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Hypertension is the leading cause of heart failure and cardiovascular comorbidities in developed countries. Left

ventricular structural/functional alterations such as concentric remodeling or hypertrophy have been extensively

studied in hypertensive heart diseases. Furthermore, it is also well-recognized that diastolic function actually

deteriorates in hypertensive subjects prior to overt heart failure.

Novel imaging modality techniques such as myocardial deformation have allowed for early detection of

regional/global myocardial contractile dysfunction. Myocardial deformation, which can be quantified by

measuring the systolic strain and strain rate in three different directions (longitudinal, circumferential and

radial), has facilitated new insights into the understanding of cardiac systolic mechanics in subjects with early

stage myocardial damage.

Previous studies had shown that longitudinal function remains the most sensitive parameter in identifying

hypertension-related myocardial dysfunction, particularly for those patients who had developed LV hypertrophy.

Instead, preserved or enhanced short-axis function, when presented as circumferential or radial strains, may

remain relatively preserved or enhanced in order to compensate for longitudinal functional decline. In this

manner, global cardiac pumping in terms of ejection fraction may remain relatively unchanged.

The early recognition of subclinical systolic dysfunction and associated mechanical compensation in the context of

hypertension is crucial, which potentially helps to identify a disease stage that is still responsive to therapeutic

intervention.
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INTRODUCTION

Hypertension is one of the most commonly encoun-

tered patient problems in daily clinical practice. As a

leading cause of adverse cardiovascular events in de-

veloped societies, the underlying mechanisms, patho-

physiologies and clinical consequences of hypertension

are increasingly becoming more widely recognized.
1-3

Hypertensive heart disease, especially when accompa-

nied by aging, is associated with numerous adverse car-

diac structural/functional remodeling, repercussions

that extend to the cellular level, including abnormal

myocyte growth and collagen fiber deposition, leading
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to myocardial fibrosis, cardiomyopathy and eventually

the development of heart failure (HF).
4,5

Diastolic dysfunction characterized by ventricular

filling abnormalities, including decreased diastolic dis-

tensibility and impaired relaxation, is thought to repre-

sent an early and important pathophysiological inter-

mediate step between hypertension and HF.
6

Nearly

half of all patients with hypertension encounter evi-

dence of diastolic dysfunction,
7

which actually repre-

sents an attractive target for disease prevention be-

cause the high prevalence of hypertension may trans-

late to a greater population-attributable risk.
8

However,

the exact mechanism of the transition from asymptom-

atic diastolic dysfunction to diastolic heart failure re-

mains unclear.

The deleterious factors for impaired cardiac func-

tion in subjects with hypertension are multi-factorial,

such as apoptosis of cardiomyocytes, adaptive ven-

tricular remodeling, increased mechanical stress with

subsequent ventricular hypertrophy, phenotype alter-

ations of cardiomyocytes, interstitial and perivascular

fibrosis, endothelial dysfunction, microvascular insuf-

ficiency, disturbances in intracellular calcium turnover,

and neurohormonal factors.
3,9-12

Identifying subclinical

systolic dysfunction among hypertensive subjects might

be helpful in targeting these patients for preventive

treatment delivery.

Currently suggested phenotypic classification of HF

is based on normal or reduced left ventricular (LV) ejec-

tion fraction (EF). However, it has long been debated

whether systolic function is really “normal” in HF with

preserved EF (HFpEF),
13

owing to the possibility that de-

teriorated myocardial function may happen earlier;

thus, it may be of substantial clinical benefit to look fur-

ther into more complex and sophisticated mechanics

than a conventional estimate such as EF.
14

Furthermore,

preserved global LV systolic function in a resting state

does not necessarily guarantee the normal response of

LV to patient exercise.
15

ETIOLOGY

The presence of objective evidence indicating obvi-

ous diastolic dysfunction (e.g., elevated diastolic filling

pressures or decreased mitral annulus diastolic relax-

ation velocities) or diminished cardiac output had been

used to support the clinical diagnosis of abnormal myo-

cardial function.
16

Patients with HF and reduced EF

(HFrEF) typically exhibit progressive LV chamber dila-

tion, eccentric remodeling, and systolic impairment in

terms of reduced EF. Specific therapies focusing on the

reversal of these structural and functional alterations

may reduce morbidity and mortality in these patients.
17

By contrast, the pathophysiology underlying the de-

velopment of HFpEF among hypertensives remains

only partially understood.
18

Recent large clinical trials

have indicated that the presence of concentric remodel-

ing/LV hypertrophy, left atrial (LA) enlargement, and

diastolic dysfunction are the most common features of

HFpEF.
19

Concentric ventricular remodeling or overt hyper-

trophy occurs most commonly in hypertension and is

more likely to be associated with normal or even re-

duced LV end-diastolic volume (LVEDV) accompanied by

increased ventricular stiffness and limited distensibi-

lity.
20

On the other hand, eccentric hypertrophy was de-

fined by similarly increased LV mass though larger LV

diameter and LVEDV.
21

The development of LV hyper-

trophy is actually a combined consequence of chronic

pressure or volume overload. To compensate for chronic

pressure overload in hypertensive subjects, LV wall

thickness gradually increases in order to normalize wall

stress, leading to concentric LV remodeling and hyper-

trophy.
20

Activation of several biological processes in-

cluding various hormones, growth factors and cytokines

also contribute to protein genesis by promoting muscle

cell growth, leading to structural alterations and re-

modeling.
22

It is thus believed that in untreated hyper-

tension, progression from LV hypertrophy to HF is ac-

companied by serial events/processes such as ischemia,

myocytes apoptosis or fibrosis, and eventually systolic

dysfunction.
23

Strain and strain rate for assessment of cardiac

function

Advances in ultrasound technology such as tissue

Doppler imaging (TDI) and strain or strain rate imaging,

either by Doppler tissue method
24

or two-dimensional

(2D) speckle-tracking, has appreciably broadened our

understanding of cardiac mechanics and has been

shown to identify early stage myocardial dysfunction
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secondary to hypertension.
25,26

The use of TDI to mea-

sure regional myocardial velocity as part of diastolic

functional assessment integration is less prone to load

changes, and is mainly limited by its angle dependency,

tethering effects and translational artifacts.
27-29

Instead,

strain imaging may provide less angle-dependent evalu-

ation of regional and global LV function and further help

to identify altered myocardial systolic mechanics at an

early stage.
30

Strain as a linear measure of tissue deformation can

be expressed as a percentage of the length changes dur-

ing systole between two separate points in the myo-

cardium from its original status.
31

Strain rate is the

derivative of strain, which represents the rate of de-

formation changes over a period of time. As mentioned

before, speckle-tracking echocardiography has been

successfully applied to the measurement of myocardial

strain and strain rate.

The infrastructure of myocardium is actually com-

posed of circumferential fibers in the mid-wall layer,

with longitudinal- with oblique-oriented muscle fibers

lining the endocardial and epicardial layers.
32

The spatial

orientation of these muscle fibers changes continuously

from right-handed helix in subendocardium to left-

handed helix in subepicardium.
33

Hence, cardiac systole

is accomplished by a series of complicated myocardial

contractions in a coordinated fashion leading to ef-

fective pumping from the LV with minimal individual

sarcomere shortening.
34

From a practical view point,

strain can be classified into three different spatial com-

ponents: longitudinal, circumferential, and radial (Figure

1).
31

Myocardial deformation can thus be evaluated by

assessing systolic strain and strain rate, though some-

what diverse in the reference values from different ven-

dors and related algorithms, within a limited region, in a

specific myocardial segment or as a global measure (Fig-

ure 2). These advanced techniques allow objective qu-

antification of cardiac motion and deformation irrespec-

tive of echo beam direction, thus providing a detailed

understanding of cardiac mechanics from all aspects,

and further help to explore the full spectrum of a spe-

cific myocardial disorder not limited to the ventricle.
35-37

By examining the prior use of various techniques,

earlier publications have shown that normal longitudi-

nal strain can vary from 16% to 19%.
38,39

Different image

modalities have generated variable results regarding the

uniformity of strain from base to apex. This regional

variation might be related to angle-limitations caused by

curvatures in the myocardial architecture. Therefore,

segmental cutoff values might be more appropriate

than a single normal cutoff value.

Effects of hypertensive heart remodeling on

myocardial strain

Among the three layers of myocardium, longitudinal

subendocardial fibers are most susceptible to adverse

effects of ischemia, hypoperfusion and age-related in-

terstitial fibrosis.
33

Therefore, longitudinal dysfunction

may serve as an early marker by accomplishing global

longitudinal strain measurement at an early stage of

myocardial damage
40

before overt development of

chamber-level failure, such as reduced EF.
41

Instead, the

mid-wall layer is less affected by these pathological in-

sults as early as the longitudinal function, so strain

analysis based on myocardial short-axis function may

remain relatively preserved at this stage.

Indeed, previous studies comparing three-direc-

tional strain parameters from echocardiography studies

had consistently shown that longitudinal function de-
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Figure 1. The commonly proposed or suggested three different spatial

components of myocardial motion and related deformations as illus-

trated. The green arrow indicates longitudinal deformation with red and

black arrows indicated radial and circumferential deformations, respec-

tively. The differential longitudinal displacement (D) and corresponding

short-axis function/motion in normal and hypertensive concentric re-

modeling (CR) subjects are demonstrated.



clines first with hypertension, in particular for those

who had developed LV hypertrophy.
42,43

Impaired longi-

tudinal shortening is also observed in hypertensive re-

modeling without overt LV hypertrophy or clinical HF

development while in short-axis function, especially for

circumferential or radial mechanics, may remain pre-

served or even enhanced to maintain ventricular func-

tion (Table 1).
41-44

In addition, increased matrix metal-

loproteinase-1 (MMP-1) turnover, a biomarker of myo-

cardial fibrosis, correlated well with decreased longitu-

dinal strain in hypertension and hypertrophic cardio-

myopathy.
45

These findings again supported the concept

that longitudinal contractile function as a sensitive

marker is prone to early pathological changes of the

myocardium, while radial and circumferential strain may

be more resistant to such early myocardial alterations.
46

In diastolic dysfunction, delayed relaxation can

translate into increased end-diastolic pressure and li-

mited ventricular filling, which may exacerbate hyper-

tensive stress responses. Though it has been observed

that both longitudinal and radial strains were decreased

in diastolic heart failure,
47,48

longitudinal functional de-
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Figure 2. Myocardial longitudinal (upper panel in each demonstration) and short-axis (radial or circumferential displayed as lower panel in each

demonstration) deformations are shown. Common encountered commercialized companies/software such as iE33 (QLab, Philips Medical Systems)

(data not shown), GE Vingmed (A: GE Vingmed Ultrasound AS, Horten, Norway), TomTec (B: TomTec, Cardiac 2D Performance Analysis, Tomtec Imag-

ing Systems) or Velocity Vector Imaging (C: Siemens Medical Solutions, Mountain View, CA, USA) and strain or related volume-velocity curve analysis

in the same subjects are shown. The amplitude and direction from speckle-tracking analysis (B & C) represents the amplitude and direction of ongo-

ing regional myocardial motions.



cline may occur with concurrent diastolic dysfunction

early in hypertensive subjects
49

when short-axis func-

tion including radial or circumferential function remain

unchanged.
50

Subsequent impairment in short-axis con-

tractile functional reserve may act as a contributing fac-

tor to the transition from subclinical myocardial dys-

function to heart failure development.

The exact mechanisms underlying the maintenance

of ventricular short-axis function in the context of early

stages of hypertension were believed to come from the

cross-fiber shortening phenomenon from hypertension-

related ventricular remodeling and increased systolic wall

thickening,
51

partially due to multiplied myofiber units

and extensive extra-cellular matrix deposition.
52,53

However, such compensation of short-axis function

under clinical scenarios of hypertensive heart diseases

does not happen without limits. It has been observed

that both longitudinal and short-axis based strain mea-

sures may actually decrease in heart failure subjects

even at a stage when LV EF does not decrease.
54,55

Since

deteriorated longitudinal function already exists in the

early stages of hypertensive heart disease, subsequent

loss of short-axis reserve may theoretically contribute to

the transition from hypertension to heart failure (Table

2).
40,53,56

CONCLUSION

Hypertension and heart failure are closely related.

Recent advances in noninvasive cardiovascular imaging

modalities have contributed new insights into the un-

derstanding of underlying cardiac mechanics, and fur-

ther provided accurate and objective measures on

global/regional contractile function. The early detection

of subclinical systolic dysfunction by deformation imag-

ing may also help in identifying hypertensive subjects at

risk for subsequent adverse events, and in selecting

individuals for preventive treatment delivery.
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