes by RNA

Polymerase II. However, the mechanisms by which transcription is

initiated at specific genomic locations is still not fully understood,

including how the spatial distribution of TSSs is defined, how pro-

moter architecture influences this spatial pattern, and how genes

lacking canonical elements within the core promoter are transcribed.

The advent of high-throughput TSS sequencing (TSS-Seq) protocols

such as Cap Analysis of Gene Expression (CAGE) and Paired End

Analysis of Transcription start sites (PEAT) have transformed the field

of promoter analysis, providing genome-wide nucleotide-resolution

information on TSS usage (Carninci et al., 2005; Ni et al., 2010).

One important goal in this field is the identification of TSS locations

when TSS-Seq data is unavailable. While start codons are easily

identified, the length of the 50 untranslated region (50 UTR) up-

stream of the first exon varies from gene to gene and even between

transcripts of the same gene, yielding different mRNA products.

Several studies have taken computational approaches to TSS identi-

fication, building machine learning models that predict the location

of TSSs from the surrounding sequence content with varying degrees

of success and resolution, ranging from the prediction at the level of

individual nucleotides to regions up to 500 nt wide (Abeel et al.,

2009; de Boer et al., 2014; Knudsen, 1999; Megraw et al., 2009;
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Morton et al., 2014; Ohler et al., 2000; Sonnenburg et al., 2006;

Zhao et al., 2007).

The mRNA products produced during the transcription of genes

typically do not all initiate at a single genomic location. Instead,

transcription initiates upstream of the gene’s start codon in a region

that can range from very narrow (2—3 nt) to wide (upwards of 50 nt

or more), forming a collection of individual TSSs known as a TSS

cluster or transcription start region (TSR) (Carninci et al., 2006; Ni

et al., 2010; Rach et al., 2009). TSS clusters can be grouped by the

shape of their positional distribution—that is, the transcription initi-

ation pattern—of individual TSSs that defines the cluster (Fig. 1). In

this study, we focus on the single peak (or narrow peak) and broad

peak (or weak peak) patterns defined in previous TSS-Seq studies

(Carninci et al., 2006; Ni et al., 2010). Previous studies have shown

that different initiation patterns are associated with different types

of genes, tissues and regulatory mechanisms such as transcription

factors (TFs) and CpG islands (Ohler and Wassarman, 2010;

Sandelin et al., 2007; Morton et al., 2014). While there has been

success in the identification of single peak initiation patterns

(Megraw et al., 2009), it has remained unclear whether other initi-

ation patterns can be predicted from sequence content alone at the

same nucleotide-level resolution. Models incorporating additional

data types such as histone modifications have had success in the pre-

diction of these less well-defined patterns (Rach et al., 2011), though

prediction of broadly distributed patterns is still clearly a greater

challenge. An analysis of 17 TSS prediction models found that these

broad patterns could be predicted with low resolution (500 nt) from

sequence content alone but did not explore nucleotide-resolution

models (Abeel et al., 2009).

In this work, we present a machine learning model capable of

predicting TSSs of multiple initiation patterns with high perform-

ance and positional resolution, while also suggesting the probable

initiation pattern that the TSS cluster would form along the

chromosome. The transcription initiation pattern recognition

(TIPR) model utilizes features derived from sequence content and

TF binding affinity to predict the probability of transcription initi-

ation at an individual nucleotide. Because this model provides both

nucleotide resolution and initiation pattern prediction, the model

can be used to address a wide variety of topics, including a better

understanding of promoter architecture, improved gene finding

and annotations, identification of TFs which could be involved in

the regulation of genes and positional information guiding wet-

laboratory experiments. We evaluate the TIPR model using a pub-

licly available high-throughput TSS-Seq dataset from mouse

(Carninci et al., 2006), where it performs well, achieving area

under the receiver operating characteristic curve (AUROC) of 0.99

and area under the precision-recall curve (AUPRC) of 0.82. TIPR

uses only sequence information in predicting the location and type

of TSS initiation patterns and is therefore applicable in cases where

TSS-Seq data are not yet available.

2 Methods

2.1 Overview of TIPR pipeline
Our TSS prediction pipeline begins with the creation of a dataset

containing the genomic locations of TSSs identified by high-

throughput TSS-Seq protocols. We have focused on TSS-Seq based

data, as a previous study showed that, even in the well-annotated

Arabidopsis genome, gene annotations alone were insufficient to

construct a highly accurate TSS prediction model (Morton et al.,

2014). In this analysis, we have restricted our model to the predic-

tion in protein coding genes, due to the limited knowledge regarding

differences in the promoter structures of other gene products (Alam

et al., 2014). We restrict our analysis to TSSs that are located no fur-

ther than 500 nt upstream of a protein-coding gene’s annotated

50 UTR. TSS tag clusters (spatially grouped TSS-Seq reads) are next

filtered by read count, ensuring that only commonly transcribed

TSSs are used to build the model. After filtering, TSS tag clusters are

grouped by initiation pattern (single peak and broad peak, Fig. 1)

into individual datasets. Finally, the mode of each tag cluster (the

nucleotide where transcription most frequently initiates within the

cluster) is determined and used as a single representative genomic lo-

cation for the tag cluster. Additional specifics on the filtering, clus-

tering and initiation pattern annotation process are provided in

Carninci et al. (2006), where the dataset was originally published.

After the set of TSS tag clusters are created, 5 kb of genomic se-

quence is extracted upstream and downstream of each tag cluster

mode. The sequences are converted into numerical features repre-

senting the presence of DNA regulatory sequences—including TF

binding sites (TFBSs) and TATA-binding protein associated sites—

in regions where they are likely to be functional and involved in re-

cruitment of transcription machinery. In this work, we use TFBSs as

a general term for all vertebrate binding sequences described by the

TRANScription FACtor (TRANSFAC) database (Wingender,

2008). These include both TFBSs and TATA-binding protein associ-

ated (TAF) site sequences. In addition to positive examples (loca-

tions where transcription initiates), negative examples (locations

with no evidence of transcription initiation) are selected by ran-

domly choosing locations from genic, intergenic and promoter-prox-

imal regions.

Multiple logistic regression classifiers are constructed during the

training and evaluation of TIPR (Table 1). We train three classifiers

to construct the TIPR model capable of predicting TSS locations and

initiation patterns simultaneously, along with an additional inde-

pendent model as part of the model evaluation and comparison pro-

cess, which is described in detail in Section 2.4. Models are

constructed using a modified version of the l1_logreg package, an

implementation of the interior-point method for L1-regularized

Fig 1. Transcription initiation patterns recognized by TIPR. The TSR initiation

patterns predicted by TIPR, and introduced by Carninci et al. (2006), as identi-

fied in genome-wide mouse and human CAGE studies

Table 1. List of binary classification models trained and tested in

this study

Model name Class 1 Class 2

SP versus NO Single peak TSSs Negative (non-TSS) genomic locations

BR versus NO Broad peak TSSs Negative (non-TSS) genomic locations

SP versus BR Single peak TSSs broad peak TSSs

SPþBR (All)a SP and BR TSSs Negative (non-TSS) genomic locations

aUnused by MSC classifier but used for baseline comparison.
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logistic regression (Koh et al., 2007). The l1_logreg package has

been modified to support a more compact file format, and modifica-

tions are provided in the Supplementary Data. Cross-validation is

used to select the TIPR model parameters. The optimal L1 penalty

parameter k is chosen by finding the k value that yields the highest

AUROC for each validation partition, and computing the average of

this set of partition-specific values. This averaged k value is used to

train a final model using all training examples. A second parameter

d is selected for each model on a secondary held-out validation par-

tition by F1 score. This parameter is the probability threshold used

to determine the class label prediction of a model. After parameter

selection, final models of each type are constructed using the entire

training dataset with the optimal k parameter.

Finally, each model is evaluated by classifying examples from a

held-out test set, composed of 20% of all examples in each dataset

(including negative examples described above) and an additional

100 000 negative examples drawn randomly from the entire gen-

ome. After the models in Table 1 have been trained and used to pre-

dict all test set TSSs (Section 2.4), we arrive at the multi-stage

classifier (MSC), capable of predicting TSS locations and initiation

patterns. In the final MSC model (evaluated in Section 2.5), the SP

versus BR classifier is used to predict the expected initiation pattern

of a site that has been predicted as transcribed. This process can be

applied on a genomic scale by repeating this prediction process at

every nucleotide in the region of interest, producing a signal along

the chromosome representing the probability of transcription initi-

ation at each nucleotide. Figure 2 shows a flow chart summarizing

our TSS prediction data preparation pipeline and classification

process.

2.2 Identification of regions of enrichment
In this study, TFBSs are characterized by experimentally supported

positional weight matrices (PWMs) curated by the TRANSFAC pro-

ject (Wingender, 2008). A PWM approximates the affinity of each

TF binding domain for potential DNA binding sequences. Because

TFBSs are often short, degenerate sequences, they occur frequently

throughout the genome for many TFs. Even if we assume that TF

binding does occur at every TFBS location in the genome, a majority

of this binding almost certainly does not lead to transcription.

For example, the TATA box site is typically located in a window

25–35 bp upstream of the TSS, where it binds to the TFIID protein,

forming a multi-protein complex which binds to the Pol-II complex

and initiates transcription. If a TATA box binding site is observed

hundreds of base pairs upstream from a TSS, it is unlikely that this

TATA site is involved in the transcription of this TSS. Therefore, as

part of our training process, we computationally identify regions of

the promoter in which each TFBS in our dataset is likely to be func-

tional. This procedure specifically focuses our model on TFBSs

located in regions of the promoter where they are likely to be

involved in transcription, as opposed to including every TFBS in the

surrounding sequence regardless of location. We call these locations

‘regions of enrichment’ (ROEs), as an ROE is defined by our model

to be a region positioned relative to training-set TSSs in which a par-

ticular TFBS is significantly enriched in a majority of training set

TSSs when compared with the promoter background sequence dis-

tribution (Fig. 3). Our machine learning analysis is restricted to

TFBSs which fall within these regions. This technique has two major

advantages. First, it serves as a feature reduction technique, enabling

faster model training and testing. Second, it allows the model to

identify features which are more likely to be biologically relevant.

To identify the ROE associated with each PWM and determine

if enrichment of a particular TFBS is present, we consider all TSS tag

clusters grouped by TSS initiation pattern. TFBS PWMs are scanned

along regions 2 kb upstream and downstream of the TSS, and the

Fig 2. Flowchart of TIPR training procedure

Fig. 3. Diagram of how ROEs are identified from raw TSS-Seq reads
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likelihood score of the TFBS at every nucleotide is computed and

compared to the promoter background distribution. The dinucleo-

tide background distribution is computed with a local first-order

Markov model, computed over the sequence 250 nt upstream and

downstream of the TSS. Scores are computed using a modified ver-

sion of the log-likelihood scanner published and described in

Morton et al. (2014). The software has been modified to use a more

efficient binary storage format for performance and is provided in

supplementary materials. All positive log-likelihood scores are com-

bined and averaged into a single score at each nucleotide. Starting

from the highest scoring nucleotide within 100 nt of the TSS, the

ROE is expanded left and right until the average log-likelihood score

falls below the average log-likelihood score of the promoter (within

2 kb of the TSS) for at least 5 nt. This region represents the most

common positions in which the TFBS of a particular TF occurs rela-

tive to the TSS. During feature extraction and prediction, only

TFBSs that fall within the ROE are considered by the TIPR model.

Figure 3 shows a diagram of this process. Additional details of this

procedure are provided in supplementary methods: ROE

Identification.

2.3 Model feature extraction
After TSS tag clusters have been identified from the TSS-Seq data

and ROE have been defined, we convert the DNA sequence sur-

rounding TSSs into numerical features for the purpose of model

training and evaluation (Supplementary Fig. S1). These numerical

features characterize the presence of TFBSs within ROEs. Within

the defined ROE of a given TFBS, the log-likelihood score of the

TFBS PWM (with respect to the promoter dinucleotide background

distribution) is calculated at every nucleotide within the ROE and

summed together to produce a single numerical score. This score is

therefore large when the ROE contains sequences which closely

match the TFBS of the given TF, and small otherwise. In order to in-

crease the resolution of the features and allow the model to select

the most informative locations, each ROE is split into 7 sub-regions

of equal length, 5 central overlapping windows and 2 flanking win-

dows (Megraw et al., 2009, Fig. 3). In addition, sequence enrich-

ments for GC, GA and CA dinucleotides surrounding the TSS are

included as features. Sequence enrichment features are computed as

the frequency of the given nucleotides as a proportion of region

250 nt upstream and downstream of the TSS.

The ROEs used to construct the ALL model were computed by

combining the SP and BR TSS datasets together before performing

ROE selection. The specialized SP and BR models listed in Table 2

are constructed using ROEs selected only from TSSs of a single initi-

ation pattern. For the sub-models of the TIPR model used to predict

initiation pattern, ROE selection was performed on individual initi-

ation pattern datasets, and the resulting ROEs from each dataset

were combined together. This was done because initiation patterns

appear to have differing preferred locations for TFBSs relative to the

TSS. On average, these ROEs are fairly narrow—the median width

of the ROEs used by the ALL model was 56 nt with a standard devi-

ation of 36 nt (Supplementary Table S1). A previous study suggested

that in Arabidopsis, wider, more general ROEs were less effective

TSS predictors than peak-type specific ROEs calculated from accur-

ate TSS-Seq data (Morton et al., 2014).

Negative training and testing datasets are created as mentioned

earlier, but rather than using TSS-proximal sequences, they are com-

posed of randomly selected genomic locations at which there is no

evidence of transcription initiation. In order to create a model that

performs with high sensitivity and specificity at any nucleotide in

the genome, the model must differentiate between true TSSs and

nearby sequences that are not transcribed but which have similar

sequence content. To ensure the model training and testing sets

support this goal, we select 20 negative examples for every positive

TSS example; these are drawn from genomic locations located

200–2000 nt upstream of the TSS. In addition, we also draw one

negative example from exonic and intergenic regions for every posi-

tive example in the training set. This yields a proportion of 21 nega-

tive training examples for every positive training example. Finally,

an additional 100 000 negative examples are drawn randomly from

the entire genome and used for testing.

2.4 Model construction
After feature extraction, the TIPR model is constructed by training

the four models listed in Table 1 independently, using 80% of the

dataset. Eighty percent of each cross-validation fold is used for

model training, 10% for regularization parameter (k) selection and

the remaining 10% for the classification threshold parameter (d) se-

lection. The regularization parameter k is selected using the same

procedure as the S-Peaker model (Megraw et al., 2009), by choosing

the value which provides the highest AUROC on the validation par-

tition of each fold. The average of these selected k values is the pen-

alty parameter used to construct the final model using all training

data. The cutoff parameter d is selected by choosing the probability

value which optimizes the classifier’s F1 score over the partition held

out for selection of the parameter. The optimal k of each fold is used

when selecting d, ensuring that no example used to select d was used

to choose k. The optimal k (and associated AUROC) of each cross-

validation fold is provided in Supplementary Table S2.

After all parameters are selected and models have been built

using the full 80% of the training data, the held-out testing data is

classified by each model independently. After classification by the

TSS models (SP versus No and BR versus No), a two-stage classifica-

tion procedure is used to produce the final class label. If either of the

TSS models predict that the site is likely to be transcribed (with a

probability greater than the model’s parameter d), the SP versus BR

model is used to predict the initiation pattern (SP or BR). We call

this classifier the MSC model, as it applies a hierarchical procedure

for determining the appropriate classification models. This allows

for more flexibility in the selection of probability cutoff thresholds

by choosing a separate threshold for each model, compared with

other multi-class prediction techniques such as All-versus-All mod-

els. Additional details on model construction, cross-validation, and

parameter selection are provided in the supplementary data: Model

Training and Selection of Model Parameters. During the develop-

ment of TIPR, we tested several alternative multi-class prediction

techniques, with the purpose of understanding which order and

combination of the SP versus NO, BR versus NO, SP versus BR and

ALL classifiers resulted in the best classifier performance. These

techniques and their results are reported in the supplementary ma-

terials: Multi-class Prediction Models and Supplementary Results:

Multi-class Prediction Models. In Section 3.1, we discuss the impli-

cations of these comparisons, their significance and when the ALL

and MSC models should be applied.

Table 2. CAGE datasets used to train and test TIPR model

Initiation pattern Total Tag

clusters

Training tag

clusters

Testing tag

clusters

Single peak 1247 (33%) 998 249

Broad peak 2497 (66%) 1998 499

All 3744 (100%) 2996 748
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2.5 Model evaluation and testing
We evaluate the TIPR model using a variety of metrics. For each bin-

ary classifier, the AUROC and AUPRC are calculated. We include

auPRC because auROC does not account for precision (i.e. positive

predictive value), which determines how many of the sites that were

predicted to be a TSS were actually TSSs. The multi-class MSC clas-

sifier is evaluated on sensitivity, specificity and micro/macro F1

scores, reported in Section 3. In addition to standard numerical met-

rics, we evaluate the model in a more practical setting by predicting

TSSs on a larger scale, using entire regions of the genome.

Although the model can be successfully applied to predict the

probability that an individual nucleotide is a TSS, more commonly

we wish to know of regions where transcription initiation is likely to

occur. To evaluate the TIPR model on a practical scale, we tested

the model on 4 kb regions upstream and downstream of TSSs in the

held-out set. First, for each nucleotide in the surrounding 8 kb region

features are generated as mentioned earlier. Next, nucleotides are

classified as TSSs or non-TSSs using the general-purpose “All”

model. After this signal is produced, it is smoothed using a moving

average with a 2 nt window. After smoothing, predicted TSS regions

are defined from this signal by locating regions where the probabil-

ity value rises above a threshold. A TSS region begins when the sig-

nal rises above the probability threshold and ends after the signal

has fallen below the threshold for 10 consecutive nucleotides.

The earlier procedure was repeated using a range of probability

threshold values between 0.05—0.95. The distance between the cen-

ter of the predicted TSS region and CAGE-supported TSS tag cluster

mode were calculated, along with the number of correctly predicted

TSSs (true positives) and additional positive predictions (false posi-

tives). A region was considered to be a true positive if the predicted

region contained a CAGE-supported TSS tag cluster mode.

3 Results

3.1 TIPR successfully predicts broad initiation patterns
Previous high-resolution TSS prediction models focused primarily

on the prediction of single peak TSS initiation patterns (Megraw

et al., 2009), reasoning that these promoters are likely more tightly

regulated by specific TFs, as opposed to non-sequence mechanisms

such as histone markers and chromatin structure (Rach et al., 2011).

We trained and tested the TIPR model on multiple initiation pat-

terns, using the CAGE mouse dataset (Carninci et al., 2006), filtered

as described in Section 2. The training and testing sets used are

shown in Table 2.

Our results show that our model can predict initiation patterns

beyond the single peak class with high accuracy (both high AUROC

and AUPRC) from sequence content alone (Table 3, Supplementary

Figs S2 and S3). The models trained on a dataset containing TSSs of

a single initiation pattern perform well in classifying TSSs of their

respective types, meaning that the model describes a set of TFBS

enrichments which well characterize the initiation pattern used to

build and test the model. Because L1-regularized logistic regression

models weight features by their predictive power, these weights can

be used to infer the TFs that may regulate different initiation pat-

terns and families of genes. Feature weights from all four models are

provided in Supplementary Table S3.

While the individual initiation pattern classifiers perform well on

their respective datasets, a general purpose classifier is required for

the prediction of TSSs without prior knowledge of the initiation pat-

tern. When the SP versus No TSS model is used to classify the BR

versus No TSS testing set, the AUPRC drops to 0.51, compared with

0.72 when tested on the SP versus No set. Similarly, the BR versus

No TSS model achieves an AUPRC of 0.59, compared with 0.81

when predicting Broad initiation patterns (Supplementary Figs

S4–S7). Both the general classifiers constructed in this study (ALL

and MSC) performed well at the task of general TSS identification.

The ALL model, trained on the combination of both single peak and

broad initiation patterns, forms a general-purpose TSS prediction

model. Due to this model’s simplicity, it is useful for the task of pre-

dicting TSSs when the spatial initiation pattern is of little interest to

the user. The more complex MSC classifier functions as a general-

purpose TSS prediction model, it also provides specific spatial initi-

ation pattern predictions with the same predictive accuracy as the

ALL classifier.

As a comparison, an S-Peaker model (Megraw et al., 2009) was

trained and tested on the same dataset used to build the TIPR mod-

els (with the same individual TSSs used to train and test both mod-

els). Both models achieve approximately the same AUROC, but

TIPR outperforms S-Peaker by 5–12% on AUPRC depending on the

dataset. This increase in AUPRC means that the TIPR model is cap-

able of achieving higher precision (positive predictive value) while

also maintaining high sensitivity compared with S-Peaker

(Supplementary Figs S2, S3 and S8–S17).

Next, we applied the TIPR model to the prediction of human

TSSs as a comparison to the epigenetic model described in Rach

et al. (2011). Rach et al. (2011) used sequence features (like TIPR)

along with chromatin features to predict TSSs in human and was

constructed using TSSs identified from CAGE data provided by the

FANTOM4 consortium (Kawaji et al., 2009). We trained the TIPR

model using the same dataset that was used in Rach et al. (2011) to

construct the epigenetic chromatin-based model. The results of this

comparison are provided in Table 4 and Supplementary Figures

S18–S21. Additional details on the construction of this model are

provided in the supplementary materials. These results show that

TIPR is able to predict both single peak and broad peak promoters

in human with the same (or better) performance without the use of

chromatin-based features.

As transcription of a gene typically initiates at many locations

within a genomic region—as opposed to one single location at a spe-

cific nucleotide—a successful model must predict these regions with

high resolution and precision. To evaluate the performance of our

model in this context, we performed a scanning procedure where the

model was used to predict the probability of a TSS at each nucleo-

tide within an 8 kb region containing an experimentally observed

Table 3. Performance of TIPR’s three binary TSS classifiers and

S-Peaker in mouse, tested using classes listed in Table 1

Dataset TIPR

AUROC

TIPR

AUPRC

S-Peaker

AUROC

S-Peaker

AUPRC

Single peak versus NO 0.99 0.72 0.99 0.66

Broad peak versus NO 0.99 0.81 0.99 0.76

SP þ BR (ALL) versus NO 0.99 0.82 0.99 0.70

Table 4. Comparison of TIPR and Rach et al. (2011) in human

Initiation pattern TIPR Rach et al.

AUROC AUPRC AUROC AUPRC

Single peak 0.95 0.30 0.80 0.01

Broad peak 0.99 0.82 0.99 0.79
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TSS tag cluster. A representative example of this scanning procedure

is shown in Figure 4.

After smoothing of the probability signal output by the model,

we evaluated performance on two metrics: the number of TSSs pre-

dicted at a given probability threshold compared with the number of

false positives (Fig. 5) and the distance between the predicted and

ground-truth TSS locations (Fig. 6). These results show that the gen-

eric ALL models can identify TSS clusters with high accuracy re-

gardless of initiation pattern. This also demonstrates the

performance of the SP versus NO and BR versus NO classifiers, and

how the ALL classifier performs better overall than either of these

specialized classifiers. The SP classifier curve (diamond, Fig. 5) falls

below all other models, meaning that this model identifies fewer

true positives. SP initiation patterns are less common overall, as ex-

pected, because the SP classifier is trained to identify only single

peak patterns, whereas a majority of the dataset is composed of BR

TSS tag clusters. On the other hand, Figure 6 shows that the SP clas-

sifier is more accurate in terms of locating the position of TSSs. The

broad initiation pattern classifier identifies TSSs with roughly the

same accuracy as the ALL model, but the locational accuracy of the

BR model is slightly reduced. Particularly important to the scanning

performance of all classifiers is the achievement of a strong AUPRC,

because genomic sequence is overwhelmingly composed of true

negatives (locations that are not TSSs). Models with outstanding

AUROC can still yield a relatively noisy scanning signal outcome on

the genome that doesn’t ‘narrowly capture’ true TSS regions if

AUPRC is poor; this is because true negatives are strongly reflected

in precision score (where false positives sit in the denominator).

TIPR’s scanning performance achievement is due in large part to its

ability to effectively identify true negative examples, as reflected in

its strong AUPRC scores.

3.2 TIPR predicts initiation pattern type
In addition to predicting the locations of TSSs from sequence con-

tent, our model predicts which initiation pattern the surrounding

TSS cluster is likely to form. This is a more complex type of predic-

tion, because the classifier must incorporate information that effect-

ively considers an entire genomic region of nucleotides as possible

TSSs. On a held-out test set composed of TSSs of both initiation pat-

terns, the binary SP versus BR model achieves an average AUROC

of 0.88 with an AUPRC of 0.84 when differentiating between the

two patterns (Supplementary Figs S22–S23). We remind the reader

that this model is combined with the TSS classifiers built on individ-

ual initiation patterns to produce the final multi-class MSC model.

After applying the individual initiation pattern models to predict

which genomic locations are transcribed, the SP versus BR model is

used to predict the initiation patterns of the sites in question. The

performance of the MSC model in the multi-class prediction context

is summarized in the confusion matrix provided in Table 5, with

additional performance metrics provided in Supplementary Table

S4. Evaluated using the macro-F1 statistic to adjust for the preva-

lence of negatives in this classification problem, the MSC classifier

Fig 4. Example of TIPR gene scan on 8 kb region of sequence. This figure

shows the TIPR ALL model used to predict TSSs in the 8 kb region (top) and

100 nt region (bottom) surrounding the gene Smarcd1. The top track (black)

displays the alignment of TSS-Seq (CAGE) reads along chromosome 15 of

the M. musculus genome (CAGE tag cluster T15F05F85E9F). The second track

(in red) is the probability output from the TIPR ALL model. The expanded

track below the TIPR shows that Mouse ESTs align well with TIPR’s predic-

tions. Some additional TIPR predictions are located near other CAGE tag clus-

ters or ESTs

Fig 5. Performance of all classifiers during gene scanning. The accuracy of all

classifiers when applied on a large scale to the entire testing dataset. The ver-

tical axis shows the percentage of TSSs in the test set which are correctly pre-

dicted (TSSs). The horizontal axis measures the number of additional TSSs

which are predicted (false positives). The color scale shows the probability

cutoff threshold, the value the model prediction must be above to be con-

sidered a TSS

Fig 6. Locational accuracy of all classifiers during gene scanning. The location

accuracy of all TSS classifiers, as quantified by the distance between the TSS

tag cluster mode (experimentally supported ground truth data) and the center

of the predicted tag cluster
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achieves a score of 0.74. The ROC and Precision-Recall Curve

(PRC) plots of the individual binary classifiers which build the

MSC model are provided in Supplementary Figures S8–S11.

Complete confusion matrices and other statistics for each model

are provided in Supplementary Table S5.

While the MSC model performs no better than the simple ALL

classifier on the single-nucleotide classification dataset, it does pro-

vide important additional information—the predicted spatial initi-

ation pattern of the TSS. This extra information is highly relevant

from a biological perspective, as initiation patterns have been shown

to associate with different biological interpretations. Genes associ-

ated with single peak initiation patterns are often tissue-specific

developmental genes, while genes with broad patterns are more

commonly involved in general and housekeeping processes. The ini-

tiation pattern of a gene has been demonstrated to be related to the

promoter structure of the gene, including the presence of TFBS elem-

ents, sequence enrichments including CpG islands in mammals and

gene function (Carninci et al., 2006; Megraw et al., 2009; Morton

et al., 2014; Rach et al., 2009).

3.3 Transcription initiation pattern classes yield insight

into gene function
As previously reported in Megraw et al. (2009), single peak initi-

ation patterns have many well-defined ROEs for TFs, as opposed to

general sequence enrichments. These TF enrichments are much less

pronounced in the broad initiation pattern, where only 312/843

TFBSs were detected as containing an ROE on the forward strand,

compared with 511/843 in SP. The feature weights of the SP versus

BR model can also provide insight into the TFs associated with each

initiation pattern. The model’s highly weighted features are in agree-

ment with factors previously associated with these initiation pat-

terns, including TATA binding protein (TBP) for SP patterns and

higher GC content for BR patterns (Sandelin et al., 2007). The

model also suggests other associations, such as a predominance of

binding sites for caudal type homeobox CDXA and cap signal

(CAP) TFs in proximity to SP patterns and sites from the E2F family

of TFs in proximity to BR patterns (Supplementary Table S3).

Previous studies have examined the classes of genes associated

with each initiation pattern as well as the differences between these

classes, including gene function, spatiotemporal expression and

transcriptional regulation (Carninci et al., 2006; Haberle et al.,

2014; Morton et al., 2014; Rach et al., 2009). Using a model that

provides the most likely transcription initiation pattern in a region

of interest is therefore particularly informative in cases where a

gene’s functional annotation is incomplete. By making predictions

of initiation patterns, the model can provide data-informed sugges-

tions of a gene’s function in the absence of extensive experimentally

supported information. By using the ROEs and TIPR model feature

weights, one can additionally gain direct insight into the specific

regulatory elements that are likely to control expression of tran-

scripts produced at the site of interest.

4 Discussion

TSS prediction has many practical applications, including a poten-

tial for use in organisms with poorly annotated genomes. TIPR re-

quires only DNA sequence as input in order to make predictions and

does not require any a-priori knowledge of gene annotation. The

training of TIPR does require TSS-Seq data and through the training

process TIPR identifies TF binding profiles that are enriched at pos-

ition-specific locations with respect to the TSS—TF-based features

are then generated, and the model learns which of these features are

most useful in determining TSS location for each peak type. Thus, it

is important that the species in which predictions are made is ex-

pected to share many orthologous TFs with the training species. The

earlier S-Peaker model showed that a model trained exclusively

from mouse TSSs could identify the TSSs of human miRNAs

(Megraw et al., 2009). This ability provides a strong potential for

informative cross-species application in sequenced genomes of

agronomic interest—these species may not yet have extensive

high-throughput genomic data or even gene annotations available,

but are often anticipated to share substantial TF binding domain

orthology with a model species in which TSS-Seq information is

available. For example, models trained in the dicot Arabidopsis

could be useful guides for further experiments on genes in crop spe-

cies such as tomato.

Predictions can be used to assist in the identification of the regu-

latory networks controlling genes by identifying which TFBSs are

positioned in biologically relevant locations relative to the predicted

TSS. These models can also be used to identify potential alternative

start sites and the regulators which may control them, leading to the

transcription of genes in different conditions, or the transcription of

different mRNA products altogether. Many genes have been shown

to have tissue-specific TSSs (Fürbass et al., 1997; Shemer et al.,

1992; Toffolo et al., 2007; White et al., 1998), and different regula-

tory networks of TFs have been implicated in at least some of these

genes (Toffolo et al., 2007; White et al., 1998). Another recent study

showed a change in TSS selection, initiation pattern and TF usage

during the transition from maternal to zygotic transcription in zebra

fish (Haberle et al., 2014). TSS prediction tools can be used to

identify potential alternative TSSs, which can help guide wet-lab ex-

periments to validate sites and regulatory networks. The prediction

of spatial TSS initiation pattern along the genome can also provide

insights into the nature of transcripts produced from the site. For ex-

ample, it may suggest spatiotemporal expression that is more con-

sistent with housekeeping functions, or more consistent with tissue

or time-related functions.

The TIPR model provides a large boost in performance (12% in-

crease in AUPRC) over previous sequence-based models (Megraw

et al., 2009). This is likely to be due in part to the use of a negative

set filtering algorithm that selects locations with appropriately simi-

lar sequence backgrounds to TSSs while excluding false negatives.

Another primary contributor to performance is an increased number

of TFBS PWMs (the complete TRANSFAC dataset in vertebrates)

and the inclusion of new sequence enrichment features. For ex-

ample, the model feature measuring the sequence enrichment of the

CA di-nucleotide (not included in the S-Peaker model) was highly

negatively weighted, implying that promoter regions may be signifi-

cantly depleted of CA. In humans, CA is known to be the most com-

mon simple-sequence repeat motif, with 19.4 repeats occurring per

Mb (Hui et al., 2005). Several studies have shown that intronic CA

repeats play a role in the regulation of alternative splicing in some

genes (Hui et al., 2005; Yang et al., 2013). Sawaya et al. (2013) re-

port that the AC motif is significantly depleted directly downstream

Table 5. Confusion matrix of MSC model predictions

Prediction Reference

No TSS Single peak Broad peak

No TSS 115 145 (99.72%) 45 (18%) 72 (14%)

Single peak 145 (0.12%) 160 (64%) 55 (11%)

Broad peak 169 (0.14%) 44 (18%) 372 (75%)

Transcription initiation pattern recognition 3731

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv464/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv464/-/DC1
Single Peak
,
Table 5.&ensp; Confusion matrix of MSC model predictions.
Initiation Pattern Classes Yield Insight Into Gene Function
Single Peak
transcription factors
B
to
TBP (
Binding Protein
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv464/-/DC1
,
,
which
Transcription Start Site
,
,
transcription start sites
transcription factors
,
; Hui etal., 2005).


of human TSSs, but the same depletion is not seen in the entire pro-

moter region.

5 Final remarks

In this work, we have proposed a new machine-learning based TSS

prediction model, capable of identifying TSSs with high accuracy

and resolution, along with the spatial initiation patterns that TSSs

will form along the genome—a feature that previous models have

not provided. We have also shown for the first time that it is possible

to predict TSSs with a broad peak initiation pattern from sequence

content alone. Accurate TSS predictions can be used to guide wet-

lab experiments, improve gene annotations in poorly studied gen-

omes, identify genes with multiple or alternate TSSs and to infer in-

formation about the biological mechanisms regulating the

transcription of genes.
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