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Abstract

Motivation: The Cancer Genome Atlas (TCGA) RNA-Sequencing data are used widely for research.

TCGA provides ‘Level 3’ data, which have been processed using a pipeline specific to that resource.

However, we have found using experimentally derived data that this pipeline produces gene-

expression values that vary considerably across biological replicates. In addition, some RNA-

Sequencing analysis tools require integer-based read counts, which are not provided with the

Level 3 data. As an alternative, we have reprocessed the data for 9264 tumor and 741 normal sam-

ples across 24 cancer types using the Rsubread package. We have also collated corresponding clin-

ical data for these samples. We provide these data as a community resource.

Results: We compared TCGA samples processed using either pipeline and found that the

Rsubread pipeline produced fewer zero-expression genes and more consistent expression levels

across replicate samples than the TCGA pipeline. Additionally, we used a genomic-signature ap-

proach to estimate HER2 (ERBB2) activation status for 662 breast-tumor samples and found that

the Rsubread data resulted in stronger predictions of HER2 pathway activity. Finally, we used data

from both pipelines to classify 575 lung cancer samples based on histological type. This analysis

identified various non-coding RNA that may influence lung-cancer histology.

Availability and implementation: The RNA-Sequencing and clinical data can be downloaded from

Gene Expression Omnibus (accession number GSE62944). Scripts and code that were used to pro-

cess and analyze the data are available from https://github.com/srp33/TCGA_RNASeq_Clinical.

Contact: stephen_piccolo@byu.edu or andreab@genetics.utah.edu

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

The Cancer Genome Atlas Research Network has profiled thou-

sands of human tumors to discover various types of molecular-level

aberrations that occur within tumors. Researchers have used these

data to derive new insights about tumorigenesis and to validate and

inform experimental findings (The Cancer Genome Atlas Research

Network et al., 2013). To facilitate such analyses, The Cancer

Genome Atlas (TCGA) provides ‘Level 3’ RNA-Sequencing
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(RNA-Seq) data, which have been aligned to the reference genome

using MapSplice (Wang et al., 2010), quantified at the gene and

transcript levels using RSEM (Li and Dewey, 2011) and standar-

dized using upper-quartile normalization (Bullard et al., 2010; Li

and Dewey, 2011; Wang et al., 2010). However, the use of these

data comes with some caveats. First, some analytic tools designed

specifically for RNA-Seq data—for example, DESeq2 (Love et al.,

2014)—require the user to input integer-based read counts, yet

Level 3 read counts are represented as non-integer numbers. Second,

the upper-quartile normalization method scales gene counts by the

upper-quartile value of the non-zero distribution; however, when a

sample has a relatively high number of zero counts or genes with ex-

tremely high read counts, the value distributions may vary consider-

ably across samples (Dillies et al., 2013). Third, when researchers

seek to compare the TCGA Level 3 data against clinical covariates

and outcomes, additional processing steps are necessary to match

RNA-Seq identifiers to the clinical data. Users without computa-

tional training may face difficulty performing these steps, and scien-

tists may duplicate each other’s efforts.

The TCGA consortium also provides the RNA-Seq data in raw

form. Thus it is possible for researchers to reprocess the data using

alternative computational pipelines. We obtained raw sequencing

data for 9264 tumor samples and 741 normal samples across 24

cancer types (Table 1) and reprocessed the data using the Subread al-

gorithm (Liao et al., 2014), which shows high concordance with

other existing methods regarding assignment of reads to genes but

takes a relatively short time for processing (SEQC/MAQC-III

Consortium, 2014). RNA transcripts often span multiple exon-exon

junctions, making it challenging for aligners to map reads that are

smaller than the transcript length. Rsubread’s ‘vote-and-seed’ read-

mapping technique addresses this problem by breaking the reads

into relatively small segments, mapping the segments to the refer-

ence genome and identifying locations where adjacent segments map

to different exons. This approach has been shown to be more accur-

ate in mapping junction reads than other aligners, including

MapSplice (Liao et al., 2013). The Rsubread package, which imple-

ments the Subread algorithm, is convenient for this task because: (i)

it can be applied to both single- and paired-end reads; (ii) it is con-

siderably faster and requires less computer memory than many other

methods and (iii) it requires no external software packages for pro-

cessing, whereas many other packages require a series of steps that

span multiple packages.

We used the featureCounts function within the Rsubread pack-

age to summarize the data to integer-based, gene-level read counts,

and we calculated two types of normalized value: fragments per

kilobase of exon per million reads mapped (FPKM) and transcripts

per million (TPM) (Li and Dewey, 2011; Mortazavi et al., 2008;

Wagner et al., 2012). In this pipeline, the FPKM and TPM values

are calculated using the total number of mapped reads and the total

number of non-overlapping exonic basepairs. Both FPKM and TPM

methods account for the length of genomic features. FPKM corrects

for the number of reads that have been sequenced, and TPM ac-

counts for the average number of mapped bases per read. FPKM val-

ues are used widely, whereas TPM values have been shown to meet

the invariant average criterion and thus may be more comparable

across samples (Wagner et al., 2012). Importantly, FPKM and TPM

are calculated using only data from an individual RNA-Seq sample;

thus adding new samples to the dataset will not require changes to

the existing expression values; such an approach is crucial for preci-

sion-medicine applications and for integrating data across technol-

ogy platforms (Piccolo et al., 2012, 2013). Furthermore, because we

have provided raw counts, it is possible for others to normalize the

data using other methods with relative ease. We have made these

data publicly available along with all clinical variables provided by

TCGA for these samples. We have also aligned the RNA-Seq sample

identifiers with the clinical identifiers.

Table 1. Cancer types and total number of samples

Cancer name Abbreviated cancer name Samples included

Adrenocortical carcinoma ACC 79

Bladder urothelial carcinoma BLCA 414

Breast invasive carcinoma BRCA 1119

Cervical squamous cell carcinoma and endocervical adenocarconoma CESC 306

Colon adenocarcinoma COAD 483

Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48

Glioblastoma multiforme GBM 170

Head and neck squamous cell carcinoma HNSC 504

Kidney chromophobe KICH 66

Kidney renal clear cell carcinoma KIRC 542

Kidney renal papillary cell carcinoma KIRP 291

Acute myeloid leukemia LAML 178

Brain lower grade glioma LGG 532

Liver hepatocellular carcinoma LIHC 374

Lung adenocarcinoma LUAD 541

Lung squamous cell carcinoma LUSC 502

Ovarian serous cystadenocarcinoma OV 430

Prostate adenocarcinoma PRAD 502

Rectum adenocarcinoma READ 167

Skin cutaneous melanoma SKCM 472

Stomach adenocarcinoma STAD 420

Thyroid carcinoma THCA 513

Uterine corpus endometrial carcinoma UCEC 554

Uterine carcinoma UCS 57

A total of 9264 tumor samples across 24 cancer types are included in the database.
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2 Methods

2.1 HER2 gene-expression profiling data
Before analyzing TCGA data, we generated an experimental dataset

that represented the effects of HER2 (ERBB2) overexpression in

breast cancer cells. Using human mammary epithelial cells

(HMECs), we produced five replicates, in which the HER2 protein

had been experimentally activated, and 12 control green fluorescent

protein (GFP) replicates. We used recombinant adenovirus to over-

express HER2 (Vector Biolabs) and GFP in the HMECs. The

HMECs were grown in serum-free WIT-P media (Stemgent) and

were starved of growth factors for 36 h prior to infection. HER2-ex-

pressing or GFP-expressing adenovirus (MOI 500) were added to

HMEC cells in conditioned media and incubated with the cells for

18 h. Cells were washed with phosphate buffered saline, scraped

into RNAlater (Ambion), and RNA was extracted from pelleted

cells using an RNeasy kit (Qiagen) with DNase. To ensure that com-

ponents were being expressed, we created lysates of HER2-adeno-

virus-vector and GFP-adenovirus-vector infected HMEC cells and

analyzed these lysates for expression of HER2-pathway protein

components by sodium dodecyl sulphate–polyacrylamide gel elec-

trophoresis/Western blot. HER2 overexpression and activity was

confirmed by Western blotting for HER2 and for activated HER2

(phospho-Tyr1173-HER2, Supplementary Fig. S1). cDNA libraries

were prepared from the extracted RNA using the Illumina Stranded

TruSeq protocol and then sequenced with the Illumina HiSeq 2000

sequencing platform with six samples per lane. Single-end reads of

101 base pairs were generated. This dataset is available on Gene

Expression Omnibus via accession number GSE62820.

2.2 TCGA data acquisition
We downloaded TCGA Level 3 data via the Synapse portal for

12 cancer types (https://www.synapse.org/#!Synapse:syn1695324).

This included 3468 samples that had been preprocessed using

TCGA’s standard pipeline.

To reprocess TCGA data with Rsubread, we downloaded

FASTQ formatted files for all available TCGA tumor samples via

the National Cancer Institute’s Cancer Genomics Hub (Wilks et al.,

2014). This included a total of 9264 tumor samples across 24 cancer

types (Table 1). Some patient samples were sequenced multiple

times; in these cases, we included each replicate.

We downloaded TCGA clinical data in ‘Biotab’ format on May

20, 2015 from the TCGA data portal (https://tcga-data.nci.nih.gov/

tcga/dataAccessMatrix.htm) and extracted all reported clinical vari-

ables from the nationwidechildrens.org_clinical_patient_[cancer

TypeAbbreviatedInLowerCase].txt files. In these files, 12-character

patient identifiers were used, whereas the RNA-Seq sample identi-

fiers were longer. To make it easier to integrate these two data sour-

ces, we converted the short IDs to full IDs by matching the

‘bcr_patient_barcode’ values in the clinical files. For patients who

had multiple RNA-Seq replicates, we provide multiple columns in

the clinical data file. We set values as ‘NA’ when no information

was reported in the clinical files for a given patient. If there were

multiple sequences available for a tumor sample, we duplicated the

clinical variables available for that sample. In total, we included 548

clinical variables.

2.3 Data processing and normalization
For our HER2 expression-profiling data, we calculated gene-level

values using the same steps that the TCGA consortium uses to pro-

duce ‘Level 3’ values. The reference data, Perl scripts and parameters

used in this pipeline are described here: https://cghub.ucsc.edu/docs/

tcga/UNC_mRNAseq_summary.pdf. In some cases, the software

versions specified in the above document were unable to handle sin-

gle-end reads. In these cases, we used the latest versions of these soft-

ware tools that were able to handle single-end reads. Below we list

these versions:

• MapSplice v 12_07 (Wang et al., 2010)
• RSEM v1.2.12 (Li and Dewey, 2011)
• UBU v1.2 (https://github.com/mozack/ubu/)
• Picard-tools v1.82 (http://picard.sourceforge.net)
• BedTools v2.17.0 (Quinlan and Hall, 2010)

For our HER2 data and for the samples from TCGA, we used

the Rsubread package (version v1.14.2; Liao et al., 2014) to align

the reads and to produce gene-level summarized values. We used the

UCSC hg19 reference for alignment and the corresponding gene an-

notation format file available from http://support.illumina.com/

sequencing/sequencing_software/igenome.html. Within this pipeline,

we obtained integer-based gene counts using the featureCounts func-

tion in the Rsubread package (Liao et al., 2014). We used the limma

(version 3.20.9; Smyth, 2004) and edgeR (version v3.6.8;

Nikolayeva and Robinson, 2014; Robinson et al., 2010) packages to

calculate FPKM values (Li and Dewey, 2011) and a custom script to

convert FPKM to TPM values (Li and Dewey, 2011; Wagner et al.,

2012). We used R version 3.1.0 and Bioconductor version 2.14

(Gentleman et al., 2004; R Core Team, 2014; http://www.R-project.

org/). When evaluating pre-normalized gene counts, we used the

‘expected_count’ column in the ‘.genes.results’ files generated by

RSEM, and Rsubread’s raw, integer-based gene counts. All pro-

cessed TCGA data can be accessed on Gene Expression Omnibus

via accession number GSE62944. This includes integer-based gene

counts and FPKM and TPM values as well as clinical data.

2.4 Statistical procedures
When comparing gene-expression values between groups in this

study, we calculated the standardized mean difference using Hedges’

formula (Hedges, 1981, 1985). We used the coefficient of variation

(CV) to assess variability. We used the Random Forests classifica-

tion algorithm implemented in the caret package (Kuhn, 2008).

The data-processing pipelines and analysis scripts that we used

for this manuscript are available from https://github.com/srp33/

TCGA_RNASeq_Clinical.

3 Results

3.1 Evaluation of biological replicates
Our initial goal was to generate a gene-expression signature repre-

senting HER2 activation and to use that signature to identify breast

tumors in TCGA where the HER2 pathway was active. For consist-

ency with TCGA, we initially processed the RNA-Seq signature data

using the same pipeline used by the TCGA consortium (see

Materials and Methods). However, upon examining these data, we

observed inconsistencies across our biological replicates. For ex-

ample, as illustrated in Figure 1, we found that some replicates ex-

hibited considerably different patterns of expression for genes that

showed the greatest differences in expression between HER2-active

cells and GFP controls. Concerned that such inconsistencies could

reduce the effectiveness of our signature-based predictions, we

examined the data further and explored the Rsubread pipeline as an

alternative.

We hypothesized that the inconsistencies we observed in our bio-

logical replicates may have resulted from differences in the total
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number of mapped reads, from genes expressed at extremely high

levels or from differences in the number of zero-count genes per

sample. Others have described these factors as potential limitations

of the upper-quartile normalization step used in the TCGA Level 3

processing pipeline (Dillies et al., 2013). Accordingly, we repro-

cessed the data using Rsubread and performed various analyses to

understand the effects of these variables for data processed using ei-

ther pipeline. In addition, we performed various analyses to com-

pare the performance of the two datasets in various biomedical

research contexts (Supplementary Table S1).

3.2 Raw gene count analysis
Initially, we compared raw (non-normalized) gene counts between

the TCGA Level 3 and Rsubread processing pipelines for our HER2

(n¼5) and control (n¼12) replicates. The TCGA Level 3 pipeline

produces expected counts as floating point (non-integer) numbers,

whereas Rsubread produces integer-based gene counts, which repre-

sent the number of mapped reads per gene. For both pipelines, the

HER2 gene counts were significantly overexpressed in HER2 acti-

vated cells relative to control samples (Supplementary Fig. S2).

However, the difference in expression between HER2-activated cells

and controls was greater for the Rsubread data (standardized mean

difference for TCGA: 10.0; Rsubread: 23.8).

To explore these differences further, we compared the total num-

ber of mapped reads per sample between the two pipelines. For

HER2-activated samples, the total number of mapped reads was

much more variable for the TCGA Level 3 data than for the

Rsubread data (Fig. 2). Two of the HER2-activated samples—the

same samples (2 and 4) that showed visual differences in Figure 1—

had a considerably smaller number of total mapped reads when the

TCGA pipeline was used. Upon plotting the empirical cumulative

distribution of the total mapped reads per sample (Fig. 3 and

Supplementary Fig. S3), we observed that the same HER2-activated

samples showed different overall expression patterns, due to a rela-

tively high number of genes with zero read counts. These

observations suggest that Rsubread is less sensitive to differences in

library size and that it more consistently identifies genes expressed

at extremely low levels.

3.3 Normalized gene expression analysis
We observed similar findings for the normalized values produced

using either pipeline. The empirical cumulative distribution of total

normalized expression was more consistent for the Rsubread data

(FPKM and TPM) than for the TCGA Level 3 data (Supplementary

Fig. S4). HER2 gene-expression levels were less variable across the

replicates for the Rsubread values than for the Level 3 data (CV for

FPKM¼0.09; TPM¼0.06; Level 3¼0.30). Differences in expres-

sion between HER2 activated cells and controls were also greater

for the Rsubread data (standardized mean difference for

FPKM¼66.9; TPM¼67.2; Level 3¼25.8; see Supplementary Fig.

S4). In addition, across all genes for the control and HER2-activated

Fig. 1. Heat maps of normalized expression values for the 200 genes most differentially expressed between HER2-activated HMECs (n¼5) and GFP-treated

controls (n¼12). Each column in the heat maps represents data for a given HMEC replicate. Each row represents data for a given gene

Fig. 2. Total mapped reads per sample for data processed using the TCGA

Level 3 and Rsubread pipelines. For the TCGA Level 3 pipeline, the number of

mapped reads varied widely for the HER2 samples, and samples 2 and 4 (see

Fig. 1) had a considerably lower number of mapped reads. In contrast, the

number of mapped reads for Rsubread was consistent across the samples
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replicates, the coefficients of variation were smaller for the Rsubread

processed data than for the TCGA Level 3 data (Supplementary Fig.

S5). These observations remained consistent, even if we excluded the

two HER2 replicates that showed different gene-count distributions in

the TCGA Level 3 data (Supplementary Table S2).

We calculated the number of zero-expression genes per GFP sam-

ple using the genes that overlap between the TCGA Level 3

and Rsubread TPM data. The Level 3 data contained a higher number

of zero-expressing genes per GFP replicate (Level 3 median: 4452;

Rsubread TPM: 4174). For each gene that had at least one zero value

across the replicates, we calculated the number of samples that had a

zero value for a given gene. The average was 7.50 (out of 12) for

TCGA Level 3 and 8.92 for Rsubread. Although the Level 3 samples

had a higher overall number of zero values across all genes

(Supplementary Fig. S6), these values were less consistent for a given

gene. These findings suggest that the alignment, count estimation and/

or upper-quartile normalization steps used in the Level 3 pipeline lead

to variability across the replicates and that the Rsubread FPKM and

TPM values are more consistent across replicates.

Having observed these patterns in our replicates, we processed

9264 RNA-Seq samples from TCGA using the Rsubread package.

We performed various comparative analyses using the samples that

overlapped with the Level 3 data that had been distributed via the

Pan Cancer 12 project (The Cancer Genome Atlas Research

Network et al., 2013). We limited our comparative analyses to the

genes (n¼19 584) and samples (n¼3380) that overlapped between

these datasets. Across all samples, the number of zero-count genes

was significantly higher in the TCGA Level 3 data than in the

Rsubread data, (t-test P value<0.001; Level 3 median¼2742.5;

Rsubread TPM¼1910.0; see Supplementary Fig. S7). In addition,

we calculated Pearson’s correlation coefficients between replicates

for the 13 patients that were common between TCGA PANCAN12

and our Rsubread TPM data (Supplementary Table S3 and Fig. S8).

Across the replicates, the Pearson’s correlation coefficients were

higher for the Rsubread processed replicates (median¼0.86) than

for the TCGA Level 3 replicates (median¼0.79).

3.4. Downstream analyses
Next, we used a sparse binary factor regression method (West et al.,

2001) to derive a gene-expression signature that would predict

whether the HER2 pathway was active in a given TCGA breast-

tumor sample. This technique results in a probabilistic estimate

for each tumor sample that indicates whether the pathway is active.

We applied this approach to data from both processing pipelines

and compared the estimates of HER2 pathway activity be-

tween tumor samples that had been confirmed via immunohisto-

chemistry to be HER2 positive (n¼149) or negative (n¼513).

For both data-processing pipelines, the probabilistic estimates of

HER2 pathway activity were significantly higher for HER2-positive

versus HER2-negative samples (see Supplementary Fig. S9

and Table S4). However, the predictions for the Rsubread data

were less variable than for the TCGA Level 3 data (see

Supplementary Table S5), and the standardized mean difference be-

tween the groups was greater for the Rsubread data (TCGA Level 3:

0.44; Rsubread FPKM: 0.52; Rsubread TPM: 0.59). This finding

was robust to the exclusion of HER2 samples 2 and 4

(Supplementary Table S2). Thus, using an empirical approach to es-

timate HER2 pathway activity, the Rsubread data resulted in more

reliable and consistent conclusions when validated against

traditional methods.

As an additional test, we examined how well we could distin-

guish between lung adenocarcinoma (LUAD) and lung squamous

cell carcinoma (LUSC) samples in TCGA. This classification is clin-

ically important to guide personalized therapy based on the molecu-

lar subtypes (The Cancer Genome Atlas Research Network, 2012,

2014). We used the Random Forests classification algorithm

(Breiman, 2001) to identify gene-expression patterns that differ be-

tween these cancer types, and we performed 10-fold cross-validation

to estimate how accurately tumors of either cancer type could be

identified. For this analysis, we used TCGA Level 3 data and

Rsubread normalized (TPM) data for 575 tumor samples that over-

lapped between these datasets. We used receiver operating charac-

teristic (ROC) curves to assess classification accuracy and the

balance between sensitivity and specificity in making these predic-

tions. With the area under ROC curves (AUC) as a comparison met-

ric and a probability threshold of 0.5, both datasets resulted in

highly accurate predictions of lung-cancer histological type

(AUC¼0.999 for Rsubread; AUC¼0.985 for TCGA Level 3); how-

ever, the TCGA Level 3 data resulted in 28 (out of 575) incorrect

predictions, whereas the Rsubread data resulted in only 9 incorrect

predictions (Fig. 4).

Using the TCGA Level 3 data, Cline et al. (2013) suggested that

a subset of the LUSC samples were ‘discordant’ with the remaining

LUSC samples and exhibited ‘LUAD-like’ properties. Our Random

Forests predictions for the Level 3 data led to similar conclusions. In

contrast, when we use the Rsubread data, the ‘LUSC Discordant’

samples are classified mostly as ‘LUSC’. One difference between the

two datasets is that the TCGA Level 3 data contain values for

20 217 genes (after excluding genes that have zero variance across

all samples), whereas the Rsubread data contain values for 22 833

genes. Accordingly, we repeated the Random Forests classification

analysis and limited each dataset so that it included only the 19 453

genes that overlap between the two datasets. With this approach,

both datasets resulted in virtually identical results: most ‘LUSC

Discordant’ samples were classified as ‘LUAD’. We examined the

genes present in the Rsubread data but not in the TCGA Level 3

data and found various genes that show strong and consistent ex-

pression similarity between ‘LUSC Discordant’ and LUSC samples

(Supplementary Fig. S10). Expression patterns for these genes are

consistent and strong enough that they alter the Random Forests

classification results for the ‘LUSC Discordant’ samples. Although

these samples do exhibit expression patterns characteristic of LUAD

Fig. 3. Empirical cumulative distribution of total mapped reads using raw

gene counts. In all cases, the cumulative distributions were more consistent

for Rsubread than for the TCGA pipeline produced gene counts data. The ab-

errantly expressed samples in the TCGA data are the same samples (GFP

sample 4, HER2 samples 2 and 4) that showed visually different expression

patterns in the heat maps (see Fig. 1). GFP samples (n¼12) are represented

in blue and HER2 samples (n¼5) are represented in brown color
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for many genes, this analysis indicates that these samples should not

necessarily be classified as LUAD tumors. We observed this differ-

ence because the Rsubread data were processed using relatively re-

cent gene definitions; thus researchers who work with these data

may have a more complete picture of tumor biology.

4 Discussion

To our knowledge, this compendium of RNA-Seq tumor data is the

largest compiled to date. It includes 9264 tumor samples and 741

normal samples across 24 cancer types. These data offer an alterna-

tive to the lone pipeline used by the TCGA consortium. In contrast

to the TCGA data portal, which provides the RNA-Seq data in indi-

vidual files for each sample, we have compiled the Rsubread tumor

data into aggregate data files; thus it will be easier for researchers to

analyze the data and compare across cancer types. We have matched

these data to clinical variables to ease the process of examining rela-

tionships between these variables and gene-expression levels.

Different RNA-Seq processing pipelines differ considerably in

accuracy for quantifying gene-level expression values (Fonseca et al.,

2014). However, our goal was not to perform an exhaustive bench-

mark comparison across the many tools available for processing

RNA-Seq data, although others have shown that Rsubread performs

quite well in such benchmarks at quantifying gene-expression levels

(SEQC/MAQC-III Consortium, 2014). Rather our goals were to

provide a new community resource and to provide evidence that this

alternative dataset is of high quality and performs better in various

downstream analyses than the standard TCGA data. We have dem-

onstrated that Rsubread produces more consistent values across bio-

logical replicates, and we have provided evidence that our data lead

to more biologically relevant conclusions. Tens of thousands of

hours of computational processing time were necessary to compile

this dataset. Thus we also hope to prevent the need for other scien-

tists to invest similar resources.

Our dataset will be most useful to researchers who wish to com-

pare gene-level expression values across samples. Researchers who

wish to work with transcript- or exon-level values or who wish to

identify splice junctions may find the TCGA Level 3 data useful for

this purpose. Various Web-based portals exist for visualizing and

analyzing TCGA data. These include cBioPortal for Cancer

Genomics (Cerami et al., 2012; Gao et al., 2013) and the UCSC

Cancer Genomics Browser (Zhu et al., 2009). Our data could be

incorporated into these portals as an additional option for users

who wish to analyze raw gene counts or to use the FPKM and TPM

values that we provide.

We plan to update the data as more cancer types and tumor sam-

ples become available. We used open-source software to align and

normalize the data and have made our processing code publicly avail-

able. In addition, we used single-sample normalization techniques to

process the data. Thus, one can add new samples as they become

available without affecting the existing data. However, we emphasize

that it may still be necessary for researchers to correct for inter–sample

variation when comparing data across batches and cancer types.
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Fig. 4. Receiver operating characteristics (ROC) curves (in black) showing the balance between sensitivity and specificity in classifying TCGA lung adenocarci-

noma (LUAD) and lung squamous carcinoma (LUSC) samples using TCGA Level 3 and Rsubread pipeline processed RNA-Seq data. The gray shaded areas de-

note the confidence intervals associated with the ROC curve. The Rsubread data resulted in more accurate predictions than the TCGA Level 3 data when all the

genes for the respective pipelines were used
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