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Heart failure with preserved ejection fraction (HFpEF) is a cardinal and complex syndrome tightly linked to several

co-morbidities, and is currently emerging as a new public health problem in the elderly population. However,

despite aggressive intervention, patients with HFpEF typically have a poor prognosis. Part of the reason underlying

this phenomenon can be attributed to the insufficiently understood pathophysiology behind this syndrome.

Traditional echocardiography-derived parameters such as left ventricular (LV) ejection fraction (LVEF) may not be

useful in characterizing such a clinical disorder, or in further identifying the subjects at risk, owing in part to its lack

of power to disclose subclinical systolic dysfunction in such a clinical scenario. Herein, we briefly reviewed the

clinical manifestations and risk factors of HFpEF, and further provided insights into the understanding of the

ventricular architecture and cardiac mechanics underlying HFpEF by utilizing advanced cardiovascular imaging

modalities, with a special focus on myocardial deformation.
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INTRODUCTION

Heart failure (HF) is a complex clinical syndrome

that correlates with many comorbidities and has caused

a significant impact on human health and disabilities.
1

Several clinical variables such as demographic informa-

tion, laboratory tests, electrocardiographic and other

imaging-based modalities had recently been shown to

help stratify clinical outcomes in this patient population.
2

A traditional marker of left ventricular (LV) contractile

function such as LV ejection fraction (LVEF), when de-

fined by the difference of between LV end-diastolic and

end-systolic volume indexed to LV end-diastolic volume,

remained as the major index of LV systolic function and

may also serve as a key prognosticator in systolic heart

failure (HFrEF, defined by LVEF < 40% or < 50%).
3

On the

other hand, symptoms or signs of HF not completely dis-

tinguishable from subjects with HFrEF may also manifest

in those with relatively preserved EF (HFpEF) as a pos-

sible distinct HF population, with a commonly set cut-

off of LVEF exceeding 40% to 45%. The patients with

HFpEF are more likely to be older, have larger body

mass index, and are predominantly female, with a high

prevalence of concomitant co-morbidities such as hy-

pertension, diabetes and atrial fibrillation.
4,5

Recently,

some authors have suggested that the prognosis may

not differ significantly between these two HF groups

(HFrEF or HFpEF) based on large community or admis-
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sion cohorts,
6,7

making HFpEF a substantial challenging

public health issue, with an increasing burden on the

elderly population. The overall prevalence of HFpEF was

estimated to be 1.1-5.5% in the general population and

actually comprised a relatively large proportion (40-

71%, mean 54%) of all clinical HF patients.
5

Among the patients with HFpEF, LVEF per se may

not be adequate to evaluate the potential functional

disturbances of LV. Therefore, there is an urgent need to

develop some other imaging methods or modalities

both to identify and to explain the mechanisms under-

lying earlier stage myocardial mechanical failure in this

patient population. Herein, we reviewed the advances

and concepts in imaging parameters associated with

cardiac geometry and deformation, and further de-

scribed the observations and findings within the context

of early cardiac mechanical failure and HFpEF.

ARCHITECTURE OF LV MYOCARDIUM AND THE

DYNAMICS OF “TWIST/TORSION”

Essentially, LV is a hollow bullet-shape chamber

which normally contracts and relaxes with reliable ef-

fectiveness. How this perfect mechanism works in a

highly-efficient manner is actually based on the archi-

tecture of LV myocardium.
8,9

In view of individual myo-

fibers, subendocardial myofibers except papillary mus-

cles run counterclockwise in the direction from the mi-

tral annulus (LV base) towards the LV apex, and then

convert to a circumferential direction forming the mid-

dle layer of myocardium. The 2 distinct helicoids muscle

band theory proposed by Torrent-Guasp et al. high-

lighted the new conceptual framework of how opposite

helical fibers aligned from the base-to-apex direction

from a single muscle band can be folded, cross-bridged

and functioning synergistically.
10

Thereafter, they shift to run clockwise in the direction

from the LV apex to the mitral annulus, forming the

subepicardial myofiber layer. Because of these arrange-

ments over the transmural myocardial continuum, sub-

endocardial and subepicardial myofibers form two co-

unter-directional helixes (right-hand helix in subendo-

cardium and left-hand helix in subepicardium), making

them aligned predominantly in longitudinal and oblique

orientation. In the direction from the LV apex towards the

LV base, subendocardium runs clockwise and subepi-

cardium runs counterclockwise, creating an apex-to-base

shear gradient. Conversely, the middle layer of myocardium

is arranged in circumferential direction as described above.

During the dynamics of both longitudinal and circum-

ferential myofiber shortening, a substantial degree of

myocardial sliding and transmural shearing happens,
11

generating myocardial wall thickening in the radial direc-

tion,
12

maximal cavity volume reduction and high fraction

ejection. Furthermore, by using mathematical computa-

tional model, transmural wall stress and strain can be

evenly distributed and optimized based on the counter-

directional helical arrangement of myocardium against

intra-cavity pressure with minimal energy consumption.
13

For each specific ventricular cross-sectional plane at

any level, there is a “rotation” angle for a specific point

at any time in the myolaminar sheet of varied directions

(either clockwise or counter-clockwise during myo-

cardial systole, and vice versa during diastole), in part

driven by the opposite contractile direction of sub-

endocardium and subepicardium longitudinal/oblique

myofibers during the whole cardiac cycle.
14

As a result,

these fibers wrap up the whole LV in a complex and

specific manner which may generate a highly efficient

wringing motion with minimal energy expenditure dur-

ing systolic contraction,
9

generating a net “torsional”

behavior with a relatively small degree of myocardial

shortening in maintaining adequate cardiac output.

While most literature has represented twist as rota-

tional angle differences between apical and basal cross-

sectional planes on the epicardial surface,
15

the normal-

ization of such parameter by LV length refers to the net

LV twist angle or the net LV torsion angle (degrees per

centimeter or radians).
16

In addition, such complex myo-

cardial torsional mechanics are not merely limited to

ventricular systole/diastole, but can also happen within

iso-volumic contraction, and have been proposed to be

the warm-up phenomenon for subsequent efficient

myocardial contraction/relaxation.
17,18

The architecture

of LV myocardium is summarized in Figures 1 and 2.

STRAIN AND SPECKLE TRACKING IMAGING IN

ASSESSING CARDIAC MECHANICS

Myocardial deformation, a dimensionless index that
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can be simply expressed as strain, is defined as the per-

centage of length change between two points during a

cardiac cycle, compared with the original length in end-

diastole as the following equation:

Strain = 100 � (L � Lo)/Lo;

L: length at specific moment;

Lo: length in end-diastole.

As mentioned above, biophysical LV deformation

can be categorized into 3 different, perpendicular com-

ponents
19

with highly efficient synergistic coordination

achieved based on the directions of myofiber sheets

(longitudinal and circumferential) and the cross-fiber

shortening effects leading to wall thickening (radial)

(Figure 3A). Based on the definition, negative values of

strain represent shortening of myocardium, with myo-

cardial lengthening presenting positive values. Speckle

tracking imaging as an emerging echocardiography tech-

nique allows B-mode speckle identification from two-

dimensional images. Subsequently, it traces their mo-

tion frame-by-frame independent of echo-beam direc-

tion, so that regional or global events of 3 cardiac de-

formation components
19

as well as torsional dynamic
20

can be obtained and analyzed with high temporal reso-

lution (Figures 3B and 4).

Speckle tracking technique as a major breakthrough

in the long-standing history of echocardiography de-

velopment could be an advantageous opportunity for us

to look into the complex dynamics of cardiac motions

independent of echo-beam direction. Since aging and

hypertension remains as the theoretical major risk fac-

tors for HFpEF development,
5

the association and pos-

sible effects of these variables on cardiac mechanics

had gained much attention. Hypertension as a major

risk for HF had been shown to cause adverse LV re-

modeling, worse longitudinal strain
21

as an early, sensi-

tive marker to hypertension, and hypertension-related

subendocardial ischemia or fibrosis had been consis-

tently proven.
22

Instead, a relatively preserved circum-

ferential function and augmented LV twist/torsion,
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Figure 1. Schema showing the helical orientation of the left ven-

tricular (LV) myofibers in anatomical position, as described by Torrent-

Guasp (A). Schema showing the left-handed subepicardial myofibers

oriented obliquely opposite, but in continuity with the right-handed

subendocardial myofibers (B).

Figure 2. Helical arrangement of myofibers in left ventricle. (A) Left-

handed helix in the subepicardium and right-handed helix in the sub-

endocardium in the left ventricle of an explanted porcine heart. (B) Lon-

gitudinal cross section of left ventricle fixed in diastole (hematoxylin and

eosin stain) and radial orientation of the cleavage planes. (C) Torrent-

Guasp helical ventricular myocardial band model. (D) Tractography re-

construction of diffusion tensor magnetic resonance imaging. Repro-

duced from Sengupta PP et al.
8

and Poveda F et al.
9

with permission.

A
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which remained consistently preserved in the transition

to HFpEF.
23,24

Similar LV mechanics were also observed

in those with well compensated LVH or aortic valve

stenosis,
25-28

indicating a possible compensatory role of

LV twist/torsion to maintain adequate ejection perfor-

mance in response to elevated afterload status. While

LVH had been traditionally regarded as precursor of

HFpEF, whether these short-axis functions may behave

parallel with the same patterns in these two clinical

scenarios remained controversial. Interestingly, aging

and higher blood pressure, both key pathophysiologic

factors proposed to be the major risks for HFpEF,
29

had

been shown to be associated with greater LV twist/

torsion with female gender predominance in those

subjects free from clinical symptoms.
30

This finding may

potentially suggest a compensatory role of LV twist/

torsion in maintaining adequate cardiac output for

those with higher clinical HF risks or unfavorable LV

remodeling. Compared to HFpEF, subjects with HFrEF

had a more severe degree of longitudinal functional de-

cline, and further demonstrated uniformly deteriorated

circumferential, radial deformation and twist/torsional

mechanics
31

(Tables 1 and 2). These strains obtained by

Acta Cardiol Sin 2013;29:515�523 518

Chi-In Lo et al.

Figure 4. Left ventricular (LV) torsion involves complex myofiber me-

chanics along multiple vectors. Note the simultaneous but obliquely op-

posite contractile vectors that result in LV torsion. LV systolic torsion or

twisting involves a measurable gradient of rotation along the LV

long-axis, with an apical counter-clockwise rotation and a basal clock-

wise rotation. Note the greater magnitude of the apical rotation com-

pared to that of the base, and the relative magnitude of the systolic

twist compared to the individual rotational vectors.

Table 1. General representation of LV systolic mechanics in the patients with heart failure

No HF With risks of HF HFpEF HFrEF

LVEF, % Normal Normal Normal Reduced

Longitudinal strain, % Normal Normal or reduced Reduced Reduced

Circumferential strain, % Normal Normal or reduced Normal or reduced Reduced

Twist, � or Torsion, �/cm Normal Normal or augmented Normal or reduced Reduced

HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction.

Figure 3. Left ventricular (LV) motion and deformation during diastole and systole. Systole involves myocardial motion and deformation along

three measurable vectors that result in LV shortening in the longitudinal axis, and thickening along both the radial and circumferential directions (A).

Additionally, the complex myofiber arrangement facilitates LV systolic twisting and diastolic untwisting (recoil). This constitutes LV torsion or “wring-

ing” (B). Speckle tracking images of these motions were demonstrated.

A

B



2-dimenstional speckle tracking echocardiography were

proven to be a new prognostic indicator in line with

HFrEF.
32,33

However, there is some controversy that

these speckle tracking-based measures on twist or tor-

sion may largely depend on tracking techniques, and

whether subendocardial or epicardial tracking is effica-

cious.
34

Moreover, the mechanism of three-dimensional

speckle tracking echocardiography has developed re-

cently and rather quickly. It has the advantage of re-

duced acquisition time and more parameters obtained

(such as area tracking, time-to-peak systolic strain and

site of latest mechanical activation).
35

LEFT ATRIAL MECHANICS AND HFpEF

The left atrial (LA) mechanics can actually be di-

vided into three different phases during the whole car-

diac cycle: (1) the reservoir phase, when the LA receives

pulmonary venous return during LV systole (from mitral

valve closure to opening) and stores potential energy;

(2) the conduit phase, when the LA passively transfers

blood to the LV during early diastole, the function of

which is relatively dependent on LV relaxation and pre-

load; and (3) the contractile phase, when the LA actively

boosts LV in late diastole for subsequent ventricular

systole. At this phase, the energy stored during the LA

reservoir phase is released and converts to kinetics and

further contributes to LV stroke volume.
36

Recently, speckle tracking imaging has been used

not only in evaluating LV deformation but also in left

atrial (LA) mechanical indices.
36-38

During the reservoir

phase, LA strain gradually increases until reaching its

peak at LV end-systole. LA strain rate pattern during

reservoir phase typically shows two peaks. The early

peak corresponds to iso-volumic contraction period and

largely reflects LA compliance, whereas the late peak

corresponds to LV ejection and iso-volumic relaxation

period.
36

Impairment of LA deformation indices is as-

sociated with LV diastolic dysfunction, either repre-

sented as Doppler velocities
39

or end-diastolic pressures
40

in heart failure patients. Because worse LA reservoir

function can directly reflect elevated LV filling pressure,

it is more sensitive to changes in LV diastolic function,

so marked reductions in reservoir function might al-

ready occur during early-stage heart failure.
39

On the
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other hand, LA contractile function may be augmented

at this stage to compensate for reduced LA-to-LV filling

process resulting from stiffening of the LV. In addition,

early LA dysfunction had also reportedly has occurred in

patients with hypertension and diabetes prior to volume

changes.
41

Therefore, impaired longitudinal LA peak

strain may be another useful echo-derived index for

patients with HFpEF in recent years
39

(Figure 5).

CARDIAC MAGNETIC RESONANCE IMAGING (CMR)

AND COMPUTED TOMOGRAPHY (CT) IN

ASSESSING CARDIAC MECHANICS

With retrospective gating, cardiac CT not only pro-

vides critical information regarding coronary artery ste-

nosis but also may help to evaluate cardiac function.
42

Recently, hemodynamic assessment of transmitral flow

velocity and mitral annulus tracking techniques by CT

enables myocardial functional descriptions close to 2D

echocardiography.
43

So far, CMR remains the “gold stan-

dard” for assessing both left and right ventricular func-

tion, mass and volumes.
44

Besides, owing to the 3D

volume acquisition nature of these imaging modalities,

both CMR and CT can provide more accurate LA volume

measures, which had been shown to be an important

predictor of adverse cardiovascular events, such as atrial

fibrillation and heart failure.
45

Beyond the functional

evaluation, the technologies of 3D cine displacement

encoding with stimulated echoes (DENSE) utilizing CMR

tagging (Figure 6) also provide information about myo-

cardial biophysics
46

and twist/torsion mechanics.
47

Dif-
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Figure 5. Demostration of left atrial (LA) strains by speckle tracking imaging in different phenotypes of heart failure. Examples of LA longitudinal

strains in three subjects of (A) normal, (B) heart failure with preserved ejection fraction (HFpEF) and (C)heart failure with reduced ejection fraction

(HFrEF) were shown. The normal one had the highest global peak strain (51%) and the patient with HFrEF had the lowest global peak strain (8.59%).

Global peak strain of whom with HFpEF (19.94%) had the values between them. The dotted white lines and colorized lines in the tracing represented

global and regional strain respectively.
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fusion tensor MRI, another advanced skill, further char-

acterizes information regarding myocardial architecture

and spatial orientation of myofibers using several visual

3-dimensional levels of anatomical complexity.
48

Finally,

late gadolinium myocardial enhancement (LGE), has al-

ternatively been used for identifying scar formation

after myocardial infarction, various patterns of intra-

myocardial fibrosis in non-ischemic cardiomyopathy,
49

and impairment of diastolic dysfunction.
50

CONCLUSIONS

HFpEF remains as an important public health issue,

and is currently an emerging and growing phenomenon.

The major advances and evolution of several novel im-

aging modalities such as echo-derived speckle tracking

imaging, CMR and CT may provide insights into under-

standing the underlying cardiac mechanics in this pa-

tient population. Impaired myocardial deformation may

occur even prior to overt onset of systolic dysfunction,

when defined by reduced conventional LVEF. Moreover,

the applications of such imaging modalities have been

increasingly used in daily clinical routine to identify sub-

jects at risk of HF and for clinical outcome prediction.
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