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Abstract

High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, 

etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact 

of the choice of method on the overall result of a biological study is often underappreciated, but 

different methods can result in very different biological findings. It is thus essential to evaluate 

and compare the correctness and relative performance of computational methods. The volume of 

the data as well as the complexity of the algorithms render unbiased comparisons challenging. 

This paper discusses some problems and challenges in testing and validation of computational 

methods. We discuss the different types of data (simulated and experimental validation data) as 

well as different metrics to compare methods. We also introduce a new public repository for mass 
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spectrometric reference data sets (http://compms.org/RefData) that contains a collection of 

publicly available data sets for performance evaluation for a wide range of different methods.

Graphical abstract

INTRODUCTION

The fundamental reliance of mass-spectrometry-based (MS) technologies on adequate 

computational tools and methods has been recognized for several years.1 Consequently, we 

witness the development of an increasing number of computational methods for the analysis 

of MS-based proteomics and metabolomics data, such as methods for peptide identification 

and metabolite annotation, protein quantification, identification of differentially expressed 

features, inference of protein–protein interaction partners or protein subcellular localization, 

and so on. Testing and assessing the adequacy of these tools and methods and their 

underlying assumptions is essential to guarantee the reliable processing of MS data and 

generation of trustworthy and reproducible results. In particular nonexperts are often 

overwhelmed by the many different computational methods published each year. Selecting 

the right method for the task is difficult, especially so if no comparative benchmarking is 

available.2 Further complicating this, is the tendency for methods manuscripts to not include 

necessary in depth and objective comparisons to state-of-the-art alternatives.3,4 Common 

pitfalls for such comparisons are (i) a natural bias favoring the authors’ own method and the 

genuine difficulty to optimize a broad range of methods, (ii) the availability, adequacy, and 

selection bias of testing data sets, (iii) a resulting tendency to under-power the comparative 

analysis by using too few data sets, and (iv) the use of irrelevant or wrong performance 

measures. The reliance on and publication of various data analysis methods creates a strong 

need for neutral and efficient comparative assessment of alternative methods:5 end users 

need guidance as to which method is best suited for their specific data set and research 

question and method developers need to benchmark new methods against existing ones. 

While it may seem simple to exclude poorly performing methods, identifying the best 

method for a specific task, especially in the frame of a more complex analysis, is often 

nontrivial. Good method comparison guidelines6,7 and common standards and reference data 

sets are needed to facilitate the objective and fair comparison between analysis methods. 

These standards and references would greatly aid the innovation of analysis methods 

because shortcomings of existing methods are better exposed and potential improvements 

through the application of novel approaches are easier to evaluate.
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Here we report on the outcomes and efforts that stemmed from a discussion group at the 

recent seminar on Computational Mass Spectrometry (Leibniz-Zentrum für Informatik 

Schloss Dagstuhl, Seminar 15351 - Computational Mass Spectrometry, http://

www.dagstuhl.de/15351). No single method is guaranteed to outperform competitors in all 

situations, and each method comparison will require a dedicated evaluation design, adequate 

data, and appropriate outcomes on which to base its conclusions. Because no size fits all, our 

goal is to share our experience and provide general guidance on how to evaluate 

computational MS analysis methods, collect useful data sets, and point out some important 

pitfalls. By promoting community awareness and sharing good practice, it will hopefully 

become possible to better define the realms, where each method is best applied.

RECOMMENDATIONS FOR METHOD ASSESSMENT

First, we would like to distinguish method validation from method comparison. The former 

regards the testing that is necessary to confirm that any new method actually performs the 

desired task. This includes code testing as well as testing the statistical characteristics of a 

method (e.g., defining/identifying settings where the method can be applied). Method 

validation is usually the responsibility of the developer and often done without direct 

comparison to alternative methods. Method comparison, or benchmarking, on the other 

hand, refers to the competitive comparison of several methods based on a common standard. 

Such method comparison may be performed as part of a specific research project to identify 

the best suitable method. The community greatly benefits from published, peer-reviewed, 

and fair comparisons of state-of-the-art methods.

The first and essential step in setting up a method comparison is to define a comparison 

design, that is, identify which steps in the overall design, data generation, processing, and 

interpretation will be affected by the proposed method, how these changes will affect 

subsequent steps and the overall outcomes, and how these (local and global) outcomes will 

be recorded and compared. In Figure 1, we summarize a typical mass-spectrometry-based 

proteomics pipeline to illustrate some method comparison design principles and guidelines 

discussed in this work. We separate this pipeline into four main components: (1) 

experimental setup and data, (2) data acquisition, (3) data processing, and (4) data analysis. 

One of the reasons why method comparison of different algorithms is hard and can be 

misleading is that each of these components, and indeed steps within the components, need 

to be carefully controlled. The overall performance critically depends on the chosen 

algorithms/tools and their parametrization.

For example, when aiming for protein level quantification the critical steps involve peptide 

identification, peptide quantification, data imputation, protein level quantification, and 

differential expression calling. Different computational tools exist for each of these steps, 

and thus tools for performing the same step in the pipeline need to be evaluated 

competitively. A problem arises when entire analysis pipelines or monolithic “black box” 

applications are being compared. Having multiple steps, each of which could, and probably 

should, be parametrized, creates an excessive number of possible scenarios that need to be 

accounted for. Hence, each step would need to be tested independently. As a corollary, we 
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as a community need to develop assessment schemes and performance measures for each 

step, and tools need to provide the transparency necessary for actually comparing each step.

When performing assessment of computational methods, two very critical decisions have to 

be made: first, which tools are being selected for the comparison, and second, what 

reference result should be used to gauge the performance of the methods? The choices made 

here will strongly influence the outcome of the evaluation and thus have to be made with 

great care.

Regarding the first decision, it is essential to compare any new method against best-

performing ones rather than a sample of existing, possibly outdated or obsolete competitors, 

which would inevitably put the new method in a favorable light despite its limited relevance. 

Note that the definition of a best method is not obvious (see also the discussion on 

performance and overall pipeline overview later) and will rely on clearly reporting the goal 

of the method to be compared and the study design. For example, one method might be 

optimized for high sensitivity (that is, reporting results for as many proteins as possible), 

whereas another method might have been designed to report robust results for a smaller set 

of proteins.

The second decision regards the benchmark or reference results being used to quantify the 

performance of each method. It might be tempting to use the output of a trusted method (or 

the consensus result of a set of trusted methods) as a reference; however, such an evaluation 

is inherently flawed: any existing method might return partially wrong or at least imperfect 

results. If there was a method that is able to produce “optimal” output, there would be no 

need to further develop tools for this analysis step. Using the output of other methods as a 

reference is problematic for two reasons: (i) Such comparison would not account for the fact 

that most existing methods might be biased. A new method correcting for this bias would 

not agree with the majority of existing methods. As a consequence, such a scheme would 

intrinsically limit progress because it would force any new method to converge toward the 

consensus of the existing methods. A new method with a totally new concept might appear 

to perform poorly just because it disagrees with the current state-of-the-art method. (ii) The 

assessment would be dependent on the methods that are being compared; that is, an 

evaluation using another set of methods on the same data might come to different 

conclusions.

Thus, the reference (benchmark) has to be based on information that is independent of the 

methods being tested. Three types of data fulfill these requirements and therefore can be 

used to evaluate and compare computational methods: (1) simulated data where the ground 

truth is perfectly defined, (2) reference data sets specifically created for that purpose, for 

example, by using spike-ins or by controlled mixing of samples from different species, and 

(3) experimental data validated using external references and/or orthogonal methods. All of 

these data types have advantages and disadvantages, which are discussed in the following 

sections. We highly recommend to always assess methods on multiple, independent 

validation schemes.

Gatto et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2017 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Simulated Data

The most important advantage of simulated data (see Figure 1), whether simulated at the raw 

data level8–11 (to assess methods focused on raw data processing, such as feature detection) 

or in a processed/final form12–14 (to investigate data imputation or downstream statistical 

analyses), is that the ground truth is well-defined15 and that a wide range of scenarios can be 

simulated, for which it would be difficult, expensive, and/or impossible to create actual 

measurements. Consequently, a substantial risk of using simulated data is that the simulation 

will reflect the model underlying a computational method.15,16 Reliance and wide 

acceptance of simulation might be reached using a community-accepted simulator rather 

than project-specific driven simulations. There is a continuum to the extent simulated data 

will reflect reality, and hence a limit to which the results will be relevant. We, however, 

recognize some value to simulation as a sophisticated code-checking mechanism and to help 

developers and users understand the effects and stability of methods rather than compare 

them. Comparisons based on simulations should be interpreted with care and complemented 

by utilization of real data.

Reference and Spike-in Data

Spike-in and complex mixture data sets (see Figure 1) have been extensively used for testing 

and validation of MS and computational methods, in particular, to assess quantitation 

pipelines (from feature calling, identification transfer, and normalization to significant 

differential expression to assess statistical analyses and their requirements). The former are 

composed of a relatively small number of peptides or proteins (for example, the UPS1 

reference protein set) spiked at a known relative concentration into a constant but complex 

background.17,18 In these designs, a broad spiked-in dynamic range can be assayed and 

tested; however, the limited complexity of these spike-in data and designs often results in 

successful outcomes for most methods under comparison, which does not generalize to more 

complex, real data challenges. Indeed, the properties of the spike-ins and the biological 

material they mimic are very different: Spike-ins are characterized by small and normally 

distributed variance (as reflected by pipetting errors), while real data often exhibit 

substantially greater variances and different types of distributions. While we do not deny the 

usefulness of simple and tractable designs such as spike-ins, it is important to clarify the 

extent to which they conform with real, biologically relevant data. Alternatively, full 

proteomes are mixed in predefined ratios to obtain two hybrid proteome samples.19,20 

Similarly, well-characterized experimental designs, such as latin squares (see Figure 1), that 

control a set of factors of interest reflecting standardized features of a reference data set, 

such as replication over dilution factors, represent a useful testing framework.21 Data sets 

that have been extensively characterized can also be used as gold standards to test and 

validate methods. While spike-in, reference, and gold standard sets (see Figure 1) are 

important, they often represent a limited level of complexity and can lead to overfitted 

evaluations, where matching a method to such data becomes a goal on its own. It is 

important to employ several reference sets to appropriately power the comparative analysis 

between methods.
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Experimental Data

Experimental data sets have generally little or no pre-existing absolute knowledge of the 

ground truth. Even if not fully characterized, they can, however, be used in conjunction with 

an objective metric that enables the assessment of the method at hand. In genomics, several 

examples exist, where real-life experimental data have been used to evaluate computational 

methods while using an external data set as a common reference.22–25 In proteomics, for 

example, the successive iterations of the pRoloc framework for the analysis of spatial 

proteomics data, ranging from standard supervised machine learning,26 semisupervised 

methods,27 and transfer learning,28 have employed publicly available real data sets (that are 

distributed with the software) to validate the methodologies and track their performances. 

These performances were (i) evaluated using stratified cross-validation on a manually 

curated subset, (ii) iteratively validated by expert curation, and (iii) globally assessed by 

comparison against newly acquired and improved real data on identical samples. In such 

cases, one tracks the relative improvement of the algorithms against these data, or a 

characterized subset thereof, rather than their absolute performance. Methods based on 

experimental data without a well-defined ground truth can make use of external references 

that likely correlate with the unknown “truth”.

The utilization of single, yet complex omics data sets for method comparison can be 

challenging, yet in a time where a broad set of technologies are available and multiomics 

studies are of paramount interest, the need for adequate reference data across high-

throughput technologies, for example,29 is crucial. There are genuine opportunities for the 

generation and dissemination of data from matching samples across omics domains, under 

controlled conditions, and as replicated measurements, and we expect a great potential of 

such analyses also for improving computational methods. First, the availability of 

orthogonal measurements (see Figure 1) of the same assayed quantity (such as the relative 

amount of proteins in a sample) using different technologies (the usage of label-free 

quantitation to targeted proteomics data or comparison with protein arrays) can be used to 

directly compare and contrast different errors on the methods. Other examples include the 

comparison of mass spectrometry-based spatial proteomics data with results from imaging 

approaches28 and protein–protein interaction data30 or comparing affinity-purification MS 

results with interaction measurements from alternative methods such as yeast-two-hybrid. 

Importantly, such alternative methods will not generate perfectly true results (i.e., they 

cannot serve as a “ground truth”); however, when comparing the outputs of different 

computational methods run on identical data, better consistency between the output and such 

external information might serve as an indication for improvement.

It is also possible to extend such comparisons to different, biologically related quantities. 

For example, we envision that different methods for quantifying proteins could be assessed 

using matching mRNA concentration measurements (ideally from identical samples) as a 

common, external reference. Only relying on the direct, absolute correlation between protein 

and mRNA levels is, however, hardly an adequate measurement. Indeed, correlation is 

imperfect for a number of reasons, such as translation efficiency, RNA regulation, protein 

half life, and so on.31–34 In addition, the correlation of these quantities is not constant along 

the range of measurements (published values typically range between 0.3 and 0.7) nor linear 
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in terms of the nature of the relation between the two measurements.31–33 The deviation 

from a perfect correlation between protein and mRNA levels is due to two aspects: first, 

biological factors, such as variable post-transcriptional regulation, and second, technical 

noise. A reduction of technical noise will always lead to improved correlation between 

protein and mRNA levels, irrespective of the contribution of biological factors. Improving 

the quantification of protein levels through advancing computational methods will thus be 

reflected in better protein–mRNA correlations. Therefore, relative differences of correlation/

agreement could be informative: the fact that one method results in significantly greater 

correlation between protein and mRNA than another could serve as a guideline for choosing 

the method. Obviously, such assessment requires great care to avoid biases, for example, by 

using identical sets of proteins for the comparison. Furthermore, improving the correlation 

between protein and mRNA levels should not happen at the expense of proteins that are 

strongly regulated at the posttranscriptional level. A possible strategy for addressing this 

issue might be to restrict the assessment to proteins that are already known to be mostly 

driven by their mRNA levels; however, we wish to emphasize that using protein–mRNA 

correlations for method assessment is not yet an accepted standard in the community. The 

ideas outlined here aim to stimulate future work to explore this opportunity more in detail.

Quantifying Performance

It is crucial to identify and document measurable and objective outcomes underlying the 

comparison. These outcomes can reflect the ground truth underlying the data (when 

available) or other properties underlying the confidence of the measurements and their 

interpretation, such as the dispersion. When assessing quantitative data processing, such as, 

for example, the effect of data normalization, dispersion is often measured using metrics 

such as, for example, the standard deviation, the interquantile range (as visualized on 

boxplots), or the coefficient of variation, denoting the spread of a set of measurements. 

Assessment of results with respect to an expected ground truth often relies on the estimation 

of true and false positives and true and false negatives (to the extent these can be identified). 

These scores can be further summarized using adequate tools, such as receiver operating 

characteristic (ROC) curves (for binary classification), precision (a measure of exactness), 

recall (a measure of completeness), or the macro F1 score (the harmonic mean of the 

precision and recall; often used for multiclass classification). Accuracy, a measure of 

proximity to the reference measurement (systematic errors), and precision, a measurement of 

reproducibility of the measurement (random errors) of anticipated true positive 

measurements, are often used in quantitative assessments.20 When assessing imputation 

strategies, the comparison of the estimated/imputed values to known values can be 

performed using the root-mean-square error or any of its many variants. Assessment of 

search engines often uses the false discovery rate, the percent of identified features that are 

incorrect,35 computed as the ratio of false positives to the total of positive discoveries (false 

and true ones). In an ideal situation, one would also want to measure true and false negative 

outcomes of an experiment.

Too Many User-Definable Parameters

An excessive number of user-definable parameters complicates the comparison of 

computational methods. A program with five user-definable parameters with three possible 
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settings each already allows for 35 = 243 possible parameter combinations. Methods with 

many user-definable parameters cause two problems: (1) It becomes difficult for end-users 

to correctly set the parameters, and experience shows that for real-life applications most 

users will use default settings, even if they are inappropriate. (2) Comparing methods 

becomes exceedingly difficult if many possible combinations of parameters have to be 

tested and compared against other methods.36 In a real-life situation the ground truth is 

usually unknown and thus parameters cannot be easily calibrated, and even moderate 

deviations from optimal parameter settings may lead to substantial loss of performance.36 

Having many parameters also creates the danger that users might tweak parameters until 

they get a “desired” result, such as maximizing the number of differentially expressed 

proteins. The same applies to method comparison: Testing many possible parameter 

combinations against some reference data set leads to an overfitting problem. Thus, methods 

with many tunable parameters may have an intrinsic benefit compared to methods with 

fewer parameters that, however, does not necessarily reflect the performance expected in 

real-life applications.

We therefore recommend that (1) methods for MS data analysis should have as few user-

definable parameters as possible, (2) if possible, parameters should be learned from the 

data17,22 (e.g., via built-in cross validation), and (3) if user-definable parameters are 

unavoidable, there should be very clear instructions on how to set these parameters 

depending on the experimental setup (e.g., depending on the experimental platform used, 

species the samples come from, goal of the experiment, etc.)

COMMUNITY RESOURCE FOR REFERENCE DATA SETS

We have described the importance of careful comparison designs, the selection of 

competitors to compare against, the utilization of different data, and the measurement of 

performance. In addition, adequate documentation, reporting, and dissemination of the 

comparison results, parameters, and, ideally, code, will enable both reviewers and future 

users a better interpretation and assessment of the newly proposed method. We argue that it 

is beneficial for the community at large to be able to adopt good practices and reuse valuable 

data sets to support and facilitate the systematic and sound evaluation and comparison of 

computational methods. Establishing fair comparisons is intrinsically difficult and time-

consuming; ideally the opportunity to assess a method on a variety of data sets would be 

given to the original authors of the methods prior to comparisons. We also believe that 

facilitating reproducibility of such evaluations is essential, and requires the dissemination of 

data and code and the thorough reporting of metadata, evaluation design, and metrics.

The utilization of a variety of simulated, reference, and real data sets can go a long way in 

addressing the genuine challenges and pitfalls of method comparison,37 for instance, offer 

an online resource consisting of RNA-seq data from 18 different studies, to facilitate cross-

study comparisons and the development of novel normalization methods. We have set up the 

RefData online resource (http://compms.org/ref) as part of the Computational Mass 

Spectrometry initiative to support the dissemination of such data sets. RefData enables 

members of the community to submit useful data sets, a short description, and links to 

relevant citations and publicly available data, for example, in ProteomeXchange,38 which 
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will, in turn, be browsable and searchable. Rather than perpetually generating new data sets, 

this resource provides a diversity of data sets with baseline analyses obtained from published 

studies to facilitate method comparison. We invite interested parties to submit further data 

and continue this discussion on the CompMS public mailing list.
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Figure 1. 
Overview of a typical mass spectrometry data analysis pipeline, applied to shotgun 

proteomics. Most of these steps equally apply to metabolomics experiments. We highlight 

the flow of information through the pipeline and overlay important notions related to 

computational method validation discussed in the text.
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