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Abstract

Motivation: Leveraging the large compendium of genomic data to predict biomedical pathways

and specific mechanisms of protein interactions genome-wide in metazoan organisms has been

challenging. In contrast to unicellular organisms, biological and technical variation originating

from diverse tissues and cell-lineages is often the largest source of variation in metazoan data com-

pendia. Therefore, a new computational strategy accounting for the tissue heterogeneity in the

functional genomic data is needed to accurately translate the vast amount of human genomic data

into specific interaction-level hypotheses.

Results: We developed an integrated, scalable strategy for inferring multiple human gene inter-

action types that takes advantage of data from diverse tissue and cell-lineage origins. Our approach

specifically predicts both the presence of a functional association and also the most likely

interaction type among human genes or its protein products on a whole-genome scale. We demon-

strate that directly incorporating tissue contextual information improves the accuracy of our predic-

tions, and further, that such genome-wide results can be used to significantly refine regulatory

interactions from primary experimental datasets (e.g. ChIP-Seq, mass spectrometry).

Availability and implementation: An interactive website hosting all of our interaction predictions is

publically available at http://pathwaynet.princeton.edu. Software was implemented using the

open-source Sleipnir library, which is available for download at https://bitbucket.org/libsleipnir/lib

sleipnir.bitbucket.org.

Contact: ogt@cs.princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The molecular activity in a cellular system is maintained by a com-

plex interplay between genes, gene products, metabolites and the

environment (Hand and Hardewig, 1996). In particular, intricate

biomolecular pathways are formed by a combination of diverse

types of mechanistic pairwise interactions, including physical bind-

ing in protein–protein complexes (de Lange, 2005), small-molecule-

based modifications (Mann and Jensen, 2003) and regulatory

actions by activators and repressors (Cowell, 1994). Mapping out

these cellular pathways at a whole-genome level is a crucial step for

VC The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1093

Bioinformatics, 31(7), 2015, 1093–1101

doi: 10.1093/bioinformatics/btu786

Advance Access Publication Date: 26 November 2014

Original Paper

http://pathwaynet.princeton.edu
https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org
https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu786/-/DC1
-
,
http://www.oxfordjournals.org/


the advancement of human systems biology, aiding at every level

from deciphering cellular function to understanding the molecular

cause of many complex human diseases.

Functional genomic datasets such as gene expression, cellular lo-

calization and DNA/protein binding assays each captures distinct as-

pects of the cellular activity across multiple cell types and

perturbations. However, turning these different instances or ‘views’

of a complex system into an understanding of pathways has proven

to be a challenging undertaking. Especially in complex metazoan or-

ganisms, such as humans, tissue and cell type-specific expression

underlie cellular development, function, and homeostasis (Britten

and Davidson, 1969). Consequently, much of the biological and

technical variation of the functional genomic data is driven by tissue

and cell-lineage heterogeneity. Translating the vast amount of gen-

omic data into specific pathway-level hypotheses thus requires de-

velopment of algorithmic and statistical approaches that satisfy

three requirements: (i) inferring specific individual types of gene

interactions, (ii) being scalable to the whole genome and (iii) robust

in leveraging biological data from any of the diverse tissue contexts

(i.e. experimental results drawn from differing tissues and poten-

tially mixed samples or samples from tissue-culture experiments).

In this work, we developed a tissue-context aggregation-based

approach for predicting and studying multiple types of pathway-

level gene interactions for metazoan mammalian organisms, specif-

ically applying this approach to the human data compendium. For

our approach, we first built a catalog of tissue and interaction-type

specific gold standards (e.g. phosphorylation (kinase-substrate)

interactions among brain expressed proteins) restricted to gene pairs

coexpressed in any of 77 tissues based on curated pathway data-

bases and gene-to-tissue expression profiling. We then utilize a

Support Vector Machine (SVM) (Noble, 2006) to generate initial

predictions of multiple gene interaction types independently in the

context of each tissue (i.e. utilizing the tissue-specific gold standard)

by integrating �1600 heterogeneous human experimental datasets

[e.g. mRNA expression, transcription factor (TF) and kinase motifs

and post-translational modifications (PTMs)]. Finally, we aggregate

the tissue-context based predictions to obtain the most probable set

of interaction labels or each gene pair across the set of pathway-level

interaction types (in this study we predict transcriptional regulation,

co-complex, phosphorylation and the more general post-transla-

tional regulation). Our methodology uniquely allows us to harness

the wealth of information in high-throughput genomic data collec-

tions by simultaneously separating the heterogeneity originating

from diverse tissues to improve signals for predicting different indi-

vidual interaction types.

To our knowledge, prediction of such genome-wide pathway-

level interaction networks in metazoans is an open problem. Many

recent studies have begun to address the challenges by inferring or

experimentally capturing physical interaction networks (Rhodes

et al., 2005; Rual et al., 2005; Schmitt et al., 2014; Stelzl et al.,

2005; von Mering et al., 2007), genetic interaction networks (Bassik

et al. 2013), Bayesian integration for functional association net-

works (Date and Stoeckert, 2006; Huttenhower et al., 2009; Lee

et al., 2004; Mostafavi et al., 2008; Park et al., 2013; Troyanskaya

et al., 2003; Wong et al., 2012) or predicting regulatory networks

from specific primary datasets (Margolin et al., 2006; Neph et al.,

2012a,b). However, most previous efforts for predicting pathway

interactions have been focused on unicellular model organisms (e.g.

Escherichia. coli) (Haynes et al., 2013; Marbach et al., 2012), while

genome-wide integrated analysis in mammalian organisms have

been focused on cross-species integration for inferring multiple types

of functional couplings [e.g co-membership to metabolic pathways,

signaling pathways or protein–protein interactions (PPI)]

(Alexeyenko and Sonnhammer, 2009). No prior integrative method

to our knowledge utilizes one of the most significant and important

sources of biological variation in human datasets: tissue context.

Although several tissue-specific datasets have been generated and

analyzed in previous work (Lonsdale et al., 2013; Su et al., 2004),

we demonstrate that methodological development is required in

addition to the inclusion of tissue-specific data to improve the pre-

diction accuracy of integrated interaction predictions in metazoans.

Our work extends the methodological advancements achieved

studying pathway interactions among a focused subset of genes or in

unicellular model organisms and provides a platform for applying

such methods to human data by addressing the challenge of tissue

heterogeneity.

Ultimately, we envision that our genome-wide interaction net-

works cannot only be useful to biology researchers investigating a

specific protein or interactions of interest, but also be leveraged

to increase the interpretability of new high-throughput studies

(ChIP-Seq, proteomics, disease samples, etc.) that capture condition-

specific cellular states. As a proof of concept, we demonstrate the

utility of our networks by overlaying our interaction networks to

identify potential regulatory targets of TFs on 690 ChIP-Seq experi-

mental datasets generated by the ENCODE project (Landt et al.,

2012). In addition, we generated the first in vivo derived binding/

recognition motifs for cancer-associated TANK-binding kinase 1

(TBK1) by integrating our predicted phosphorylation network with

a recent TBK1 knockdown phospho-proteomics study (Kim et al.,

2013). Finally, we provide a web-based interface for exploring all

our interaction networks and integrative analysis of user data at

http://pathwaynet.princeton.edu.

2 Methods

2.1 Tissue-aware integration
The final output of our new prediction pipeline consists of predicted

probabilities of gene pair associations for multiple pathway level

interaction types (e.g. transcriptional regulation, phosphorylation).

Each interaction type network is derived from tissue-aware integra-

tion of intermediate per-tissue based SVM classifiers (77 tissues

total) that capture tissue-relevant interaction signal while integrating

across �50 000 genome-scale experiments. Details of the construc-

tion of gold standard interaction pairs, tissue context, SVM classifier

and input datasets are described in the following sections.

2.1.1 Interaction catalog construction

Unfortunately, there exists no comprehensive curated gold standard

repository for known human pathway level interactions. For each

interaction type evaluated here, we assembled a gold standard

from various sources that have collected experimentally validated

interactions. This resulted in 51 525 unique experimentally validated

positive interaction labels across four interaction types: transcrip-

tional regulation, phosphorylation, protein co-complexes and

post-translational regulation (individual term counts in

Supplementary Table S1). Detailed descriptions of interaction type

definitions and interaction gold standard construction are provided

in Supplementary Information.

All training, evaluation and predictions were limited to the

search space of gene pairs in accordance with the protein property

that defines each interaction type. Specifically, transcriptional regu-

lation was limited to the subset of gene pairs that included at least

one human TF [total 1321 TFs from annotation study (Vaquerizas
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et al., 2009)]. Likewise, phosphorylation was limited to the gene

pairs that included at least one of 514 human kinases (Manning

et al., 2002) and post-translational regulation to the subset that

included at least 1 of 1881 protein modifying enzymes (e.g. includes

the 514 kinases, 217 e3 ligases) (Gene Ontology Consortium, 2004).

All genes and its protein products were represented by Entrez gene

ids and the final gene-holdout cross-validation background priors

used in evaluation were as follows: transcriptional regulation:

0.002; phosphorylation: 0.002; post-translational regulation:

0.0004; co-complex: 0.0005. These priors represent the fraction of

known interacting pairs over all positive and negative interactions

(negative example construction detailed in Supplementary

Information) and were utilized to calculate fold improvement over

background for each classification task.

2.1.2 Data sources and preprocessing

We collected a total of 1564 mRNA publically available human ex-

pression datasets (Affymetrix U133A and U133 Plus 2.0 platform)

from NCBI Gene Expression Omnibus (GEO) (Edgar et al., 2002)

(full list of GEO datasets listed in Supplementary Table S2).

Expression data were normalized according to the procedure

described in (Park et al., 2013).

For non-expression data, data types that closely related to the

output interaction type were excluded to avoid any circularity (e.g.

no physical interaction data was used in our prediction pipeline as

we observe a large overlap of co-complex or phosphorylation posi-

tive examples with PPI databases commonly used such as BioGrid

(Stark et al., 2011)). Motif information for TFs were obtained from

JASPAR (Sandelin et al., 2004), DNaseI profiling (Neph et al.,

2012a,b), FastCompare (Elemento and Tavazoie, 2005), CISBP

(Ray et al., 2013) and TRANSFAC (Matys et al., 2003), miRNA

from MSigDB mir database (Subramanian et al., 2005) and EBI

MicroCosm database (Griffiths-Jones et al., 2008) and protein kin-

ases from PhosphoMotif (Amanchy et al., 2007). Protein domain-

domain and motif interactions were obtained from PrePPI (Zhang

et al., 2013), DOMINE (Yellaboina et al., 2011) and the iELM web-

server (Weatheritt et al., 2012). For PrePPI, only the structure-based

protein-pair scores were exclusively extracted from PrePPI without

including the other types of non-structural data that were later inte-

grated in the study by Zhang et al. (2013). Short linear motifs were

identified for all human proteins from iELM. For each occurrence

three types of iELM scores were utilized: conservation score (reflect-

ing the overall quality of the motif conservation), relative local con-

servation score (reflecting the constraint on each residue relative to a

window of adjacent residues), and the IUPRED score (indicating the

level of protein disorder). PTM potential of proteins was derived by

catalogs made from UniProt (Apweiler et al., 2004) and PTMcode

(Minguez et al., 2012). To capture the cellular component profile

similarity between genes, we took the semantic similarity of Gene

Ontology (GO) (Gene Ontology Consortium, 2004) cellular compo-

nent annotation profile for terms that had more than 100 gene anno-

tations between all gene pairs (each GO term was weighted by the

normalized information content,

normIC ¼
log

jGi jGi2t

jGi jGi2anyTerm

� �

log 100
jGi jGi2anyTerm

� �

where i is the gene index and t is the GO term). To capture the

phenotype similarity between genes, chemical and genetic perturb-

ation studies curated by the MSigDB (Subramanian et al., 2005)

were summarized into gene pairwise similarity phenotype profile

scores. Detailed descriptions of how each dataset were used as fea-

tures provided in Supplementary Information.

2.1.3 Human tissue context construction

In order to capture a wide variety of human tissues in our study, we

cataloged genes that are probabilistically identified to be expressed

across a set of 77 diverse human tissues utilizing the Gene

Expression Barcode methodology (McCall et al., 2011; Zilliox and

Irizarry, 2007). This methodology provides a probabilistic frame-

work for determining if an expression value is more likely to come

from an expressed or silenced (i.e. unexpressed) distribution, mod-

eled for each gene. Specifically in our study, biologically informative

tissue terms were curated from the BRENDA Tissue Ontology

(BTO) (Gremse et al., 2011). Next, text-mining of sample descrip-

tions and textual information available in GEO (Edgar et al., 2002)

was utilized to annotate expression samples to BTO terms (detailed

descriptions of the sample annotation process are provided in the

Supplementary Information). Next the Barcode methodology was

applied to each expression sample with a tissue BTO term annota-

tion (total 14 092 expression samples) and genes that had an average

Barcode probability above 0.7 across tissue annotated expression

samples were flagged as transcriptionally active in the tissue (results

robust to Barcode cutoff Supplementary Fig. S1).

2.1.4 Tissue-aware data integration

The goal of our integration is to harness the information from the

genomic data compendium to predict accurate pathway level inter-

actions. Specifically, the integration is designed to model and exploit

the tissue-specific variation across genomic datasets for robust inte-

gration in metazoan interactome prediction. Unfortunately, al-

though many diverse types of experimentally validated gene

interactions have been curated by multiple databases (Kanehisa and

Goto, 2000; Schaefer et al., 2009), the set of tissues in which any

given interaction occurs is often not annotated and usually un-

known. Thus, we take the approach of generating tissue-specific

interaction learning examples by overlaying the Barcode derived tis-

sue contexts onto the known gene interactions. Specifically, for each

interaction type, a SVM (Noble, 2006) classifier was trained per tis-

sue context. The training gold standard for each interaction type i

and tissue t was define as the following:

GSi;t ¼ gsi
gn ;gm
jgn; gm 2 Tissuet ^ gn 62 Ubiq _ gm 62 Ubiqð Þ

n o

where gs is an interaction example for interaction type i, and genes

n, m. Tissue contexts t are all genes identified by our Barcode ana-

lysis to be transcribed in tissue t and Ubiq (ubiquitous) are genes

that are transcribed across all tissues. Thus, a gene pair was con-

sidered a tissue-specific interaction example if both genes were

expressed in the tissue, while ubiquitous gene interactions (i.e. inter-

actions between genes expressed in all tissues) were treated separ-

ately as an independent context to accurately capture tissue-specific

variation. Predicting for co-complex, we were unable to separate

out ubiquitous gene pair examples due to the high percentage of

such pairs �84% (transcriptional regulation is �35%) in the gold

standard.

For each training interaction example a feature vector was con-

structed from a total of 1590 datasets as described above.

Continuous expression features were binned into 0.2 z-score inter-

vals and missing values were set to 0 (Lewis et al., 2006). The set of
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feature vectors for positive and negative training examples were

used to train a linear SVM according to the following formulation:

min
w;ni�0

1

2
wTwþ C

n

Xn

i¼1

ni

8i : yi wTxi

� �
�1� ni

where n is the training example gene interactions, w is the weight

vector for each dataset, yi is the training label of interaction example

i and xi is the data vector for all the features for gene pair i. All clas-

sifiers were trained using the identical gene-wise 3-fold cross valid-

ation split and tissue-contexts with fewer than 30 gene pair cross-

validation training examples were dropped. Finally, we merged the

tissue-context based intermediate-predictions to obtain the most

probable set of labels for each gene pair by assigning the mean pre-

dicted score of the top quartile of prediction values across tissue-

contexts for each interaction type (performed best compared with

other aggregation methods based on our cross-validation results,

Supplementary Fig. S2). In addition, one global ‘tissue-unaware’

classifier was trained for each interaction type using the entire gold

standard (i.e. non-tissue segmented). Also, we generated bagging-

like predictions for each interaction type, where the prediction pipe-

line (e.g. data) was set constant but each gene tissue expression

profile was randomly swapped between genes (resulting in equal

number of total tissue contexts and number of gene assignments).

All subsequent evaluation analyses were conducted using these gene-

wise 3-fold cross-validated networks (i.e. 3-fold cross-validation

split of genes with each fold of tissue-aware SVM training were con-

ducted among only gold standard pairs where both genes not part of

the held out gene set) to avoid any potential circularity.

2.2 Transcriptional regulation network used for analysis

of ChIP-Seq data
Six hundred and ninety ChIP-Seq (Park, 2009) datasets generated by

the ENCODE project were used to identify potential TF regulatory

targets for a total of 109 TFs. All ChIP-Seq data were handled as

‘Uniform Peaks’ identified based on the ENCODE analysis and nor-

malization pipeline (Landt et al., 2012). A gene was considered a

possible target of a TF if the TF’s ChIP-Seq peak overlapped a win-

dow surrounding the gene’s transcription start site (TSS). Windows

of 6500, 1000 and 2000 bp were used to identify potential regula-

tory targets. Next, for each TF, specific GO biological process terms

(with 5–200 gene annotations) experimentally annotated to that TF

was identified. The potential regulatory targets of each TF identified

through ChIP-Seq data alone were then tested for enrichment of GO

biological processes associated with the TF using a hypergeometric

test. Next, our transcriptional regulation network was used to refine

ChIP-Seq identified targets by filtering away targets that associated

with the TF with a network probability score less than the prior

(i.e. no data support). The GO term enrichment analysis was then

repeated on the network-refined ChIP-Seq target genes.

2.3 Phosphorylation network used for analysis of

phospho-proteomics data
In addition to ChIP-Seq data, we demonstrated the utility of our net-

works to identify novel phospho-binding or recognition motifs from

mass-spectrometry proteomics data. We considered a mass spec-

trometry experiment that measured altered phosphoproteins follow-

ing RNAi-mediated knockdown of TBK1 (Kim et al., 2013). In this

study, a total of 1154 proteins were identified for a loss of

phosphopeptide (PEP score<0.5 and Mass error<5 ppm). Protein

motif discovery tool FIRE (Elemento et al., 2007; Lieber et al.,

2010) was applied to these differentially phosphorylated protein se-

quences to find enriched motifs that could potentially be TBK1 rec-

ognition sites in its targets. Next, similar to the ChIP-Seq example,

we refined the mass-spectroscopy targets using our predicted phos-

phorylation network by filtered out differentially phosphorylated

proteins that were linked to TBK1 with a network probability less

than the prior. FIRE was re-applied to this filtered set of differen-

tially phosphorylated proteins for discovery of enriched motifs.

Identical to the ChIP-Seq analysis, cross-validated networks were

used for the analysis.

2.4 Implementation
All software was implemented using the open-source Sleipnir library

(Huttenhower et al., 2008), which interfaces with the open-source

SVMperf package (Joachims, 2006) for linear kernel SVM classifiers

(error parameter C was set to 250 and error-rate loss function was

used). All network predictions and evaluations were conducted for

the 17 939 genes that were available on the Affymetrix U133A and

U133 Plus 2.0 platforms.

3 Results

We demonstrate the advantage of incorporating tissue context for

predicting multiple pathway-level interaction types (transcriptional

regulation, co-complex, phosphorylation and the more general post-

translational regulation). Specifically, we compare our tissue-aware

learning approach with a simpler version that does not use informa-

tion about tissue heterogeneity among human protein coding genes

(i.e. tissue-unaware learning). In total, we apply our tissue-aware

learning methodology integrating �50 000 genome-scale experi-

ments to generate whole-genome networks prioritizing gene/protein

interactions with strong supporting evidence for each of the pre-

dicted pathway-level interaction types (prediction schematic shown

in Fig. 1). We demonstrate the utility of our interaction networks in

robustly retrieving pathway members across 447 expert-curated

pathways. In addition, we show our interaction networks can be

used to accurately identify false positive regulatory targets in pri-

mary user datasets generated by ChIP-Seq and Mass spectrometry

based phospho-proteomics.

3.1 Tissue-aware learning improves human gene

interaction predictions
To address the challenge of predicting pathway-level interactions in

metazoans, we ask the question if incorporating gene-level tissue

contextual information can improve network prediction. To

measure the benefits of this approach, we conducted a 3-fold cross-

validation experiment on both our tissue-aware learning method

and a simpler tissue-unaware learning method for predicting four

interaction types (i.e. transcriptional regulation, phosphorylation,

co-complex and post-translational regulation). For each interaction

type, we conduct a strict gene-wise holdout evaluation where at

each fold the evaluation gold standard pairs include no genes

observed during the training stage (i.e. SVM training feature vectors

consist of gene-pairs with no overlap with the holdout evaluation

set). In addition, identical human data compendium was used for tis-

sue-aware and tissue-unaware learning predictions.

For all four interaction types, there was a significant perform-

ance gain when using gene-tissue contextual information [P<0.01,

testing for the difference of area under the curve (Hanley and
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McNeil, 1982), Fig. 2] with transcriptional regulation showing the

largest performance boost in precision over background (over

2-fold) at low recall. Background priors are derived from current

knowledge base resources (further detail in Section 2 and

Supplementary Information) and provide a baseline performance ex-

pected by a random classifier. Our tissue-aware learning method

also outperforms a meta-correlation approach, which calculates the

average gene pairwise Pearson correlation over the expression data-

sets (1564 GEO datasets) shown in sky-blue (Fig. 2). We also ob-

serve that the performance gain when applying tissue-aware

integration is consistent among the subset of tissue-specific inter-

action examples (i.e. excluding ubiquitously expressed gene pair ex-

amples for evaluation) for all four interactions types (Supplementary

Fig.re S3). In addition, our tissue-aware learning method outper-

forms a random bagging-like (Breiman, 1996) approach (i.e. ran-

dom assignment of tissue profile to gene with number of bags equal

to the number of tissue contexts), except in co-complex, which

showed comparable performance gains probably due to the signifi-

cant portion of ubiquitously expressed gene pairs represented in the

gold standard �84% (Supplementary Fig. S4). The largest perform-

ance gain in transcriptional regulation is consistent with our obser-

vation (Supplementary Fig. S8) that TFs are generally more tissue

specific compared with other classes of genes (e.g. kinases and

housekeeping genes). In combination, these evaluations suggest that

incorporating tissue-context can significantly improve the accuracy

when predicting gene/protein interactions in human, especially

when the interaction gold standard is tissue-heterogeneous.

3.2 Enhanced retrieval of cellular pathway components
The concurrent inference of human interaction networks for mul-

tiple interaction types allows the generation of specific pathway

level hypotheses. For example, often biologists are left with a set of

genes that are believed to be functionally associated in a biological

process resulting from a high-throughput assay (e.g. differential ex-

pression analysis of a multi-condition RNA-Seq experiment).

However, understanding the mechanistic connection among a set of

functionally related genes has been challenging and requires many

experiments that are often extremely time consuming. Thus, it

would be of great value if pathway-level predictions inferred from

the existing genomic data compendium can be made on any set of

genes of interest to an investigator, allowing a systematic prioritiza-

tion of hypotheses to be experimentally validated.

To address the challenge of pathway component recovery from

functionally related genes, we test our ability to prioritize the path-

way interactions with known curated human pathways. For ex-

ample, human FOXO3 is an important TF involved in cell cycle

regulation and oxidative stress response along with tumorigenesis

and the progression of multiple cancers (Myatt and Lam, 2007).

FOXO3 is known to be functionally associated with human kinase

AKT1 along with important regulatory genes such as BCL6,

GADD45a and YWHAB (Brunet et al., 2001; Fernández de Mattos

et al., 2004; Lehtinen et al., 2006). A researcher can investigate the

biomolecular interactions among these five clinically important

genes, FOXO3, AKT1, BCL6, GADD45a and YWHAB, using our

system, which accurately prioritizes many of the interacting pairs

with the confirmed interaction type (Fig. 3A, AUC 0.82, full ranked

scores in Supplementary Table S3). In addition, such overlay

Fig. 1. Schematic of our tissue-aware integrative pipeline for inferring meta-

zoan gene interactions. We collect tissue and interaction-type specific gold

standards, restricted to protein pairs that are both expressed in the tissue,

based on curated databases and expression profiling of total 77 tissues. Next,

we infer each interaction type network by integrating the genomic data com-

pendium independently in the context of each tissue (i.e. with tissue-specific

learning examples), resulting in multiple intermediate tissue-context net-

works per interaction-type. Following, we integrate the tissue-context based

predictions to obtain the most probable set of labels for each gene pair across

the interaction types. Finally, our predicted networks can be used in multiple

applications such as pathway retrieval or aiding the interpretation of condi-

tion-specific primary datasets

Fig. 2. Tissue-aware learning allows improved recovery of pathway inter-

actions. Our tissue-aware learning methodology (black-line) significantly im-

proves prediction accuracy compare to simpler approaches that ignore tissue

heterogeneity (labeled tissue-unaware learning and represented as salmon-

line) and average correlation across expression datasets (skyblue)
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provides a mechanistic hypothesis of the information flow among

this set of genes. Starting with kinase AKT1 activating the transcrip-

tional complex FOXO3-YWHAB through phosphorylation, next,

the activated FOXO3-YWHAB complex to regulate the expression

of targets BCL6 and GADD45A, connecting Akt1 to many down-

stream cellular processes such as DNA damage and apoptosis.

To systematically evaluate a broader set of pathways, we as-

sessed our ability to recapitulate the pathway interactions for 447

expert-curated human pathways by Pathway Interaction database

(includes all BioCarta pathways and restricted to pathways with

minimum 5 genes and 10 interactions) (Schaefer et al., 2009). For

each pathway, for the genes constituting the pathway, we assess

how accurate our network predictions are in prioritizing the gene

pairs with the correct interaction type label compared with all indir-

ect interactions and direct pairs but with incorrect interaction type

labels (cross-validated predicted networks were used for the ana-

lysis). Our median evaluation performance measures are uniformly

well above random (0.5), shown in Figure 3B, with a median AUC

of 0.69 across all pathways with comparable performance across

different interaction types. Specifically, we observe co-complex

interactions to be the top performer, with a median AUC of 0.74

[consistent with previous observations of strong genomic signal of

co-complex (Qiu and Noble, 2008)] and post-translational regula-

tion to be the most challenging to predict, with a median AUC of

0.61 (results limited to pathways with at least five gene interactions

for the corresponding interaction type, full tabulated results for each

pathway in Supplementary Table S4). Also, our results show signifi-

cant improvement (P<0.01, Wilcoxon rank test) compared with

average gene pairwise correlation over the expression datasets.

Finally, our predictions significantly outperform predictions made

without incorporating tissue contextual information (i.e. tissue-

unaware predictions) and the more general coupling of ‘functional

association’ (Huttenhower et al., 2009), thus highlighting the im-

portance of interaction type specific integration of multiple data

sources (full interaction type performance comparison for all net-

works shown in Supplementary Fig. S5). Taken together, these

results indicate that our network interactions can generate hypothe-

ses not only about pathway structure from random gene pairs, but

can also be used to prioritize the pathway interactions among the

more challenging functionally related gene sets.

3.3 Human interaction networks help interpret primary

experimental datasets
In addition to pathway component recovery, our predicted interac-

tomes can be used to aid the discovery of regulatory targets in indi-

vidual investigator generated condition-specific datasets.

3.3.1 Recovery of transcriptional regulatory targets from ChIP-Seq

datasets

Chromatin immunoprecipitation followed by high-throughput

sequencing (ChIP-Seq) has become a prevalent experimental assay

that is applied to TFs to measure potential regulatory binding re-

gions across the genome in in vivo settings (Park, 2009). Potential

regulatory targets for an immuno-precipitated TF are mainly identi-

fied as genes that have a TF ChIP-Seq binding profile proximal to its

TSS (Gerstein et al., 2012). However, like many biological assays,

ChIP-Seq is known to have a high rate of nonspecific cross-linking

due to the usage of formaldehyde (compared with precise UV cross-

linking that is specific to <1 angstrom proximity) that can lead to

many false positive regulatory candidate targets (Mercer and

Mattick, 2013). In addition, even when given a robust TF-binding

site, often there can be multiple TSS windows proximal to a binding

locus thus obscuring the process of identifying the true regulatory

target gene.

With our predicted transcriptional interaction network con-

structed from over 50 000 genome-scale experiments, we could dis-

criminate false positive regulatory targets identified by a ChIP-Seq

experiment either by the result of a non-specific binding or multiple

TSS windows proximal to a binding profile. Thus, our approach

allows researchers to capture a more accurate binding landscape

at the given experimental condition or tissue of the ChIP-Seq experi-

ment. To test this hypothesis, we overlay our transcriptional regula-

tory network to identify false positive regulatory targets of TFs

identified by ChIP-Seq experimental datasets generated for the

ENCODE project (total 109 TF, 609 ChIP-Seq experiments) (Landt

et al., 2012). Specifically, for each 109 TF, we identify potential

regulatory target genes that have binding-profile peaks located

within a window surrounding the gene’s TSS. Next, we filter

ChIP-Seq identified regulatory target genes that have a predicted

Fig. 3. Our multiple human interaction networks allow improved human path-

way component retrieval. In panel A, we detail a combination of transcrip-

tional, post-translational and physical interactions that we accurately

prioritize surrounding the human tumor suppressor FOXO3. In panel B, we

expand our pathway retrieval evaluation analysis to total 447 human curated

pathways. Each dot in the box plot represents our accuracy of ranking the

pathway interactions above all incorrect interactions between the constitute

genes in a pathway. Overall, our predicted networks show significantly im-

proved performance in retrieval of pathway interactions when evaluated for

both all interactions types combined (‘all labels’) and also for each individual

interaction type (shown in salmon color) compared with average correlation

over the expression dataset (‘all labels (Average correlation)’ in lime-green)
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probability of less than prior (i.e. no experimental support) in our

transcriptional regulatory network. In other words, genes with little

experimental evidence in the human genomic data compendium of

being transcriptionally regulated by the TF are flagged as false

positives.

To evaluate the accuracy of our ability to identify false positive

regulatory targets from ChIP-Seq experiments, we test if the regula-

tory target genes identified for each TF are enriched with genes

known to be involved in biological processes associated with the TF.

We hypothesized that if false positive TF-target gene pairs are accur-

ately filtered, the enrichment of TF-involved biological processes

should improve. Indeed, the evaluation results shown in Figure 4A

demonstrate a significant increase in enrichment when filtering

based on our transcriptional regulatory network compared with the

original regulatory targets identified only from the ChIP-Seq data.

In addition, the improvement in enrichment is consistent across

varying windows 6 500, 1000 and 2000 bp) surrounding TSS for

identifying regulatory target genes. Interestingly, the TSS window of

61000 bp that have been used heuristically in a recent study

(Tiwari et al., 2012) also showed the best performance in our evalu-

ations. Just based on ChIP-Seq data, the 500 bp window is too

restrictive and the 2000 bps window is too promiscuous (i.e. larger

increase in false positive regulatory target genes versus true posi-

tives). However, our methodology permits a much larger window of

62000 bp while improving the overall enrichment. Consequently,

this allows investigators to identify larger number of functional

regulatory targets from the same ChIP-Seq dataset.

3.3.2 Phosphorylation network identifies TBK1 targets from

phospho-proteomics data

With the recent advancement of stable isotope labeling techniques

(e.g. SILAC), quantitative mass spectrometry has allowed the moni-

toring of the global alterations of the knock-down or knock-out

phenotype of a specific gene at the proteome level (e.g. RNAi target-

ing a kinase) (Nesvizhskii et al., 2007). However, RNAi/MS studies

alone cannot distinguish direct regulatory effects from indirect

effects. For example, the collection of differentially phosphorylated

proteins after knocking-down a protein kinase will be a mix of dir-

ect substrates of the knocked-down kinase and also substrates of

other de-activated kinases. This is because often signaling pathways

consists of long kinase cascades, complicating any follow-up

analysis.

We hypothesized that our phosphorylation interaction network,

which summarizes the human data compendium, could be used to

prioritize regulatory target proteins from an investigator’s phospho-

proteomics study. To test the applicability of our proposed

approach, we applied our methodology to a recent phospho-

proteomics study (Kim et al., 2013). In this study, loss of phosphory-

lated proteins was measured using mass spectrometry following the

RNAi mediated knock-down of TBK1. TBK1 is an important kinase

involved in innate immune response and implicated in multiple

human cancers including lung cancer (Guo et al., 2013). Therefore,

the identification of regulatory targets of TBK1 and potential bind-

ing motifs can provide a great resource for future therapeutic

studies.

In the published study, the researchers were not able to report

any potential binding/recognition motifs of TBK1, most likely due

to the mixture of direct and indirect targets among the differentially

phosphorylated proteins. This is especially unfortunate because, al-

though in vitro peptide array studies have been conducted (Hutti

et al., 2012; Newman et al., 2013), no known in vivo binding/recog-

nition motif has been identified for kinase TBK1. In fact, when we

ran the state-of-art motif discovery tool FIRE (Elemento et al.,

2007) on the 2150 differentially phosphorylated protein sequences

(1154 unique genes), we retrieved many known binding motifs of

other kinases such as ERK1,2 and PKC beta kinase (i.e. not the

RNAi knock-down kinase TBK1, motifs shown in Supplementary

Figure S6). Interestingly, many of the kinases that recognize

the identified motifs were among the differentially phosphorylated

proteins (71%). This is consistent with the expectation that many

of the substrates of these kinases (and not TBK1) contributing a

significant portion to the collection of differentially phosphorylated

genes.

To address this challenge, we used our predicted phosphoryl-

ation network to refine the identified protein targets by restricting

differentially phosphorylated proteins to those that also had a high

probability of being regulated by TBK1 in our network. Filtering

out proteins that have little experimental evidence of being regulated

by TBK1 in the human data compendium could improve subsequent

downstream analyses. Thus, we repeated the motif discovery

Fig. 4. Improving the interpretability of primary experimental data. Our inter-

action networks can be used to help investigators increase the interpretability

of condition-specific primary experimental data. In panel A, ChIP-Seq data-

sets generated for the ENCODE project (109 TFs) were processed to identify

TF and potential regulatory target genes. We observe a significant increase in

enrichment of TF associated GO terms among its putative regulator targets,

when removing TF-targets pairs that have low predicted probability in our TF

regulatory network (skyblue). In panel B, represents our predicted phospho-

binding motifs that are present in known TBK1 substrates not identified in the

phospho-proteomics study. Such results support the potential biological rele-

vance of these motifs and the accuracy of our phosphorylation network that

enabled the analysis
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analysis as conducted previously on the sequences of the 258 net-

work-refined protein targets (Supplementary Table S5). As pre-

dicted, we no longer retrieved any significant binding motifs of

other kinases, compared with our previous analysis, which resulted

in multiple known motifs of TBK1 downstream kinase targets

(motifs shown in Supplementary Fig. S7).

Due to the lack of proinflammatory stimuli in the experiment

(Kim et al., 2013), seven known phosphorylation substrates of

TBK1 were not identified to be differentially phosphorylated in this

study. Interestingly, as shown in Figure 4B, 4 motifs among the top

10 significant motifs (only identified through our integrated ap-

proach, phosphorylation networkþFIRE) were present for these

known TBK1 substrates, which were not included in the motif dis-

covery analysis (such occurrence or more motif overlap happening

by random chance, P-value<0.05 based on permuting the motif-

protein profile). Thus, this result supports the possibility of these

motifs being the first in vivo derived motifs identified to be biologic-

ally relevant for TBK1 recognizing its phosphorylation substrates.

4 Discussion

Genomic approaches have provided us with great opportunities in

unearthing the complexity of human biology and diseases. Although

an increasing number of human datasets measuring the molecular

changes at the expression, epigenomic and proteomic level has pro-

vided us with an invaluable public resource, the efficient integration

and identification of regulatory pathways and processes has been

challenging. In this work, by integrating �1600 human genomic-

scale datasets, we provide the means to study human pathway-level

interactions at a whole-genome scale. For each pair of genes in the

human genome, thousands of experimental data points measuring

the behavior of these genes and its protein products were summar-

ized to infer both the presence of a functional association and the

most likely pathway interaction type. By applying our interaction

networks to experimental datasets, we were able to improve the ac-

curacy of identifying TF regulatory targets from ChIP-Seq data com-

pared with a traditional TSS-proximity method, and also identifying

novel kinase substrate recognition motifs from phospho-proteomics

data.

This study demonstrates that directly incorporating tissue con-

textual information in the data integration and inference of gene

interactions for metazoan mammalian organisms can significantly

improve prediction accuracy. Although we have implemented our

system utilizing a maximum-margin hyperplane-based SVM algo-

rithm, we anticipate that the overall approach of directly exploiting

tissue and cell-lineage heterogeneity in human datasets can be read-

ily incorporated into many future and existing methods.

Currently, source and target gene information (i.e. directionality)

of a predicted regulatory interaction can only be indirectly inferred

for gene pairs when there is only one regulator or modifying enzyme

protein corresponding to the interaction type (e.g. a predicted phos-

phorylation interaction that includes one kinase or transcriptional

regulation interaction with one TF). Future research will be required

to develop methods and incorporate new data sources to unravel the

directionality between regulator genes, such as the regulatory direc-

tionality between the �500 human kinases often chained together in

signaling cascades. Furthermore, we expect the explicit prediction of

tissue/cell-type specific pathway interaction networks and rewiring

to be the next challenge in unraveling human system biology. Major

effort will be required to generate a sufficient number of experimen-

tally verified tissue-specific interaction gold standards. To enable

such efforts, we have made all of our predicted whole-genome net-

works publically available at an interactive web-portal, pathway-

net.princeton.edu, for researchers to conduct exploratory analysis

for future hypothesis generation.
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