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Abstract

The Generalized Born (GB) implicit solvent model has undergone significant improvements in 

accuracy for modeling of proteins and small molecules. However, GB still remains a less widely 

explored option for nucleic acid simulations, in part because fast GB models are often unable to 

maintain stable nucleic acid structures, or they introduce structural bias in proteins, leading to 

difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, 

GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a 

more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is 

described here for nucleic acids. The resulting parameter set significantly reduces absolute and 

relative energy error relative to Poisson Boltzmann for both nucleic acids and nucleic acid-protein 

complexes, when compared to its predecessor GB-neck model. This improvement in solvation 

energy calculation translates to increased structural stability for simulations of DNA and RNA 

duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables 

successful folding of small DNA and RNA hairpins to near native structures as determined from 

comparison with experiment. The functional form and all required parameters are provided here 

and also implemented in the AMBER software.

Introduction

Experimental structural and functional studies of nucleic acids are being supplemented by 

genomic and epigenomic projects, which provide vast information at the sequence level, as 

well as computer simulations, which can give models with high resolution in both time and 

space, and insight into the couple of structure and energy. A remaining challenge is that 
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nucleic acids (NA) have traditionally been difficult to accurately model in simulations due to 

their highly charged backbones and the importance of bound ions.1 The incorporation of 

Particle Mesh Ewald2 and the introduction of second generation force fields3 has allowed 

for stable simulations of nucleic acids in explicit solvent. 4 Therefore nucleic acid 

simulations in explicit solvent are the norm, pushing to longer simulation times,5 increasing 

force field accuracy, 6 and aiming to understand the sequence dependent structure and 

dynamics of nucleic acids.1, 7

Although explicit solvent simulations are the state of the art in protein and nucleic acid 

simulations, there are multiple reasons why more approximate implicit solvent models, such 

as Generalized Born (GB), at times can be a useful option: (i.) lower number of particles can 

result in faster simulation times, (ii.) greater energy overlap8 in replica exchange molecular 

dynamics9 (REMD) can reduce the number of replicas required to span a temperature range, 

(iii.) more efficient conformational sampling when used with artificially low solvent 

viscosity,10 (iv.) better scaling with number of CPUs11, and (v.) much higher performance 

on standard GPU-based computer architectures12 especially for pairwise GB models, 

breaching the microsecond/day barrier13.

Implicit solvent simulations are already standard for proteins, and rapid simulation of 

folding for diverse protein topologies has become possible.14 In nucleic acids, however, the 

volume of a periodic box required to enclose the solute is higher than in globular proteins 

with the same number of atoms (linear vs globular geometry), making simulations of long 

nucleic acids in explicit water very expensive unless overall tumbling is prohibited through 

artificial restraints. As a result, typical simulation systems are shorter than 20 base pairs, 

even though some interesting features like DNA persistence length happens near the 150 

base pair regime, and MD simulations have been used to study distortions in larger DNA 

structures such as minicircles15. Implicit solvent simulations of nucleic acids appear to be 

one possible way to study those properties at reduced cost.1

Despite these potential benefits, to the best of our knowledge there are only few GB models 

that can maintain stable nucleic acid structures.16 Three are widely used in the CHARMM 

program17 (GBMV,18 GBMV219 and GBSW20) while two others (GB-HCT21 and GB-

OBC22) are widely used in the AMBER program.23 These models have been applied to 

simulations of RNA and DNA.1, 11, 24 The challenge in implicit solvent models is to 

reproduce high theory level solvation free energies (typically using the Poison Boltzmann 

method25 as reference data) and the computational expense in doing so comes from 

accurately determining the molecular surface defining the boundary between solute and 

solvent.26 CHARMM and AMBER implicit solvents initially had very different 

philosophies: CHARMM focused on reproducing solvation energies and AMBER focused 

on speed. GBMV and GBMV2 are arguably among the most accurate GB models, 25-26 but 

the use of a sharp molecular surface boundary between solute and solvent can in some cases 

introduce unstable force calculations in long time scale simulations when using the standard 

2fs timestep.27 This diminishes the practical application of GBMV and GBMV2 models for 

MD simulation, especially now that methods for improving stability of simulations using 4fs 

timesteps have been reported.13, 28 GBSW20 is an analytical version of GBMV and GBMV2 

that sacrifices some accuracy for speed.26 It uses the van der Waals (VDW) surface to define 
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the solute/solvent boundary.26 AMBER's GB-HCT21 and GB-OBC22 are both based on a 

pairwise approximation approach introduced by Hawkins et al.21, which is computationally 

much faster than other GB solvent models. The latter model (GB-OBC) introduced 

correction parameters to reduce the overestimation of solvation energy of the former model 

(GB-HCT).

A comparison among several GB models available at the time (not including the GB Neck 

variants) concluded that GBMV models and GB-OBC were the most accurate for protein 

solvation energy calculations when using the higher level Poisson-Boltzmann calculation as 

a benchmark.26 In practice, GB-OBC is better suited for long MD simulations because of its 

fast speed and its suitability for parallel or GPU calculations.11, 12b Ultimately, implicit 

solvent simulations should reproduce experimental structural properties and not just 

Poisson-Boltzmann energies. In a recent report comparing different GB models for NA, 

Gaillard et al.24a concluded that GBMV2 and GB-HCT models were better in reproducing 

DNA parameters (such as major and minor groove width) from experimental data than the 

GB-OBC model. However, GB-HCT (and even GB-OBC) introduce strong helical structural 

bias in protein simulations,29 preventing its application to simulations of proteins in 

complex with DNA or RNA, Furthermore, their performance on more complex NA structure 

and dynamics has not been well studied.

Recently, the GB-neck model was developed by introducing an additional physically 

motivated correction to the GB-OBC model, to better mimic the molecular surface while 

maintaining speed in calculating solvation forces.30 Theoretically GB-neck should be a 

promising approach, achieving both reasonably good accuracy and fast speed. However GB-

neck was shown to lead to unstable structures for proteins and nucleic acids.24a, 30-31 

Overall, it is clear that there remains a need for a fast and numerically stable GB model that 

works with proteins and nucleic acids at the same time. We address this issue in the current 

work.

We recently improved GB-neck by allowing the parameters for the calculation of effective 

Born radii to vary for different elements (GB-neck232). The physical motivation behind this 

approach is that these corrections for interstitial spaces likely depend on the size of the 

atoms involved. Parameters were fit to optimize agreement with Poisson-Boltzmann 

calculations for a large data set of peptide and protein conformations.32 GB-neck2 has better 

agreement for proteins in solvation free energy calculations, and reproduces explicit solvent 

secondary structure and salt bridge strength profiles better than previous AMBER GB 

models. Quantitative reproduction of experimental structures and thermodynamic stability 

profiles for small peptide motifs such as hairpins or mixtures of alpha helix, 3-10 helix or 

PP2, are also improved.32 Ultimately, these improvements are reflected in the successful 

folding of a series of proteins up to 100 amino acids in the μs to ms experimental folding 

time scale14, a challenging problem in the field33.

In this work, we extend the training and testing of new parameters in GB-neck2 to nucleic 

acids. We describe the development of the new GB-neck2 parameters and show results for 

several systems representative of likely applications: stable simulation of DNA and RNA 

duplexes, DNA quadruplexes, protein-NA complexes, and folding of DNA and RNA 
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hairpins. This sets the stage for more accurate simulations of protein-nucleic acid complexes 

with implicit solvent, a major deficiency in current models. In particular, faster implicit 

solvent simulations of protein-NA complexes could enable the study of long-time dynamics 

of larger systems like the nucleosome core particle, ribosomes, and DNA replication or 

repair assemblies; these currently remain largely intractable in explicit solvent.

Methods

Generalized Born theory

In implicit solvent models, solvation free energy is normally decomposed into two terms, 

polar and nonpolar: ΔGsolvation = ΔGpolar + ΔGnp. The nonpolar term can be roughly 

approximated by ΔGnp = σ*A (where σ is surface tension coefficient and the A term is 

solute surface area) although more sophisticated approaches are available.34 Since the 

solvation energy in water is dominated by the polar part (particularly for high charge density 

nucleic acids),35 most efforts have focused on developing more accurate polar 

models.19-20, 22, 30, 32

Polar solvation energy can be calculated from the very accurate, but computationally 

expensive, Poisson Boltzmann (PB) method25 or from the much faster Generalized Born 

(GB) model. GB models approximate the polar solvation energy by summing energies of 

pairwise atomic interactions (solvent screening) as well as self-interactions (charge 

solvation). The GB approach was first introduced by Still et al.36 (Equation 1)

(1)

where qi and qj are the partial charges of atoms i and j with interatomic distance of rij. The 

function fij
GB is defined by Equation 2

(2)

where Ri and Rj are the effective Born radii of atoms i and j, representing their degree of 

burial inside the solute.

In GB models, effective Born radii can be calculated using either the Coulomb Field 

Approximation (CFA) or a non-CFA approach.37 Although the former is notorious for 

overestimating effective radii,37-38 it is still widely implemented in MD simulation due to its 

simple approximation that makes it easy to derive the analytical form for calculating 

effective radii. More accurate non-CFA-based GB models, such as GBMV, GBMV219-20 or 

the recently developed R6 model,37 show excellent agreement of energies and effective radii 

with PB calculations.37 However, they are computationally more expensive, limiting their 

use in extensive MD simulations. Moreover, the development of the analytical form of the 

R6 model has thus far focused on small molecules, and it has not yet been extensively tested 

in biopolymer simulations.39
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Although not useful in practice for MD simulation with GB, the effective Born radius for a 

given atom in a particular conformation can be calculated exactly by first calculating PB 

energy with all other charges turned off and then applying Equation 3.

(3)

These so-called “perfect” radii were shown to yield the best agreement40 between GB and 

PB energies if they were applied in the GB equation (Equation 1), suggesting that 

improving the calculation of the effective radii is an important step toward better GB 

models. The perfect radii thus provide a useful benchmark40-41 for testing the quality of 

radii calculated from various GB models.

Our previous work focused on improving the accuracy of the effective Born radii in the 

CFA-based GB-neck model30 by introducing rigorous parameter training and testing using 

large sets of peptide and protein conformations.32 Based on CFA, effective radii can be 

approximated by Equation 436

(4)

where I is the 3D integral defined by Equation 5

(5)

and r is a vector centered at atom I, ρi is intrinsic radius of ith atom and the integral region is 

inside the molecule but outside the atom i. Depending on the definition of the boundary 

between solute and solvent, the integral region could be molecular volume (IMS) or van der 

Waals volume (Ivdw). The van der Waals (VDW) volume approach is more computationally 

approachable than the molecular volume.26 Hawkins et al. followed the VDW approach and 

introduced pairwise approximations to analytically calculate the effective radii (GB-HCT 

model)21 using Equation 6

(6)

where Ivdw is approximated by summing all individual integrals contributed by atoms j ≠ i. 

To avoid the overestimation of Ivdw, a set of scaling factors Sx (x = H, C, N, O, P, S ...) was 

introduced (ρ i → Si * ρ i). However this approach neglects the interstitial region between 

atoms, which leads to underestimation of the effective radii for deeply buried atoms. 

Onufriev et al. attempted to alleviate this problem by introducing an additional set of 

parameters (α, ß, γ) to empirically scale up the effective radii of buried atoms (GB-OBC 

model)22 using Equation 7

(7)

where ,  * Ivdw.
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The offset parameter was introduced by Still et al. as a free parameter to minimize the error 

between GB and experimental solvation energy.36 Mongan et al. later added an Ineck 

correction to Ivdw to approximate the molecular surface boundary I“MS” ≅ Ivdw + Ineck (GB-

neck model).30 Ineck is easily approximated following the Mongan et al. approach.30 The ω 

term in Equation 7 can be re-calculated with the updated boundary using  * I“MS”. To 

minimize the overlap of the “neck” regions of pairs of atoms, a scaling factor Sneck was 

introduced.30

The GB-neck model is theoretically better than the GB-OBC and GB-HCT models, but it 

was shown to quickly unfold protein and nucleic acid native structures in MD 

simulations.24a, 30-31 We hypothesized that this was due to weakness in the parameters 

rather than the functional form, and we reported32 more rigorous refitting of GB-neck 

parameters for proteins that showed improvement in reproducing PB solvation energy and 

reproducing explicit solvent MD data such as secondary structure content. Following the 

success of the resulting GB-neck2 model for protein simulations, we therefore adopt the 

same strategy for nucleic acids and make their [α, ß, γ] parameters element-dependent.

There are 20 parameters to fit, which are 5 scaling factors Sx (introduced by Hawkins et 

al.)21 (with x=H, C, N, O, P) and 5 sets of [α, ß, γ]x (x=H, C, N, O, P). The offset 

(introduced by Still et al.36) and Sneck parameter30 are fixed at the values in the GB-neck2 

protein model so that both nucleic acid and protein parameters can be combined in protein/

nucleic acid complex MD simulations.

Fitting procedure

Objective function

Twenty parameters [S, α, ß, γ]x (x=H, C, N, O, P) were treated as variables in the objective 

function (Equation 8). The objective function was the sum of weighted normalized root-

mean-square-deviation (RMSD) between GB and PB absolute energy, relative energy and 

the inverse of effective radii for different structure sets. The weighting factors were chosen 

as done previously32 to avoid any specific structure set bias.

(8)

Here abs_rmsd and rel_rmsd are absolute and relative energy RMSD, respectively, between 

GB and PB calculations, rad_rmsd is the RMSD between the inverse of GB and PB effective 

radii and wabs, wrel and wr are weighting factors for abs_rmsd, rel_rmsd and rad_rmsd 

respectively. To account for the dependence of error magnitude on system size, the 

abs_rmsd and rel_rmsd for each training system were normalized by dividing by the number 

of atoms (natomi).

Due to the large number of variables and expensive objective function, we sought the best 

local minimized function values rather than the global value, the same choice we made for 

the protein parameter optimization. The local optimization method NEWUOA42 was chosen 

for objective function minimization because of its quick convergence compared to other 
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local optimization methods.43 Additionally, NEWUOA is an improved version of 

UOBYQA44 which we successfully used for refitting protein parameters in our previous 

work. A total of ~2400 optimization runs were carried out for each round of fitting; each 

optimization run started from a random guess given the following boundaries: Sx ∈ [0.0, 

2.0], [αx, βx, γx] ∈ [0.0, 5.0] where x = H, C, N, O, P. Weighting factors for radii and for 

relative energies, relative to absolute energies, were varied to see how they affected the 

fitting (using wrel = 5.0; wabs = 1.0 combined with wr = 1.5, 2.5, or 5.0). In the final round, 

wr=2.5 was also tested with wrel=10.0 (four weight combinations total. Five rounds of fitting 

were carried out, in which later rounds had more structures in the training set, as described 

below.

Phosphate is the only element not present in the protein data set we previously derived32. 

We tested multiple scenarios for optimizing additional parameters beyond those developed 

in our protein model (see Supporting Information for more details). We decided to keep GB 

parameters for proteins and NA independent of each other, retaining our previously 

published protein parameters and optimizing new parameters for application to NA. This 

approach is described below.

Training set

To avoid over fitting due to the large number of parameters, we included as many structure 

variations as possible in the training. We tested several different training sets of varying 

diversity (see Supporting Information for details). In the work described below, we included 

only DNA and RNA duplex conformations in the training set, anticipating that the resulting 

parameters may also work reasonably well for conformations not included in training. This 

hypothesis was explored during the testing phase.

Due to the computational expense of the many optimization runs, we chose a small size 10-

base pair DNA duplex (CCAACGTTGG)2 and its complementary RNA duplex 

(CCAACGUUGG)2 for training the energy (see Table S1). These training sets are 

designated dnadup and rnadup, respectively. The same sequences were used in the past for 

extensive study of GB models.11, 24b, 24c, 45 All bases (A, T/U, C, G) are present in each 

system, and each is long enough to form a complete, stable duplex. Canonical A and B-form 

structures of the DNA duplex (CCAACGTTGG)2 were used for training effective radii (this 

set is named dnadupRad). The range of RMSD values for the training set structures as 

compared to canonical A and B-form is provided in the supplementary information (see 

Figures S1, S2).

Procedure for parameter fitting

We adopted the following iterative procedure: (i) We first trained parameters by using only 

DNA duplex structures from MD using older GB models (GB-HCT,21 GB-neck30) and MD 

using TIP3P46 explicit water. The initial training set had 200 structures, which were equally 

extracted from 10 ns MD simulations at 300 K in explicit water and GB-HCT, starting from 

both canonical A and B-forms, and 1 ns MD simulation using GB-neck starting from A-

form. This initial training set was designed to have both ‘good’ (associated DNA dimer 

strands from explicit water and GB-HCT MDs) and ‘bad’ (dissociated DNA dimer strands 
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from GB-neck MD) to train for duplex stability. However, simulations of A-form DNA 

using the optimized parameters from this training set favored compact, non-canonical 

structures not seen in the training set. Analysis of these new structures showed that the GB 

model introduced bias, with more negative solvation energies than values obtained from PB 

calculations and with differences larger than seen for the training set structures. This 

indicates the conformational space covered by this training set is too narrow. We had 

observed similar trends while optimizing our protein solvation model32; this was alleviated 

here by (1) introducing RNA to the training set and (2) iteratively increasing the training set 

size.

Each fitting round was carried out testing all combinations of weighting factors (see above). 

A single best solution was selected by comparing results for the ten parameter sets with the 

best objective function. Solutions with negative scaling factors were discarded, and when 

objective functions were similar (within 5%) preference was given to solutions with lower 

relative energy error. After each round of fitting, the parameters from the best solution were 

used to carry out 0.5 to 1.0 μs MD simulations for the DNA and RNA duplexes in the 

training set. We then uniformly extracted 50 to 100 structures from these MD runs and used 

them to expand the training set and then re-optimize the parameters (see Figures S1 and 
S2), again testing all combinations of weight factors. Initial parameters were reset to random 

values, with the exception that the best previous solution was also carried over to the next 

round. This procedure was repeated five times until the relative rmsd (rel_rmsd) difference 

between two consecutive fitting rounds was small (<2% change in the rel_rmsd from the 

former fitting round). The final training set had ~600 structures from explicit water, GB-

HCT, GB-neck and GB intermediate model MD simulations.

In summary, each round of optimization included: (i) calculating PB energies for structures 

added to the training set, (ii) refitting the GB parameters by performing ~300-600 

independent optimization runs for each weighting factor combination, (iii) running long MD 

simulation (0.5 to 1 μs) using the best solution, and (iv) adding resulting structures from the 

new simulations to the training set. The top scoring parameters from the final round are 

provided in Table S2.

Test sets for comparing solvation energy between GB and PB

Following our previous work on proteins, we also designed two types of structure sets to test 

the transferability of the new GB parameters to calculating solvation energies for structures 

beyond those in the training set (see Tables S1 and S3). Type I test set uses the same DNA 

and RNA sequences as the training set, but combines all the structures in training and the 

structures from MD simulations using the final GB parameters (Figures S3, S4). This test 

set was designed to check if the energy error for any newly sampled conformations was 

similar to that seen in the training set. Type I has dnadup_plus150 (adding 150 structures 

that were uniformly extracted from 0.75 μs MD simulation of DNA duplex 

(CCAACGTTGG)2 using the final GB parameter set) and rnadup_plus200 (adding 200 

structures that were uniformly extracted from 1.0 μs MD simulation of RNA duplex 

(CCAACGUUGG)2 using the final GB parameter set).
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Type II test sets (Tables S1, S3) have structures for sequences and systems different from 

those in the training set, including the Dickerson-Drew dodecamer DNA duplex 

(CGCGAATTCGCG)2
47 (DNA DD) and its analog RNA duplex (CGCGAAUUCGCG)2 

which are two popular DNA and RNA models for experimental and computational 

studies.5a, 6a We also used structures from the GCC-box binding domain protein in complex 

with DNA (PDB ID: 1GCC48) for testing the combination of GB-neck2 parameters for NA 

(this work) with GB-neck2 parameters for proteins.32 Each test set for nucleic acid duplexes 

had structures extracted from MD simulations at 300K using explicit water as well as 

intermediate GB models. The 1GCC test set included structures from 300 K and 500 K 

explicit water simulations. High temperature was used to increase structure variety, 

particularly important since we wanted to include partially dissociated structures to train for 

desolvation of the interface. We characterized the training sets and test sets by their RMSD 

to canonical (DNA and RNA duplexes) or experimental (1GCC) structures; details are 

provided in supplementary information.

Test set for MD simulations

Evaluating the agreement between GB and PB calculations is only the initial step to justify 

the performance of a GB model. We also tested the behavior in MD simulations, checking if 

GB-neck2 is able to maintain stable DNA/RNA duplexes and a DNA/protein complex, since 

previous studies showed that duplexes were unstable with GB-neck.24a, 30 We carried out 

simulations in explicit solvent for use as a reference in order to minimize influence of 

potential inaccuracies in the underlying MM energy function. The testing structures include 

DNA duplex (CCAACGTTGG)2 and RNA duplex (CCAACGUUGG)2 which were used in 

training parameters. It also includes the popular Dickerson-Drew dodecamer (DD) DNA 

duplex (CGCGAATTCGCG)2 and RNA duplex (CGCGAAUUCGCG)2. We also tested the 

longer DNA sequence corresponding to “seq2” in Pérez et al.49 

(CTAGGTGGATGACTCATT)2. We additionally tested the stability of non-duplex systems 

using DNA quadruplexes. Since stability could simply indicate an overly rigid model, we 

also tested structural conversion, such as A to B-form DNA, and B to A-form RNA, and 

folding of single-stranded DNA and RNA hairpins. The DNA hairpin was GCGCAGC with 

a GCA loop; the NMR structure of a homologue has been solved (PDB ID 1ZHU)50. This 

system is small enough to enable the μs timescale simulations needed to characterize the 

structural ensembles. The same DNA hairpin was also successfully folded in the past51 

using simulation in TIP3P explicit water. We also tested the folding of an RNA UUCG 

hairpin loop with 5 base pairs in the stem (PDB ID: 2KOC,52 sequence 

GGCACUUCGGUGCC). This hairpin system was shown to be stable in explicit solvent 

simulation.6b Folding this system is extremely challenging in explicit water simulations. For 

instance, to observe 19 folding events in TIP3P explicit water, Sorin et al. utilized more than 

10,000 CPU cores with an aggregated simulation time of 168.1 μs.53 A REMD study by 

Otyepka et al. 54 in TIP3P explicit solvent and the same RNA force field used here 

(bsc0χOL3) required 48 replicas. In our study, only 6 replicas were used for a GB-neck2 

REMD simulation (producing ~0.5 μs/day/replica on a single GPU per replica). We also 

performed MD for the 1GCC protein-DNA complex described above. The summary of test 

systems is given in Table S3.
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We generated two runs for all DNA and RNA duplexes, starting from both canonical A and 

B-forms. The lengths of MD simulations in GB-neck2 are between 50 ns (protein/DNA 

complex) to 1 μs. Since DNA and RNA duplexes were previously reported to be stable in 

the μs timescale in TIP3P explicit water MD simulation with the bsc0 force field5a, 6a 

(DNA) and bsc0χOL3
6b, 55 (RNA), we only performed relatively short MD simulations (100 

ns) for explicit water, while 50ns in explicit water were used to sample fluctuations of the 

stable protein/DNA complex.

PB calculations

We used a similar approach from our previous parameterization of proteins for calculation 

of PB solvation energies and ‘perfect’ radii:32 Delphi II software,25 non-linear PB model 

with solvent probe radius of 1.4 Å, very fine grid spacing (0.25 Å); interior dielectric 

constant was set to 1.0 while exterior value was set to 78.5 and 1000.0 for solvation and 

effective radii calculation respectively.56 The different value of exterior dielectric constant 

used for the perfect radii calculation followed published suggestions.37, 56 The mbondi3 

radii set was used to define the boundary between solute/solvent for all PB calculations. 

Mbondi3 is a small adjustment to mbondi222 that improves the agreement of Arg/Lys and 

Glu/Asp salt bridge pairs PMFs between GB-neck2 and TIP3P explicit water.32 For the NA 

simulations reported here, mbondi2 and mbondi3 are equivalent; the distinction was only 

important for simulations of the protein-DNA complex.

Simulation protocol

Basic setup

The selected force fields were the widely used models for each polymer: ff99SB57 was used 

for proteins, the bsc06a modification to parm99 was used for DNA and the bsc0χOL3
6b, 55 

modification was used for RNA. Canonical A and B-forms of DNA and RNA duplexes were 

built with the NAB program from Ambertools 12.23b Topologies and coordinates for MD 

simulations were generated by LEaP.23b All MD simulations were carried out by using 

either the sander or pmemd program in AMBER version 12 or 14.23b, 23c Long (μs) MD runs 

were performed with the GPU version of pmemd.12b The AMBER code was modified to 

support the new GB parameters; as with the protein model, it is available in AMBER 15. 

Production MD simulations were performed at 300 K with a time step of 2 fs. SHAKE58 

was used to constrain bonds involving hydrogen. GB simulations used the Langevin 

thermostat with no cutoff and collision rate of 1 ps−1, while simulations in explicit water 

used the TIP3P water model and the Berendsen thermostat59 with the Particle Mesh Ewald 

(PME) method2 for long range interactions with a direct space cutoff of 8 Å. Systems in 

explicit solvent were solvated by an explicit water truncated octahedron box with a 

minimum buffer size of 10 Å. Explicit ions were not used in these GB simulations, we also 

did not include them in the explicit water simulations to facilitate more direct comparison, 

although PME neutralizes the net charge on the system in the periodic calculation. Debye-

Hückel salt screening of 0.1 was included in the GB model to roughly approximate the PME 

net charge neutralization; more detailed analysis of salt effects in the GB model were not 

tested here, since differences between the water models could be obscured by differences 

between implicit and explicit ion effects.60 mbondi3 intrinsic Born radii32 were used with 
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GB-neck variants (see discussion above). GB-HCT MD used the mbondi radii set with an 

offset = 0.13; these are the suggested values for use with this GB model and nucleic acids. 11

We performed standard MD simulations for all systems except the RNA hairpin UUCG 

loop. This structure has 5 base pairs in the stem and is very stable in MD simulations (data 

not shown). We therefore used replica exchange molecular dynamics (REMD)9 simulation 

to accelerate the sampling. Each run had 6 replicas (4.5-6 μs/replica) with temperatures of 

[300.0, 317.0, 334.9, 353.9, 373.9, 395.1] to give an acceptance ratio of ~0.25. Exchanges 

were attempted every picosecond. Two simulations were performed, starting from the 

NMR52 (hairpin) and from canonical A-form (single stranded) conformations.

Equilibration

In GB equilibration, the starting structures were first minimized for 500 steps and then were 

heated from 100 K to 300 K with 10.0 kcal/mol/Å2 atomic positional restraints on heavy 

atoms. In the next 3 steps (250 ps each), the temperature was kept at 300 K and the restraint 

force constant was reduced from 10.0, 1.0 to 0.1 kcal/mol/Å2. In explicit water equilibration, 

the solvated structure was minimized for 10000 steps, then was heated from 100 to 300 K in 

the NVT ensemble, then was equilibrated in the NPT ensemble with 100.0, 10.0, 1.0 and 0.1 

kcal/mol/Å2 positional restraints for heavy atoms in next four 250ps stages. Production runs 

were performed in the NVT ensemble.

Data analysis

Backbone RMSD (BB-RMSD) and cluster analysis (k-means algorithm) were carried out by 

the ptraj and cpptraj61 programs in Ambertools version 12 and 14.23b, 23c The trajectory for 

each simulation was grouped into 50 clusters. Clustering was performed using RMSD for 

heavy atoms in the phosphate groups and sugars. All residues were used for RMSD 

calculation and clustering, except the case of 1GCC protein/DNA complex. For this 

complex, we excluded the flexible protein termini, used only residue 1-22 (DNA) and 27-74 

(protein). DNA and RNA helical parameter analysis were performed by the CURVES+ 

program (version 1.31).62 The major and minor groove width in the outputs from CURVES

+ were incremented by 5.8 Å to account for the P diameter, as suggested.62 The H-bond 

fraction was defined as the ratio between the number of H-bonds in each trajectory frame 

and the starting structure. The average H-bond fraction was calculated over the whole 

trajectory. The number of H-bonds for each base pair was calculated using the “nastruct” 

command in cpptraj.61

Results and Discussion

Parameter fitting

Our goal was to extend and re-optimize the nucleic acid parameters for the GB-neck model 

following our previous work optimizing protein parameters. As before, we used PB 

solvation energy (absolute energy and relative energy between structure pairs) and ‘perfect’ 

radii as benchmarks and designed the objective function as the sum of weighted 

contributions from the energy and effective radii RMSD between GB and PB calculations.32 

A total of ~2400 optimization runs were performed for minimizing the objective function 
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(Eqn. 8), testing several combinations of weighting factor at each round of fitting (see 

Methods). Each optimization started from a random guess within the boundaries given in 

Methods. We stopped minimization runs after 5 rounds when the energies errors did not 

change when new structures were added to the training set (Figure S3, S4).

Among the weighting factor combinations tested, we chose the optimized parameters from 

(wr = 2.5, wrel = 5.0, wabs = 1.0) as our final candidate since this combination gave the best 

compromise between having low error for both energy and effective radii (Table S4). These 

optimal weighting factors are different from the ones we used in protein training,32 perhaps 

reflecting differences in training set size or molecular charge density between proteins and 

nucleic acids. The results for the top 10 optimization runs for (wr = 2.5, wrel = 5.0, wabs = 

1.0) are given in Table S2, with the final parameter set for GB-neck2 provided in Table 1.

Table 2 shows the abs_rmsd, rel_rmsd and rad_rmsd for the individual training sets. The 

data show a marked improvement over GB-neck, with GB-neck2 reducing the error about 

80% for absolute energy, and 65% and 15% for relative energy of dnadup and rnadup, 

respectively. Figure S1 shows the energy comparison for all structures in dnadup training 

between GB (GB-neck, GB-neck2) and PB. GB-neck2 has better agreement to PB for the 

entire range of structures, while GB-neck underestimates the magnitude of the energies for 

most of the structures and has close energy to PB calculation only for structures having large 

RMSD to both A and B-form DNA. The same trend is also observed for the rnadup training 

set (Figure S2).

The effective radii errors are also reduced by 34% and 49% (compared to the original GB-

neck model) for A and B-forms of the dnadupRad training set. Figure S5 shows better 

correlation to PB ‘perfect’ radii for GB-neck2 effective radii those from the GB-neck model. 

Consistent with the trends seen in the energy, GB-neck tends to overestimate effective radii 

for most atoms; a similar trend was also observed when using the GB-neck model in protein 

simulations.32 Additionally, slopes near 0.8 with GB-neck indicate that the effective radii 

for buried atoms in the GB-neck model tend to be too large. This is significantly improved 

in GB-neck2, where the slopes of the best-fit lines are near 1.06.

Evaluating the accuracy of effective radii and solvation energies for test set 
structures

Effective radii for test set structures

We trained effective radii for only A and B-forms of the DNA duplex (CCAACGUUGG)2. 

It is of interest to evaluate if the improvement obtained for those structures will transfer to 

other nucleic acid structures, such as protein/nucleic acid complexes, or other DNA and 

RNA duplexes and non-duplexes. We chose 8 systems to investigate this (Table 3); two are 

A and B-form DNA duplexes, and four are two RNA sequences, each in A and B-form 

duplex structures (see Methods). We also used a DNA quadruplex (PDB ID: 1L1H63) and a 

protein/DNA complex (PDB ID: 1GCC48).

Table 3 shows the RMSD between the inverse of effective radii (GB) and the inverse of 

‘perfect’ radii (PB) for these test systems. Overall, GB-neck2 modestly improved the radii. 

For example, the scatter in the data is reduced; the rad_rmsd of A-form RNA 
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(CCAACGUUGG)2 is 0.051 for GB-neck2 but 0.069 for GB-neck model. In the case of B-

form RNA, GB-neck2 shows substantial improvement over GB-neck. GB-neck strongly 

overestimates the effective radii of B-form RNA, while GB-neck2 has better agreement to 

‘perfect’ radii. In this case, GB-neck2 reduced 65% of the error in the GB-neck model. 

Manually inspecting the effective radii calculated from GB-neck reveals that this model 

overestimates the effective radii for atoms nearby HO2’ atoms (Figure S6, Table S5). This 

issue is not seen for these atoms in A, B-form DNA and A-form RNA since those structures 

are less compact than B-form RNA. This improved accuracy may arise from the training of 

GB-neck2 on a diverse set of nucleic acid structures, while nucleic acids were not part of the 

GB-neck training sets. Although RNA duplexes prefer A-form over B-form, this improved 

accuracy for B-form may be important for modeling the more complex range of functional 

structures adopted by RNA. As was seen for the training data in Figure S5, the overall trend 

in the data is also significantly better reproduced with GB-neck2 for all systems, with slopes 

of 1.03-1.07 as compared to 0.78 to 0.84 with GB-neck (Figure 1). Beyond these duplexes, 

the agreement between GB-neck2 effective radii and the PB radii is better than in the GB-

neck model for quadruplexes and the protein-DNA complex (Figure S7). MD simulations 

for these systems are discussed below.

Solvation energies for test set structures

We tested the transferability of GB-neck2 parameters for solvation energy calculations from 

our training set to two different test sets. For test set type I, we compared abs_rmsd and 

rel_rmsd in longer simulations (0.75-1 μs MD simulation using the final parameters) of our 

test set structures, named dnadup_plus150 and rnadup_plus200. For type II we tested 

different sequences that were not used in training. The test set type II includes structures of a 

DNA duplex (CGCGAATTCGCT)2, an RNA duplex (CGCGAAUUCGCG)2 and a 

protein/DNA complex (1GCC). Table 4 shows the abs_rmsd and rel_rmsd for the different 

test sets. For test set type I, the abs_rmsd and rel_rmsd for dnadup_plus150 and 

rnadup_plus200 are similar to the training set dnadup and rnadup (for example, abs_rmsd of 

dnadup and dnadup_plus150 are 68.3 and 70.8 kcal/mol respectively). This indicates that 

any new structures sampled in the MD simulation using the final parameters were modeled 

at a similar level of accuracy to the training data.

For test set type II, both absolute and relative energy RMSD are significantly reduced in 

GB-neck2 as compared to GB-neck. Specifically, the abs_rmsd is about 69-85 % reduced 

and the rel_rmsd is about 18-26% reduced. The abs_rmsd and rel_rmsd are also 69% and 

18% reduced for the protein/DNA complex, even though training was only performed for 

solvated duplexes. The comparison between GB and PB energies for individual structures in 

the 3 type II test sets are shown in Figures S8-S11.

Performance in MD simulations of stable structures

We have shown that GB-neck2 reduces the error in reproduction of PB solvation energies 

and effective radii as compared to the original GB-neck model. A key motivation for this 

work was the observation that MD simulations using the original GB-neck resulted in loss of 

all H-bonds in DNA duplexes.24a We therefore tested the hypothesis that better performance 

of GB-neck2 in reproducing PB solvation energy calculation would result in better structural 
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stability in MD simulations. Six systems were tested; two were used for training GB-neck2 

(DNA duplex (CCAACGTTGG)2, RNA duplex (CCAACGUUGG)2) and three were used 

for comparing GB and PB energies (DNA duplex (CGCGAATTCGCG)2, RNA duplex 

(CGCGAAUUCGCG)2 and protein/DNA complex 1GCC). We also tested a longer DNA 

duplex (18 base pairs) corresponding to “seq2” from Pérez et al.49, as well as a DNA 

quadruplex (discussed below).

We performed μs timescale MD simulations using GB-neck2 for the quadruplex and 

duplexes as well as shorter simulations (50ns) for the protein/DNA complex. Reference 

simulations were performed for each system in explicit water (0.05-0.1 μs). The GB 

simulations were much longer to allow the system time to reveal any pathological behavior 

of the new model on long timescales, as compared to the behavior in explicit water which 

has been studied extensively in the past. We calculated the average BB-RMSD over time for 

GB-neck2 and explicit water MD simulations relative to the canonical (duplexes) or 

experimental (quadruplex and protein complex) structures.

For the DNA and RNA duplexes and the DNA/protein complex, plateau values are reached 

and no further trend was seen in the time dependence of the RMSD values (Figures S12, 
S13). Both solvent models perform similarly at this level; in all cases, the difference in 

average BB-RMSD between GB-neck2 and explicit water is within 1.5 Å (Table 5). It is 

interesting to note, however, that explicit water provides lower RMSD values to canonical 

B-form than does GB in each of the DNA simulations, while the GB-neck2 simulations are 

slightly better at reproducing canonical A-form RNA in each of the RNA simulations. 

Representative structures of the most populated cluster in GB-neck2 and explicit water MD 

simulations are compared in Figure 2, which shows a good agreement between structures 

preferred in the GB model and in explicit water.

Table 6 shows the average percent of H-bonds (see Methods) in GB-neck2 and explicit 

water MD simulations. Over the 1 μs simulation time, GB-neck2 maintained 83 to 97% of 

H-bonds for the DNA (RNA) duplex and DNA/protein complex system if all base pairs 

were included in calculation. In explicit water, 95 to 98 % of H-bonds were maintained on 

the 50-100 ns timescale. Since fraying of terminal base pairs was seen in both explicit water 

and GB simulations, we also compared H-bond fractions by excluding each terminal base 

pair. In this case, explicit water and GB-neck2 maintained ~100% and 91-98% of H-bonds, 

respectively. Among these, GB-neck2 maintained 97 to 98 % of H-bonds in the 4 DNA and 

RNA sequences with C-G terminal base pairs. As expected, terminal A-T pairs were 

somewhat weaker, and DNA sequences with a terminal A-T pair (DNA seq2 and DNA/

protein complex 1GCC) showed somewhat lower H-bond fractions of 90 to 91%. In explicit 

water, the difference between terminal G-C and A-T pairs was less pronounced, and a 

fraction of 99% was still obtained for these systems. End fraying was primarily responsible 

for the reduced H-bond fractions; neglecting the outer 3 base pairs in DNA seq2 and outer 2 

base pairs in the shorter protein-bound DNA, H-bond fractions were almost 100% (Table 6). 

Although A-T pairs are known to be weaker than G-C pairs, with terminal A-T pairs 

showing significant fraying in NMR experiments64, poly-AT duplexes were not stable when 

tested in this GB model (data not shown). More quantitative benchmarks for base pair 

fraying, such as comparing H-bond PMFs between GB and explicit water MD, will be the 
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focus of future efforts. Discrepancies in the PMFs could be improved by adjusting the 

hydrogen intrinsic radii, following previous work on both nucleic acids24c and 

proteins.22, 32, 65

Besides testing the stability of canonical duplexes, we also extended our analysis to 

quadruplex systems, which were not included in parameter training and therefore may not be 

expected to perform well with this GB model. We chose a small antiparallel strand (aps) 

DNA G-quadruplex (GGGG)4
6a that is a truncated version of dimeric quadruplex (PDB ID: 

156D) from Oxytricha telomeric oligonucleotide, along with a larger four-stranded 

Oxytricha telomeric DNA (PDB ID: 1L1H). The truncated version was used for testing the 

bsc0 force field.6a In GB-neck2, both structures are stable on the microsecond timescale 

with very low average BB-RMSD (1.6-1.7 Å, Table 5) In contrast, the structures of the two 

quadruplex systems were not maintained in explicit water MD simulation (200-300 ns). The 

average BB-RMSD was 4.2 to 4.4 Å for both systems, and most of the native H-bonds were 

lost. Instead, simulations in explicit water tend to favor non-native H-bond patterns (Figure 
S14). As discussed above, simulations in explicit water reported here were carried out in the 

absence of explicit ions to facilitate comparison with the GB results. However, prior 

simulation studies of quadruplexes in TIP3P explicit water have suggested that inclusion of 

explicit ions may be necessary for stabilizing the structure.66 For example, average BB-

RMSD values of ~1.2 Å were reported for the aps system in TIP3P explicit water with 

neutralizing Na+ ions, maintaining ~100% of H-bonds during 10 ns MD.6a Another study by 

Rueda et al.66b with much longer simulation time (up to 1 μs) showed that simulations of 

quadruplexes in water without ions made the native structure collapse quickly while with 

ions, the native structure was still stable even in vacuum simulation. It is unclear why the 

quadruplexes are stable in GB without explicit ions, although it likely represents a fortuitous 

cancellation of error. Although overestimation of base stacking or hydrogen bonding 

energies could be responsible for the increased quadruplex stability in GB, these effects 

seem to be inconsistent with the increased fraying of terminal base pairs in GB-neck2 vs. 

explicit water discussed above, which suggest stacking or H-bonding may be too weak in the 

model.

We also tested the stability of the protein/DNA complex in MD simulation. 50 ns of GB-

neck2 MD of GCC-box binding domain in complex with DNA (PDB ID: 1GCC48) was 

compared with the same length of explicit water MD simulation. The average backbone 

RMSD to the NMR structure for GB-neck2 is comparable to that from explicit water (2.7 

and 2.4 Å respectively). GB-neck2 was able to maintain 88±1 % of H-bonds (vs. 94±1 % in 

explicit water). If the terminal TA base pairs were excluded from H-bond fraction 

calculations, both GB-neck2 and explicit water maintained 99±1 % H-bonds. Further testing 

of the details of the performance of the model for protein complexes with nucleic acids will 

be carried out in the future.

Modeling structural interconversions

The results described above have tested the ability of the GB model to maintain a reasonably 

accurate initial structure for a variety of conformations. Ideally, simulations would also be 

able to locate an accurate conformation despite being initiated in a non-ideal conformation. 
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To further characterize the performance of the GB-neck2 model, we thus tested if GB-neck2 

is able to reproduce the structural conversion from A to B-form for DNA and B to A-form 

for RNA, as seen in explicit solvent simulations67. These are traditional tests when 

developing new force fields6a, 55 or testing solvent models.11 We carried out simulations of 

DNA duplexes initiated in both A and B-form, as well as RNA duplexes in both A and B-

form. It is expected that accurate simulations initiated from A-form DNA and B-form RNA 

converge to B-form DNA and A-form RNA, respectively.

As shown in Table 5, for the DNA and RNA duplexes, the final average structure does not 

depend on whether the simulation was initiated in A-form or B-form; all DNA duplexes 

adopted a B-form, while all RNA simulations adopted an A-form. The major and minor 

groove widths of DNA in GB-neck2 are in excellent agreement with those obtained from 

simulations in explicit water (Tables 7, S6 and S7). The RNA minor groove widths from 

GB-neck2 MD are also similar to those from explicit water. The RNA major groove widths 

in GB-neck2 MD simulations are smaller by about 4 Å as compared to explicit water MD 

simulation (~15 Å for GB-neck2 and ~19 Å for explicit water). These explicit water results 

are comparable to those previously reported, where it was noted that this combination of 

TIP3P explicit water and force field (bsc0χOL3) overestimates RNA major groove widths 

by 2.5-3.2 Å relative to X-ray and NMR data.55 Interestingly, using GB-neck2 and 

bsc0χOL3 provides a better match to experimental major groove width for RNA; as we 

noted for the quadruplex, this suggests the presence of fortuitous error cancellation between 

bsc0χOL3 force field and GB-neck2 solvent model, or possibly weakness in the TIP3P 

explicit water model.

Folding DNA and RNA hairpins

We have shown above that GB-neck2 is able to maintain stable DNA and RNA duplexes 

and is able to reproduce the structural conversion from A to B-form for DNA and B to A-

form for RNA. However, these conversions involve relatively small rearrangements. A 

major potential advantage to implicit solvent is the ability to use artificially low friction and 

rapidly model global dynamics that are typically hindered by viscosity in explicit solvent. 

Diffusion-limited processes, such as RNA folding or formation of complexes, may be 

inaccessible to more accurate explicit solvent simulations, thus a GB model that provides 

even a qualitative view of these rare events may be valuable. Furthermore, the large number 

of explicit water molecules required to fill the periodic cells that fully enclose these systems 

suggests that GB would provide even greater benefit than for canonical duplexes, potentially 

enabling atomistic simulation of systems that remain wholly intractable in explicit water, 

such as simulations that were reported for nucleosomal DNA.24d These advantages are 

analogous to those that enabled our recent study of folding of a variety of proteins14 using 

the protein version32 of the GB-neck2 model.

As a representative application, we tested the folding of single stranded DNA and RNA 

hairpins. Besides performing simulations using GB-neck2, we performed additional runs 

using the GB-HCT model.21 This model was developed 20 years ago and is the foundation 

of later pairwise models. GB-HCT has been shown to strongly bias overly compact 

structures in protein MD simulations.29 However, it is still being used for simulating DNA 
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duplexes, RNA duplexes, and hairpin structures.24a, 24b, 24h, 45, 68 We hypothesized that this 

older GB model would bias misfolded structures (compared to native ones) in long time 

scale simulations of nucleic acids, and the reported stability of duplexes in GB-HCT 

simulations may reflect kinetic trapping on the timescales of the simulations that have been 

reported, or perhaps accuracy limited to canonical duplexes. We tested the hypothesis with 

DNA and RNA hairpin systems small enough to enable simulations on the μs timescale that 

would enable observation of large-scale structural changes.

We tested if these two GB solvent models could correctly reproduce known experimental 

structures of short hairpins. For DNA, we simulated the GCA hairpin loop system (sequence 

GCGCAGC). Successful folding of this hairpin (to 1.5 Å heavy atom RMSD for the 

corresponding region of the NMR structure of a longer homologue, PDB ID 1ZHU50) has 

been reported51 using TIP3P explicit water. We also tested the folding of an RNA hairpin 

UUCG loop (PDB ID: 2KOC,52 sequence GGCACUUCGGUGCC) with 5 base pairs in the 

stem. This hairpin system was shown to be stable in explicit solvent simulation.6b A shorter 

and modified sequence of this hairpin loop was also reported to fold to experimental 

structure from unfolded state in explicit water REMD simulation.54

For the DNA GCA hairpin, GB MD simulations were carried out from the hairpin (NMR of 

homologue) and single stranded canonical B-form conformations (Table S3). In the GB-

HCT simulation starting from the hairpin structure, the native conformation was maintained 

for the first ~1 μs, but it subsequently unfolded to > 3 Å BB RMSD, and the hairpin did not 

refold in the remainder of the >8 μs simulation (Figure 3). GB-HCT simulations starting 

from the B-form did not fold, and converged to a structure similar to that adopted at the end 

of the hairpin simulation. The results are consistent with previous observations in protein 

folding simulations, in which GB-HCT favors misfolded structures.29, 69 In contrast, both 

simulations in GB-neck2 showed reversible folding to a structure in agreement with 

experiment, with multiple folding/unfolding events occurring over the course of each MD 

simulations (Figure 3). The folded structure from this simulation has remarkably low BB-

RMSD (1.2 Å for cluster representative) to the corresponding NMR structure. Unlike the 

GB-HCT simulations in which a significant population of specific misfolded structures was 

sampled, folding with GB-neck2 was 2-state in character with sampling of a well-defined 

folded structure and a flexible unfolded ensemble (Figure 3).

We next tested the folding of the RNA UUCG hairpin loop. Since this hairpin has 5 base 

pairs in the stem, the hairpin structure was very stable in standard MD simulations and 

reversible folding was not seen (data not shown). We used REMD to accelerate the folding/

unfolding, again testing each GB model (GB-HCT and GB-neck2), starting from both NMR 

and single stranded A-form conformations. GB-HCT again favors an incorrect structure 

(BB-RMSD to NMR structure: 8.6 Å) while GB-neck2 is able to fold to a structure similar 

to the NMR structure (BB-RMSD of 1.9 Å and stem BB-RMSD of 1.1 Å) (Figure 4). While 

the structure of the stem region sampled in GB-neck2 is very accurate, the loop is not 

accurately folded; however, this may reflect inaccuracies in the RNA force field rather than 

the GB model since the same discrepancy was reported for simulations using explicit 

solvent.54
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Conclusions

In this study, we have extended and refit the GB-neck model for MD simulations of nucleic 

acids and their complexes with proteins. The fitting reduces the error by 70%-80% for 

absolute energy and 15%-65% for relative energy calculations from GB-neck, using PB 

calculations as a benchmark. The quality of the effective Born radii is also modestly 

improved. The improvement in energy and effective radii calculations translate to better 

structural stability for duplex, quadruplex and duplex/protein complex simulations. The 

model is also able to fold hairpin loop conformations for both DNA and RNA; such 

calculations remain very expensive in explicit water.

We also show that the A-T base pair H-bonds may be too weak in the GB-neck2 model. 

Future efforts will focus on quantitative comparison to data from explicit solvent, and 

possible tuning of stability by adjusting intrinsic Born radii as done previously for GB 

models of nucleic acids24c and proteins.22, 32, 65
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Figure 1. 
Comparison of inverse of PB “perfect” radii with inverse of effective radii between GB-neck 

(top), GB-neck2 (bottom) for the test sets: A and B-forms of DNA duplex 

(CGCGAATTCGCG)2, and A and B-forms of RNA duplex (CGCGAAUUCGCG)2. The 

red line in each subplot indicates the ideal agreement between GB and PB effective radii. 

The blue line indicates the best fit line.
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Figure 2. 
Structural overlap and BB-RMSD between representative structures of the most populated 

clusters from GB-neck2 (blue) and explicit water (red) MD simulations. Only backbones of 

DNA are shown in the DNA/protein 1GCC complex for clarity.
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Figure 3. 
DNA GCA hairpin loop MD simulations, starting from B-form and NMR structures. (Top 
left) Backbone RMSD versus time and RMSD histograms, from GB-HCT simulations 

starting from 2 conformations. (Bottom left) Backbone RMSD versus time and RMSD 

histograms, from GB-neck2 simulations starting from 2 conformations. Right: 
representative structures of most populated clusters from simulations starting from hairpin 

structures. (Top right) GB-HCT (misfolded). (Bottom right) GB-neck2 (folded, with NMR 

reference shown in grey). 2nd half of data was used for cluster analysis and histogram 

calculations.

Nguyen et al. Page 25

J Chem Theory Comput. Author manuscript; available in PMC 2016 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
RNA UUCG hairpin loop REMD simulations starting from A-form and NMR structures. 

Structures correspond to those sampled at 300K. (Top left) Backbone RMSD versus time 

and RMSD histogram from GB-HCT simulations starting from 2 conformations. (Bottom 
left) Backbone RMSD versus time and RMSD histogram from GB-neck2 simulations 

starting from 2 conformations. Right: representative structures of most populated clusters 

from simulations starting from hairpin structures. (Top right) GB-HCT (misfolded). 

(Bottom right) GB-neck2 (folded, with NMR reference shown in grey). 2nd half of data was 

used for cluster analysis and histogram calculation.
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Table 1

Optimized parameters for GB-neck2.

Parameter Value Parameter Value

SH 1.697 α N 0.686

SC 1.269 β N 0.463

SN 1.426 γ N 0.139

SO 0.184 α O 0.606

Sp 1.545 β O 0.463

α H 0.537 γ O 0.142

β H 0.363 α P 0.418

γ H 0.117 β P 0.290

α C 0.332 γ p 0.106

β C 0.197

γ C 0.093
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Table 2

abs_rmsd, rel_rmsd and rad_rmsd for individual training sets.

Solvation energy rmsd (kcal/mol) Inverse of effective radii rmsd 
(1/Å) (DNA, natom = 632)

obj_funct

dnadup natom = 632 rnadup natom = 640 A-form B-form

abs_rmsd w = 
1.0

rel_rmsd w = 
5.0

abs_rmsd w = 
1.0

rel_rmsd w = 
5.0

rad_rmsd w = 
2.5

rad_rmsd w = 
2.5

GB-neck 68.3 29.5 144.6 13.8 0.068 0.075 0.850

GB-neck2 14.0 10.3 25.4 11.7 0.045 0.038 0.338

%reduced_error 80% 65% 82% 15% 34% 49% 60%

%reduced_error shows degree of improvement of GB-neck2 compared to GB-neck, defined by %reduced_error = 100*(XGB-neck-

XGB-neck2)/XGB-neck where “X” is either abs_rmsd, rel_rmsd, rad_rmsd or obj_funct. “natom” is the number of atoms for each structure in the 

training set. Weighting factors “w” are also shown for each set.
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Table 3

RMSD between the inverse of GB effective radii and the inverse of PB ‘perfect’ radii (1/Å) for test sets

GB-neck GB-neck2 %reduced_error

A-form DNA (CGCGAATTCGCG)2 0.046 0.045 2%

B-form DNA (CGCGAATTCGCG)2 0.047 0.042 11%

A-form RNA (CCAACGUUGG)2 0.069 0.051 26%

B-form RNA (CCAACGUUGG)2 0.112 0.040 64%

A-form RNA (CGCGAAUUCGCG)2 0.069 0.050 28%

B-form RNA (CGCGAAUUCGCG)2 0.114 0.040 65%

DNA G-quadruplex (PDB ID: 1L1H) 0.067 0.062 7%

DNA-protein complex (PDB ID: 1GCC) 0.070 0.062 11%
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Table 4

abs_rmsd, rel_rmsd for type I and II test sets. In the case of the protein/DNA complex with the original GB-

neck parameters, we show two cases: 1) the original GB-neck parameters were applied to both protein and 

DNA. 2) The original GB-neck parameters applied to DNA while GB-neck2 parameters were applied to 

protein (results shown in parentheses).

Test set name GB-neck GB-neck2 %reduced_error

abs_rmsd rel_rmsd abs_rmsd rel_rmsd abs_rmsd rel_rmsd

Type I dnadup_plus150 70.8 26.2 16.4 10.7 77% 59%

rnadup_plus200 144.3 11.1 21.5 10.4 85% 6%

Type II DNA duplex (CGCGAATTCGCG)2 104.2 17.8 15.3 13.6 85% 24%

RNA duplex (CGCGAAUUCGCG)2 177.4 13.3 29.9 9.9 83% 26%

Protein/DNA complex 1GCC 126.0 (63.7) 23.3 (46.9) 39.2 19.1 69% (38%) 18% (59%)

J Chem Theory Comput. Author manuscript; available in PMC 2016 August 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 31

Table 5

Summary of testing structural stability and structural conversion in MD simulations.

System Length (ns) Average BB RMSD (Å) Notes 
on GB 
resultsstarting structure GB-neck2 explicit water GB-neck2 explicit water

DNA (CCAACGTTGG)2 A-form 1000 100 4.3 (A); 4.3 
(B)

4.2 (A); 3.1 
(B)

A → 
B, 
stable

B-form 1000 100 4.2(A); 4.3(B) 4.0(A); 3.1(B) Stable

DNA (CGCGAATTCGCG)2 A-form 1000 100 5.2 (A); 4.2 
(B)

5.3 (A); 3.0 
(B)

A → 
B, 
stable

B-form 1000 100 5.2 (A); 4.2 
(B)

5.4 (A); 2.9 
(B)

Stable

RNA (CCAACGUUGG)2 A-form 1000 100 2.1 (A); 6.1 
(B)

2.8 (A); 5.6 
(B)

Stable

B-form 1000 100 2.2 (A); 6.4 
(B)

2.8 (A); 5.5 
(B)

B → 
A, 
stable

RNA (CGCGAAUUCGCG)2 A-form 1000 100 2.3 (A); 6.7 
(B)

3.6 (A); 6.3 
(B)

Stable

B-form 1000 100 2.7 (A); 6.7 
(B)

3.7(A); 5.8(B) B → 
A, 
stable

DNA seq2 (CTAGGTGGATGACTCATT)2 A-form ~1000 100 6.2 (A)
6.9 (B)

6.1 (A)
5.1 (B)

B-form 1000 100 5.7 (A)
6.5 (B)

6.0 (A)
5.0 (B)

Stable

DNA quadruplex (GGGG)4 1000 200 1.6 (NMR) 4.4 (NMR) Stable

DNA quadruplex (GGGGTTTTGGGG)2 

(PDB ID: 1L1H)
1000 300 1.7 (X-ray) 4.4 (X-ray) Stable

DNA-protein complex (PDB ID: 1GCC) 50 50 2.7 (NMR) 2.4 (NMR) Stable

For duplex simulations, the canonical structure used as reference (A or B) is given in parentheses after the RMSD value. “A → B” or “B → A” 
indicates the conversion of A to B-form in DNA simulation (starting from A-form) or B to A for in RNA simulation (starting from B-form), 
respectively.
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Table 6

Average H-bond fraction in GB-neck2 and explicit water simulation for DNA (RNA) duplexes and DNA/

protein complex.

System explicit water GB-neck2

All base pairs Skip terminal base pairs All base pairs Skip terminal base pairs

DNA (CCAACGTTGG)2 94±5 100±1 93±1 98±1

DNA (CGCGAATTCGCG)2 95±1 100±1 88±1 98±1

RNA (CCAACGUUGG)2 96±2 98±1 97±1 98±1

RNA (CGCGAAUUCGCG)2 98±1 98±1 92±1 97±1

DNA seq2 (CTAGGTGGATGACTCATT)2 94±1 99±1

100±1
a

81±1 90±1

99±1
a

DNA-protein complex (PDB ID: 1GCC)
DNA sequence: (TAGCCGCCAGC)2

94±1 99±1

99±1
a

88±1 91±1

99±1
a

For DNA and RNA duplexes, uncertainties were calculated from independent runs initiated from A and B-forms. For DNA/protein complex 
(1GCC), the uncertainties were calculated from independent runs with different starting velocities.

a
For DNA systems having A-T base pairs in the terminal (shown in bold), we also report the H-bond fraction excluding the outer 2 or 3 base pairs 

(shown in italics, see text for details).
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Table 7

Groove width (Å) of DNA duplex (CGCGAATTCGCG)2 and RNA duplex (CGCGAAUUCGCG)2 from GB-

neck2 and explicit water MD simulations.

Groove width (Å)
DNA (CGCGAATTCGCG)2 RNA (CGCGAAUUCGCG)2

GB-neck2 explicit water Experiment (NMR/ X-ray)6a GB-neck2 explicit water Experiment (X-ray)

Major 18.7±0.1 18.8±0.1 18.0 ± 3.0/18.0 ± 0.3 15.1±0.5 19.2±0.1 16.2+/−3.0

Minor 12.8±0.1 12.1±0.1 12.0 ± 1.0 /10.0 ± 0.2 15.9±0.1 15.1±0.1 17.4 +/− 1.4

Two runs were performed for each solvent model, starting from A and B-forms. Uncertainties in MD data were calculated from two simulations. 
RNA experimental values reflect average and standard deviation from a survey of 50 crystal structures. DNA experimental values are from a 

published survey of crystal structures.6a
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