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Abstract

We tested whether surface specularity alone supports operational color constancy – the ability to 

discriminate changes in illumination or reflectance. Observers viewed short animations of 

illuminant or reflectance changes in rendered scenes containing a single spherical surface, and 

were asked to classify the change. Performance improved with increasing specularity, as predicted 

from regularities in chromatic statistics. Peak performance was impaired by spatial rearrangements 

of image pixels that disrupted the perception of illuminated surfaces, but was maintained with 

increased surface complexity. The characteristic chromatic transformations that are available with 

non-zero specularity are useful for operational color constancy, particularly if accompanied by 

appropriate perceptual organisation.

1. INTRODUCTION

A. Overview

Specular highlights have long been recognized as a potential source of information about the 

color of the illumination on a scene[1, 2]. Here we test the influence of low levels of 

specularity on the perceptual separation of surface- and illuminant-contributions to the distal 

stimulus. When viewing a perfectly matte surface, obeying the Lambertian reflectance 

model, the spectral content of light reaching the eye is given by a wavelength-by-wavelength 

multiplication of the spectral content of the illuminant (I(λ)) and the spectral reflectance 

function of the surface (R(λ)). However, most surfaces are not completely matte and as well 

as reflecting the incident light modified by the spectral reflectance function of the surface 

(I(λ)R(λ)), they also reflect a proportion of the incident light that is, in the case of most non-

metallic materials, not spectrally modified (I(λ)). These components are known respectively 

as the ‘diffuse’ or ‘body’ reflection and the ‘specular’ or ‘interface’ reflection [3]. The 

presence of a specular component usually results in the perception of gloss, although 

glossiness also depends on other factors in the image [4]. The diffuse and specular 

components differ in their geometry: The diffuse component is reflected isotropically, whilst 
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the specular component is reflected in a direction determined by the angle of incidence, with 

additional deviations in reflectance angle introduced by the roughness of the surface. Such 

differences in geometry mean that the light reaching the eye from points across an object’s 

surface contains different additive mixtures of the diffuse and specular components. In the 

present study we ask whether the presence of even a weak specular component might allow 

observers to reliably classify image changes that arise from a change in surface reflectance 

versus those that arise from a change in the spectral content of the illuminant. We consider 

the chromatic statistics available, the systematic transformations of those chromaticities 

under illuminant and reflectance changes, and the spatial distribution of chromatic 

information across the image.

B. Color constancy

Human observers are described as color constant when their perception of object surface 

color depends only on the spectral reflectance of the surface and is unaffected by changes in 

the spectral content of the illuminant. The difficulty in achieving color constancy is that the 

spectral content of the light reaching the eye from the surface depends not only on the 

spectral reflectance function of the surface but also on the spectral content of the illuminant. 

Furthermore, the visual system does not have access to entire spectral functions, but only to 

the univariate outputs of the three cone classes (long-, middle-, and short-wavelength 

sensitive, L, M and S) in the retina. There are a number of models that suggest how the 

visual system might achieve approximate color constancy by implementing a color 

transformation whose parameters are set using chromatic statistics distributed over multiple 

surfaces in space and time (for review see [5-7]). An important result is that, for physically 

plausible reflectance functions and illuminant spectra, a change in illuminant imposes an 

approximately multiplicative scaling on the L-, M- and S-cone signals from a collection of 

surfaces [8-11], and the diagonal transform that corrects this scaling is the transform that 

maps the cone-coordinates of the second illuminant to the cone-coordinates of the first 

illuminant. Surfaces that produce specular reflections have been proposed as a source of 

information that could be used to set the parameters of a color constancy transform, since 

intense highlights have a chromaticity that is almost exactly that of the illuminant [1, 2]. 

However, at lower levels of specularity, the illuminant chromaticity will always be mixed 

with the chromaticity of the diffuse component. In this case it has been suggested that, when 

several glossy surfaces are present in a scene with a single illuminant, each surface will have 

a diffuse reflectance with chromaticity IRi (where i = 1, 2, …n and n is the number of 

surfaces), and there will be several lines of samples in color space that converge at I. Even 

when the illuminant chromaticity is not directly available, this chromatic convergence [12] 

property may be used by the visual system to estimate the illuminant chromaticity and set 

the parameters of a color constancy transform. Yang and Maloney [13] used a cue-

perturbation method to test the influence of specular highlights, full surface specularity and 

background color on achromatic settings. With a specularity value of 0.1 (which is high 

enough that the brightest pixels were close to the illuminant chromaticity) they found a 

significant influence of the highlight, but no influence of either the full specularity cue or the 

background.
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A consequence of the multiplicative nature of the color transformation imposed by an 

illuminant change is that cone excitation ratios between pairs of surfaces are approximately 

preserved. Craven and Foster [14] label the ability to discriminate a change in spectral 

reflectance and a change in the spectral content of the illumination ‘operational color 

constancy’. With a stimulus composed of multiple diffuse-Lambertian surfaces under a 

single illuminant, in which either a subset of surfaces may change or the spectral content of 

the illuminant may change, Craven and Foster show that observers can perform well when 

they are required to report which of the changes occurred. Operational color constancy does 

not require stability of color appearance; simply the correct attribution of image changes to 

one or other physical origin. We adopted this performance-based measure of constancy in 

the experiments reported here, but presented only a single curved surface (R(λ)) illuminated 

by a single illuminant (I(λ)), and measured performance as a function of the specularity of 

that surface. To understand the information available to the observer to support this 

discrimination we must describe the stimuli in more detail.

C. Chromatic statistics for specular surfaces

We rendered ‘plastic’ materials as defined by the Ward reflectance model [15], which is a 

good approximation to most opaque materials other than metals [16]. In this model, a 

specularity parameter determines the proportion of light reflected in the diffuse component 

I(λ)R(λ) and the proportion reflected in the specular component I(λ). The mean direction of 

rays from the specular component is determined by the laws of reflection (i.e. the angle of 

reflection equals the angle of incidence, where these angles are defined between the ray and 

the surface normal). The specular reflection is image-forming. If the light source(s) are 

localised in space, they typically lead to bright (concentrated) highlights in the reflections 

from the surface. A roughness parameter introduces deviation (scattering) around the mean 

angle of reflectance, which blurs the image of the source. A zero roughness surface with 

specularity of 1.0 is a perfect mirror; a surface with specularity and roughness each around 

0.1 appears very glossy. The diffuse component is reflected in all directions and its intensity 

in the image depends on the angle between the surface normal and the illuminant (Lambert’s 

cosine law).

The chromaticities in an image of a single surface with non-zero specularity, illuminated by 

a source of a single spectral composition, will lie on a line in color space that joins the 

chromaticity coordinates of the illuminant (I) with the chromaticity of the wavelength-by-

wavelength multiplication of the illuminant and reflectance functions (IR) [1] (Figure 1 

illustrates this with stimuli from our experiment). The chromaticities from the diffuse parts 

of the image, where the scene geometry means that no specular highlight is visible, will lie 

at one end of this line segment, at the coordinates of IR, although they may be distributed 

over a range of intensities, based on the angle between the surface and the illuminant. The 

chromaticities from the most concentrated parts of the specular highlights will be closer to 

the chromaticity of I, and will have the highest intensity. The specularity of the surface 

specifies the proportion of light reflected in the diffuse and specular components and 

therefore determines the maximum extent of this line towards the chromaticity of I. Figure 2 

shows the distribution of chromaticities for the most intense pixels in our stimulus images. 

For surfaces of low specularity, even the most concentrated highlight regions will include 
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light reflected in the diffuse component and so will be a mixture of the chromaticities 

produced by I(λ) and I(λ)R(λ). Points of the image corresponding to the more scattered 

regions of the highlight will have chromaticities distributed between the two extremes. In 

many spaces such as the CIE 1931 xyY color space or the MacLeod-Boynton [17] 

chromaticity diagram, the locus of chromaticities will project to a straight line in the 

chromaticity plane, but in spaces designed to be perceptually uniform, such as CIE L*a*b*, 

the locus may be curved. The curvature of the cloud of points in the intensity direction is 

determined by the shape and spread of the highlight, which in turn is set by the roughness 

and curvature of the surface.

In the present study, we were particularly concerned with observers’ abilities to accurately 

attribute a change in the stimulus image to either a change in spectral reflectance or a change 

in the spectral power distribution of the illuminant. In both cases, the chromaticity of the 

diffuse reflection IR will change. In the case of the illuminant change, I will change as well 

as IR, whereas in the case of the reflectance change, I will remain the same. With highly 

specular stimuli, the discrimination could be based on a decision about the most intense 

pixels: if they are unchanged, the transition is likely to have been a reflectance change. 

However, at lower specularities, this cue becomes unreliable since even the most intense 

pixels in the image will contain a mixture of diffuse and specular components, and will 

therefore change in chromaticity when the reflectance changes. With low specularities, we 

predict that the full distribution of chromaticities will be important.

For most realistic illuminant and reflectance spectra, an illuminant change will cause similar 

translations in color space of I and IR. Considering the line connecting IR to I, described by 

all the chromaticities in the image, this line undergoes a translation during an illuminant 

change, or a rotation around I during a reflectance change (see Figure 1). For a reflectance 

change, the parts of the image with the highest intensity (dominated by the specular 

component and closest to I) will be the ones that change in chromaticity the least, while the 

parts with lowest intensity (dominated by the diffuse component and closest to IR) will 

change the most. This is similar to the chromatic convergence cue discussed above for 

multiple glossy surfaces. For our stimuli, however, only a single line of chromaticities is 

available at any one instant, so observers must make comparisons of the loci of 

chromaticities over the course of the transition. The comparison is additionally supported by 

a correlation between the magnitude of the chromatic change and intensity. There is also a 

similarity to relational color constancy [9, 21] in which the transition will be classed as an 

illuminant change if the chromatic relationships between surfaces in a scene are preserved. 

For our stimuli, however, the range of chromaticities is produced from a single surface, and 

it is the graded pattern of cone excitations that remains unchanged under an illuminant 

change but is altered in a reflectance change. Examples of the cone excitations associated 

with our stimuli are plotted in Figure 3. Under an illuminant change, the relationship 

between cone signals is described by a multiplicative transform, under a reflectance change 

it is not. Higher specularity results in a greater spread of chromaticities from IR toward I, 
which we predict will allow a better estimate of the transformation and result in better 

discrimination between illuminant and reflectance changes.
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D. Spatial structure of scenes with specular surfaces

The discussion so far has concentrated primarily on the chromatic statistics of the scene. 

However, there is also the suggestion that observers use scene and lighting geometry when 

estimating the illuminant and judging surface color [22-24] and that, for glossy objects, 

object shape modulates the information available, affecting color constancy [25]. Observers 

are sophisticated in their discounting of different contributions to the distal stimulus. For 

example Xiao and Brainard [26] obtained surface colour matches between matte and glossy 

spheres and found good compensation for the specular components of the image. Similarly 

Olkkonen and Brainard [27] found good independence between diffuse and specular 

components of lightness matches under real-world illumination. With real objects and lights, 

some studies have shown that three-dimensional scenes allow better color constancy than 

two-dimensional setups with asymmetric matching [28] or achromatic adjustment [29] but 

others have found no difference in operational colour constancy [30, 31]. Constancy has 

been shown to be higher for glossy objects than matte objects and for smooth objects 

compared to rough objects [32]. These factors have received relatively little attention in 

much of the classical work on color constancy, which used Mondrian [33] displays in which 

blocks of color are drawn to simulate diffuse-Lambertian surfaces in a uniform light field, 

rather than more realistic surfaces and sources. For more complex reflectance models, the 

scene and lighting geometry is critical.

Whilst the image of the diffuse reflection component lies on the surface of the object, the 

specular component forms a virtual image that lies in front or behind, depending on the 

curvature of the surface, and this is critical to the perception of gloss [34]. Separation in 

depth may help the observer to isolate the highlight from the diffuse reflection and use it as 

an estimate of the illuminant chromaticity. However, with rendered scenes that contained 

specular highlights, Yang and Shevell [35] found that viewing the scene with the highlights 

at their correct depth allowed no more color constancy that viewing the scene with the 

highlights rendered at the same depth as the surface. They did show an increase in color 

constancy afforded by binocular stereo presentation of the whole scene, rather than 

cyclopean viewing, presumably because the stereo presentation provides other information 

about the scene geometry besides the displacement of the highlights. In the present study, we 

chose not to render our stimuli with binocular disparity, but instead presented stimuli 

monocularly to remove conflict between depth cues in the image and cues to the flatness of 

the display. It is likely that pictorial cues in a monocular image will be of use in interpreting 

scene and lighting geometry, so performance will be better in images of three-dimensional 

scenes than in images containing the chromaticity information alone.

Another feature of our stimuli that is unlike those in the majority of color constancy 

experiments is that at any one instant they contain only a single object. Our intention was to 

test the sufficiency of specularity alone to support operational color constancy, and multiple 

surfaces with different diffuse reflectance functions would have provided other sources of 

information, such as those available in the statistics of Mondrian scenes (e.g. [36]).
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E. Rationale

We tested whether single surfaces can support operational color constancy, as a function of 

the level of specularity. We use synthetic animations of spherical objects lit by point-like 

sources. In order to simulate physically plausible color changes, these animations were 

derived from hyperspectral raytraced images of surfaces with known spectral reflectance, 

and lights with known spectral energy distributions. As stated above, we predicted that with 

increased specularity, performance would increase. We present two related experiments 

designed to test the spatio-chromatic relationships that may support observers’ performance. 

Examples of our stimuli are presented in Figure 4. In the first experiment we compared 

performance for simple rendered spheres with performance for spatially reorganised images 

that preserved the chromatic statistics of the simple spheres. Differences in performance 

between these conditions would rule out any simple model that uses only the available 

chromaticities, including performance based on the brightest elements. In the second 

experiment, we compared performance on the simple spheres with performance on bumpy or 

marbled spheres. Compared to the smooth spheres, bumpy spheres redistribute the spatio-

chromatic relationships in the image, but they do so in a way that is consistent with the 

three-dimensional geometry of a real illuminated object. The marbled spheres introduce 

intensity noise across the surface of the sphere, reducing the likelihood that the brightest 

element will locate a chromaticity that is dominated by the specular component, and 

disrupting the inverse correlation between magnitude of chromatic change and intensity that 

is present for reflectance changes and absent for illuminant changes.

2. METHODS

A. Stimulus generation

Observers viewed animations in which the color of a surface changed, or the color of the 

light illuminating that surface changed. The stimuli were synthetic, hyperspectral raytraced 

animations of a sphere in a void, lit by three spherical isotropic illuminant sources at 

different distances from the sphere. These sources were all assigned the same spectral power 

distribution in any single frame of an animation. The sphere had a ‘plastic’ bidirectional 

reflectance function (according to the Ward [15] model) and was assigned one of several 

spectral reflectance functions and one of five specularity values. The selection of the spectral 

power and reflectance functions is described later, but all were specified from 400 to 700 nm 

in steps of 10 nm, and so were divided to 31 wavebands. Five specularity values (as defined 

by RADIANCE’s plastic definition) were used: zero and four logarithmically spaced values 

from 10−2.5 to 10−1. The maximum value of specularity we used (10−1) is a realistic value 

for a material of this kind [15] and appears glossy. Lower values produced materials with a 

satin or matte appearance. Importantly, for these low specularities, the light from the 

brightest points in the image contains a mixture of specular and diffuse components (see 

Figure 2). The roughness parameter was fixed at 0.15 for all our stimuli. The geometry of 

the scene was always the same and the camera was placed so that it looked directly at the 

centre of the sphere, with a large depth-of-field so that all of the sphere appeared in focus. 

Examples of the resulting images are shown in Figure 4.
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Initial images were produced with the RADIANCE Synthetic Imaging System [37] with 

custom Bash and MATLAB (The Mathworks, Natick, MA, USA) scripts to generate an 

image for each spectral band. We use similar methods to Heasly et al. [38] and Ruppertsberg 

and Bloj [39], although we do not use their published code.

We rendered separate hyperspectral images for each frame of the animation, and for each 

value of specularity used. From these hyperspectral images, relative excitations of the L, M, 

and S cone classes of the 2° standard observer can be calculated by integrating the product 

of each pixel’s spectral power distribution by the each of the cone fundamentals. This results 

in a device-independent cone excitation image that could be converted to an RGB 

representation for display on our specific hardware, by using spectral measurements of the 

red, green and blue monitor primaries. Throughout the whole rendering and display 

procedure, images were stored or processed with 14-bit or greater precision.

An animation consisted of 10 frames in which either the spectral power distribution of the 

illuminant changed, or the spectral reflectance function changed.

B. Choice of spectral functions

Illuminant spectra were measurements of ‘sunlight’ and ‘skylight’, with CIE 1931 

chromaticitiy coordinates of (x, y) = (0.336, 0.350) and (x, y) = (0.263, 0.278) respectively. 

Reflectance spectra were drawn from a set of 256 spectra obtained from measurements of 

natural and manmade surfaces [40]. Illuminant or reflectance transitions were specified as 

linearly ramped mixtures of the initial and final spectra to produce plausible intermediate 

functions, such as those arising from combinations of pigments or from mixtures of sunlight 

and skylight. Illuminant changes therefore resulted in chromatic changes that were 

predominantly aligned with a yellow-blue or blue-yellow direction. Had we chosen 

reflectance spectra for a given trial without consideration, reflectance changes would not 

have been subject to the same chromatic restrictions as the illuminant changes. To avoid 

observers using direction and magnitude of chromatic change as a cue to discriminate 

illuminant and reflectance changes, we chose pairs of reflectance spectra for the reflectance 

change trials that produced distributions of the directions and magnitudes of changes in 

chromaticity coordinates of the diffuse component that were matched to those produced in 

the illuminant-change trials. Therefore while only the reflectance or illuminant changed in 

any one animation, the colour change was predominantly in the yellow-blue or blue-yellow 

direction in both cases. The stimulus chromaticities are summarised in Figure 5. We 

presented all chosen pairs of reflectances at each level of specularity and in each condition 

of the experiment. We limited the number of reflectances we chose to 92 so as to limit the 

total number of different configurations and therefore limit the number of trials in the 

experiment.

C. Image statistics

The primary effect of increasing specularity is to increase the range of chromaticities 

available in the image, and in particular to extend the locus of chromaticities from the 

chromaticity of the diffuse component (IR), towards the chromaticity of the illuminant, 

which is carried in the specular component (I). To summarise the change in chromatic 
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statistics with increasing specularity we extracted the chromaticity of the brightest point in 

our stimulus images and calculated the distance from IR to this chromaticity as a proportion 

of the distance between IR and I. Figure 2 shows box-plots of this proportion for the set of 

stimuli at each level of specularity. At zero specularity, all points in the image share the 

same chromaticity (IR). As specularity increases, the brightest points take a chromaticity 

that is increasingly close to the illuminant chromaticity. The intensity of the diffuse 

reflection, which varied across the reflectance spectra we used in the experiment, will affect 

the relative weights of I and IR and is the source of the variability seen in the box-plots. For 

the highest specularity we chose, the majority of images include brightest pixels that contain 

more than 80% of the illuminant chromaticity, and the box-plot compresses since it is not 

possible for the image to contain chromaticities beyond I on the IR line.

D. Stimulus presentation

Stimuli were presented on a NEC 2070SB CRT display driven by a Cambridge Research 

Systems (Rochester, UK) ViSaGe MkII in hypercolor mode, providing chromatic resolution 

of 14-bits per channel per pixel. The stimuli were 512×512 pixels, which corresponded to 

approximately 124×124 mm on the monitor or 22°×22° of visual angle at the 1.0m viewing 

distance. Observers viewed the stimuli monocularly.

The 10 frames of animation were shown at 30 frames per second so that the transition lasted 

0.33s. Linnell and Foster [21] found that the ability to detect changes in cone-ratios was best 

with abrupt changes between illuminants and declined for slower transitions, with most 

observers reaching chance between 1 and 7 seconds. Our own pilot studies showed that 

performance was not very sensitive to the speed of the transition. We chose to use a 0.33 sec 

transition, which allowed us to draw comparisons with data collected for moving stimuli 

(not reported here), and which appeared smooth whilst using only the number of frames that 

could be pre-loaded into the display buffer. The first and last frames of the animation were 

repeated for an additional 0.5 seconds at the beginning and end of the animation, 

respectively, so that the animation was a transition between two static periods. At any time 

during the experiment when there was no stimulus being presented, random spatio-temporal 

luminance noise, with chromaticity and average luminance the same as the whole stimulus 

set, filled the screen.

Each trial consisted of the presentation of one animation, followed by a 1-second response 

period. The observer could not give a response until after the animation was complete and 

had been replaced by the luminance noise. Auditory feedback was given after each trial.

E. Experiment 1

We compared performance in three experimental conditions: Sphere, Gradient, Scrambled. 

Stimuli in the Sphere condition were simple spheres. Stimuli in the other two conditions 

were spatial transformations of the simple sphere images. In all cases, the dimensions of the 

image remained the same, and the transformation was done on the LMS image, before 

conversion to RGB. Stimuli in all three conditions shared exactly the same chromatic 

statistics.
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For the Gradient condition, the pixels were re-arranged so that they were ordered by 

intensity (the sum of their L, M and S values), increasing from the top left of the image 

downwards, and then beginning at the top of the next column to the right and so on, so that 

the most intense pixels in the image were to the right-hand side.

For the Scrambled condition, the intensity (L+M+S) image of each frame of the animation 

was extracted, transformed to the Fourier domain (using MATLAB’s two-dimensional FFT 

routine), and the same randomly generated phase spectrum added to each frame before 

applying the inverse two-dimensional FFT. The L, M, and S values that were associated with 

each intensity value in the original image were then given to the corresponding intensity 

values in the scrambled intensity image. This produced scrambled images containing the 

same chromaticities as the originals, and the same correlations between intensity and 

chromaticity change through the animation. Since the random phase offset was applied to all 

frames of an animation, the spatial structure of the image did not change during the 

animation. Because the amplitude spectra of the images were not altered, the spatial 

frequency content of the transformed images was the same as the originals.

Examples of stimuli from each condition are shown in Figure 4, and the relevant chromatic 

statistics are summarised in 2 (left panel).

F. Experiment 2

We compared performance in two experimental conditions with different modifications to 

the object’s surface: “bumpy” and “marbled”. The bumpy surfaces were constructed in 

Blender (Blender Foundation, Amsterdam, The Netherlands) by mapping a procedural noise 

texture (Blender’s marble texture) to the surface of a sphere as displacement. The resulting 

surface geometry was then exported to RADIANCE for rendering in place of the simple 

sphere. The marbled objects had the same surface geometry as the simple spheres. Intensity 

variation was applied to the surface using a RADIANCE ‘pattern’ that reduced the 

magnitude of the diffuse reflectance by the same proportion at each spectral band by up to 

20%, spatially determined by a volumetric turbulence function evaluated at the surface of the 

sphere. For each animation, the rotation of the bumpy or marbled sphere about its vertical 

axis was randomised, so that observers were presented with a different view on each trial. 

Again, we measured discrimination performance as a function of specularity in the two 

conditions.

The chromatic statistics in these images share many of the characteristics of the stimuli used 

in Experiment 1, but are not identical, so predictions based only on chromatic statistics are 

different for Experiments 1 and 2. For the stimuli in the Bumpy condition, the chromaticities 

of the brightest pixels at each level of specularity are well matched to the chromaticities of 

the brightest pixels in Experiment 1. These similarities are summarised in Figure 2. The 

spatial arrangement of bright elements, and the regularity of chromatic gradients across the 

image, is however quite different from any of the conditions of Experiment 1. Variation in 

intensity is carried in a higher spatial frequency range, and there are discontinuities in 

chromatic gradients. These differences are summarized in Figure 6. For the stimuli in the 

Marbled condition, the chromaticities of the brightest pixels are a less reliable estimate of 

the illuminant chromaticity than in Experiment 1. The randomised location of the intensity 
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noise interacts with the geometry of the highlights, so on some trials the most specular 

region may coincide with a dark region of the marbled pattern, while a diffuse region may 

coincide with a light region of the marbled pattern, so that the most intense region may in 

fact be dominated by the chromaticity of the diffuse component. This is most likely to occur 

at lower specularites, and can be seen in Figure 2 (right panel) where the brightest pixels 

plot at lower proportions of the IR to I for lower specularities. Since the arrangement of the 

light sources and the smooth curvature of the sphere determines the regions that are 

dominated by specularity, it would be possible over trials to select, not the brightest pixel, 

but the pixel that is in the physical location of the centre of the highlight. In this case, the 

chromaticity of the selected pixel will be closer to I if the IR component is suppressed by the 

marbled pattern. The grey box-plots in Figure 2 (right panel) show the distributions of 

chromaticities obtained via this alternative selection rule.

G. Procedure

There was a total of 2100 unique trials for each observer in Experiment 1 and 1400 unique 

trials for each observer in Experiment 2. We used equal numbers of illuminant- and 

reflectance-change trials, equal numbers of trials for each of the five specularities, and equal 

numbers of trials for each condition. Different conditions were presented in separate 

sessions, and the trials within each condition were randomly ordered and then divided into 

four sessions, making twelve sessions of 175 trials in Experiment 1 and eight sessions of 

175 trials in Experiment 2. Observers usually ran one session of every condition in a day, 

and the order of conditions was counterbalanced across days. Before starting the experiment 

proper, each observer practised with up to four sessions of the Sphere condition only.

H. Observers

Eight observers (1-8) participated in Experiment 1 and four observers (1-4) participated in 

Experiment 2. All observers had normal color vision (no errors on the HRR plates and a 

Rayleigh match in the normal range measured on an Oculus HMC-Anomaloskop), and 

normal or corrected-to-normal visual acuity. Observers 1 and 6 are male; all others are 

female. Observers 1 and 2 are the authors; observers 3, 4, 5 and 6 were experienced 

psychophysical observers and had formal education on human color vision (for example, as 

part of an undergraduate psychology course) but were naïve to the purposes of the 

experiment; observers 7 and 8 were inexperienced and naïve. For Experiment 2, we selected 

the observers from Experiment 1 who showed reliable performance in Experiment 1 (a 

biased sample).

3. RESULTS

A. Experiment 1

We use d’, a bias-free estimator of sensitivity, to assess performance in discriminating 

illuminant changes from reflectance changes and ln(β) as an estimate of response bias 

(positive values indicate a “reflectance change” response). Each estimate of d’ and ln(β) is 

derived from the 140 trials presented to each observer, at each level of specularity, and in 

each transformation condition. The top panels in Figure 7 show plots of d’ vs. specularity, 

with data from each of the eight observers plotted in a different color. Specularity is plotted 

Lee and Smithson Page 10

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2016 March 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



on a log scale, and performance for zero specularity (matte) stimuli is included at the left-

hand side of the graph. The panels below show plots of ln(β) against specularity. In all 

conditions, performance at zero specularity is near chance (d′ = 0), which suggests that we 

successfully removed any statistical regularities in the set of illuminants and reflectances 

that would let observers use the trial-by-trial feedback to classify chromatic changes of the 

diffuse (matte) component as either reflectance or illuminant changes. The left panels of 

Figure 7 show data for the Sphere condition. Most observers show some increase in 

performance with specularity. However the rate of increase of d’ with specularity differs 

between observers. Some (Observers 1-4) increase to very high performance (d′ ≈ 4) at the 

highest specularity, whilst for others maximum performance is weaker (d′ ≈ 1). The middle 

and right panels of Figure 7 show data from the two transformed conditions. Improved 

performance with increasing specularity is also shown in these conditions, but the maximum 

dependence on specularity, and the highest d’ reached, is lower than in the Sphere condition. 

However, in the progression from Sphere to Gradient to Scrambled, performance from 

different observers becomes increasingly similar, with some suggestion that, while 

performance from the best-performing observers declines from Sphere to Gradient to 

Scrambled, performance from the worst-performing observers may increase. A session-by-

session analysis for each observer showed no improvements in performance after the 

practice sessions, indicating that differences between observers do not reflect differences in 

the time to asymptote.

The ln(β) plots show that for zero specularity, all observers show neutral response bias, 

being no more likely to classify the trial as an illuminant-change or as a reflectance-change. 

As specularity increases, there is a tendency for response bias to increase. For the Sphere 

condition, this is most marked for Observers 1, 2 and 4, all of whom achieve high 

performance levels. The other observers maintain a neutral criterion. For the other 

conditions, there is a lesser effect of specularity, and no marked difference between 

observers who can do the task and those who cannot.

B. Experiment 2

Figure 8 shows plots of d’ and ln(β) vs. specularity, with data from each of the four 

observers plotted in a different color. Performance is close to chance with zero specularity, 

and increases systematically as specularity increases. Observers 1 and 2 maintain a neutral 

response bias. Observers 3 and 4 show some bias at higher specularities, but there is no 

consistent trend.

The comparison of results between Experiments 1 and 2 requires comparisons of the data 

presented in Figures 7 and 8. There are two ways to compare the data. Firstly, we could 

compare the raw d’ values in each experiment. This would include performance differences 

that are due to the change in availability of chromatic statistics, and performance differences 

based on the spatial layout of the stimuli. Alternatively, we could compare performance in 

each experiment to the prediction of a simulated observer who has access to the chromatic 

information presented in the trials of the experiment. We have chosen the second approach. 

So, in Figures 7 and 8, we present the performance of our real observers alongside the 

performance of the simulated observers (described in the following section). For each data 
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point, we provide 95% confidence intervals based on the number of trials that contribute to 

the estimate. In the Sphere condition of Experiment 1, Observers 1-4 perform at a level very 

close to that of simulated observers A and B. In the Bumpy condition of Experiment 2 only 

Observer 4 reaches this level, while the others underperform; in the Marbled condition 

Observers 1, 3 and 4 are similar to the simulated observers, while observer 2 underperforms. 

The comparison of results between the Bumpy and Marbled conditions of Experiment 2 

again depends on the different availability and reliability of chromatic information in the two 

cases, summarised in Figure 2 and utilised in the simulated observer models. For Bumpy vs 

Marbled, paired comparison of each condition (with specularity >0) for each observer 

indicates higher performance in the Marbled condition (sign test: Z = 2.75, p < 0.05). This is 

of particular interest, since the chromatic statistics of the brightest pixel predict poorer 

performance in the Marbled condition.

C. Simulation

As part of our investigation into which cues observers were using to perform the task, we 

simulated the responses of an observer operating as a supervised-learning multivariate 

Baysian classifier [41]. We implemented three different simulated observers, operating on 

three different sets of parameters extracted from the stimulus animations. Our simulated 

observers were intended to show maximum performance based on optimal extraction of 

information from the images. Since the difference between first and last frames is most 

informative for the classification task we used only these frames in the simulations. In each 

case, the simulated observer ‘saw’ the trials in the same order as the real observers and 

maintained a perfect history of parameters on which its responses were based. Such 

accumulation of evidence over trials has been shown previously in human colour constancy 

performance [42, 43]. We then calculated d’ from the classification performance, as with the 

real observers. We did this for both Experiments 1 and 2, and the results are plotted on the 

corresponding results graphs, Figures 7 and 8.

Observer A was intended to simulate an observer who uses the amount of color change, and 

the color direction of that change, in the highlight (identified as the brightest part of the 

image, or additionally for Marbled stimuli as the image location corresponding to the 

highlight) to determine whether the illuminant has changed or not. The observer selects the 

brightest part of the image in the first frame and in the last frame and calculates the 

magnitude and direction of the change in chromaticity in the MacLeod-Boynton [17] 

chromaticity diagram. The histories of magnitudes and directions was maintained separately 

for illuminant and reflectance changes. On each trial, Observer A’s response was determined 

by which of the non-parametric multivariate kernel density estimators fitted to these histories 

gave the highest probability for the observed values. The selection of reflectances discussed 

in section B was specifically designed to minimise this cue for the zero-specularity stimuli.

Observer B was intended to simulate an observer who attempted to decide which illuminant 

was present at the start and the end of the animation, separately, based on the chromaticity of 

the highlight (identified as the brightest part of the image, or additionally for Marbled 

stimuli as the image location corresponding to the highlight), and respond ‘illuminant 

change’ if those classifications were different. The histories of S/(L + M) and L/(L + M) 
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chromaticity coordinates of the brightest point in the image were maintained separately for 

illuminant and reflectance changes. On each trial, Observer B classified the illuminant at the 

beginning and end of the animation separately, by determining which of the two-

dimensional Gaussian probability distribution functions (PDFs) fitted to these histories gave 

the highest probability for the observed values. The observer’s response was determined by 

whether or not the two classifications were different.

Observer C was similar to Observer B, but rather than using the brightest points in the first 

and last frames, Observer C classified the illuminant based on the chromaticity of the global 

mean in the first and last frames.

Since these simulations are based on the chromaticities in the images and do not take into 

account the spatial configuration of those chromaticities, predicted performance is identical 

for all of the transformation conditions in Experiment 1, but differs slightly for the 

conditions of Experiment 2.

It can be seen in Figures 7 and 8 that the performance of Observers A and B (using the 

brightest part of the images) improved with increasing specularity, whereas performance of 

Observer C (using the mean chromaticities) was close to chance level (d′ = 0) and only 

weakly dependent on specularity. The performances of Observers A and B is very similar in 

all conditions suggesting that, once the chromaticities of the brightest elements are 

extracted, decisions based on color change or on discrete classifications at the start and end 

of the animations can be equally effective. Performance with stimuli in the Marbled 

condition depends on the strategy for identifying the highlight region. Selecting the brightest 

pixels is less effective than selecting the region of the image associated with a specular 

highlight (given the fixed curvature of the spherical stimulus and the fixed geometry of the 

light sources).

4. DISCUSSION

A. Experiment 1 – simple spheres and individual differences

When Observers 1-4 were asked to distinguish between illuminant changes and reflectance 

changes in images of isolated spheres, they performed at around chance level when the 

surface was completely matte, and their performance increased as specularity increased to a 

level that appeared very glossy. One striking feature of the results of Experiment 1 is that 

some observers perform much better than others. Despite being given feedback, and the 

opportunity to practice with stimuli from the Sphere condition, Observers 5-8 used a non-

optimal strategy when deciding on their responses. Individual differences in cue-

(re)weighting may be important in this task. An analysis of response bias suggests that this 

is not an explanatory factor in understanding differences between observers. Clearly there 

are differences between individuals in how they use available cues to perform the task. For 

the Sphere condition, Observers 5 and 6 show some performance improvement with 

increasing specularity, whereas Observers 7 and 8 remain close to chance in their 

classifications for all specularities. At the highest specularities this is surprising, since a 

simple strategy based on the chromaticity of the brightest pixels (simulated observers A and 

B) would be highly effective. It is possible that the performance of these observers is 
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dominated by cues that are only marginally informative in this case (e.g. changes in the 

mean chromaticity such as those used by observer C).

B. Experiment 1 – spatial factors

The transformed stimuli in the Gradient and Scrambled conditions were designed to 

investigate if and how the spatial structure of the chromatic information was used in the task. 

The stimuli contained the same pixels as the original spheres but rearranged so that they no 

longer made a sphere image. We see that performance differed across the three conditions.

The performance of Observers 1-4 (Observers 5-8 are discussed later) depended on 

specularity in all conditions, but this dependence weakened in the Gradient condition and 

weakened further in the Scrambled condition. Chromatic variation in the Gradient condition 

was distributed over a larger spatial scale than in the original Sphere condition, while in the 

Scrambled condition the phase-scrambling procedure ensured that the spatial scale of 

chromatic variation was preserved. These differences are illustrated in the pseudocolor 

images in Figure 6. Differences in performance between the Sphere condition and the 

Scrambled condition suggest that the availability of spatio-chromatic information 

(determined, for example, but the sensitivity of the visual system to modulation at different 

spatial scales) is not the only factor driving performance.

We suggest that, whilst the chromaticities available in all conditions were sufficient to 

support above chance discrimination, performance improved when those chromaticities were 

interpreted as a plausible image of an illuminated surface. The images in the Gradient 

condition are broadly consistent with an illuminated cylinder, whereas the Scrambled 

condition destroyed the implied three-dimensional structure of the scene. Previous work 

lends support to this interpretation. Schirillo and Shevell [44] have shown that surfaces 

arranged to be consistent with an illumination boundary prompt observers to make color 

matches that compensate for the inferred illumination. When the apparent illuminant edge is 

removed, even if the ensemble of chromaticities and immediate surround of the test patch 

are maintained, the matches are altered. A further demonstration of the importance of 

perceptual organisation on surface color judgement is provided by Bloj, Kersten and 

Hurlbert [45]. In their experiment, magenta paper on one side of a concave folded card 

reflects pinkish light onto the other half of the card, which is covered in white paper. When 

observers viewed the folded card in the appropriate perspective their color judgements 

compensate for the mutual illumination, but when viewing the card via a pseudoscope (so it 

appears convex) observers judged the white card to be pale pink. The consensus from these 

results is that the spectral and geometric properties of inferred illumination feed into color 

perception at an early stage.

In a real scene, the image of the specular highlight would appear behind that of the diffuse 

surface. This would be possible to simulate with two renderings from different viewpoints, 

and stereoscopic presentation, but in our experiment we used only one image. Observers 

judge surfaces to be glossy when specular highlights have the correct relative disparity [34] 

although then do not always use disparity cues as expected when judging shape [46]. The 

influence of disparity cues on performance in our task is and empirical question, and one 

that is yet to be answered.
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Interestingly, for Observers 5-8 performance was worst in the Sphere condition, and 

increased in the Gradient and Scrambled conditions. In the Gradient condition Observer 8 

was performing as well as Observers 1-4, and in the Scrambled condition, the difference 

between the two groups of observers is much less noticeable. For a color constant observer 

that perceptually discounts the illuminant, the illuminant-change trials will appear stable (so 

neither reflectance nor illuminant will appear to have changed). The reflectance-change 

trials will present a change in the relationship between the diffuse component and the 

highlight (similar to the pop-out experienced for reflectance changes in the experiments 

reported by Foster et al. [47]). With only two dominant chromaticities in the scene, it may be 

ambiguous to determine which has changed. Under this speculative interpretation, 

performance is predicted to be poor in the Sphere condition, which presents the best 

opportunity for constancy of surface reflectance accompanied by perceptual discounting of 

the illuminant. It is possible that these observers are relying on the global mean of the image 

to make their judgments.

C. Experiment 2

Observers 1-4 show improved performance with increasing specularity in both conditions of 

Experiment 2. These results suggest that the effect found with simple spheres generalises to 

more complex surfaces.

In the Bumpy condition the chromatic statistics available in the image are very similar to 

those in all three conditions of Experiment 1, as summarised by the box-plots in Figure 2. 

However, the spatial locations of the highlights are randomised by the local variation in 

surface curvature. The 3D geometry of the point-like light sources is more difficult to infer, 

but the highlights give strong (but potentially ambiguous [48]) cues to surface shape.

Since we presented the sphere in a different random orientation on each trial, the locations of 

the highlights in the image varied from trial-to-trial, as they had in the Scrambled condition, 

but not in either the Sphere or Gradient conditions, of Experiment 1. The Bumpy and 

Scrambled conditions therefore share some unpredictability but they differ in the spatial 

scale of the chromatic gradients imposed by the transitions from diffuse to specular regions 

of the image. These differences are apparent in the pseudocolor images of Figure 6, where it 

is clear that the chromatic gradients are steeper and more localised in the Bumpy condition. 

For Observers 3 and 4, very high performance is maintained in the Bumpy condition, but 

performance in the Bumpy condition is worse than in the Sphere condition for Observers 1 

and 2, and approaches the level obtained in the Scrambled condition. This reduction in 

performance may be due to the reduction in predictability of the these stimuli from trial to 

trial.

In the Marbled condition, the achromatic variation in surface reflectance has very little effect 

on the spatio-chromatic gradients in the image (see Figure 6), but significantly disrupts some 

of the statistical regularities that are available in the stimuli in all conditions of Experiment 

1. In particular, the marbling introduces intensity noise that disrupts the correlation between 

magnitude of chromatic change and intensity that is a signature of reflectances changes (see 

Figure 1), and additionally breaks the correspondence between the brightest pixel and a 

chromaticity that is dominated by the specular component. This effect of the marbling on the 
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chromatic statistics is clear in the box-plots of Figure 2C showing the proportion of distance 

along the I to IR vector that is sampled by the brightest pixel. At high specularities, the 

intensity of the specular component dominates, and the brightest pixel locates the 

chromaticity of the specular component, as effectively as in the other conditions. However, 

at mid-specularities, the brightest pixel may be located on a light region of the marbled 

surface, and may not correspond with the location of the specular component, selecting 

instead a chromaticity more heavily dominated by the diffuse component. Interestingly, 

however, the performance of all four observers was very high in this condition, suggesting 

that disruption of chromatic statistics with intensity noise (for the single pattern contrast we 

used), as well as unpredictability from trial-to-trial in the spatial location of the most useful 

chromaticities, had less effect on performance than the spatial disruption of chromatic 

gradients (for the level of bumpiness we used).

D. Comparison with the simulated observers

Our simulated observers, A, B and C based their classifications on low-level chromatic 

statistics available in the images. Observers A and B rely on the chromaticities of the 

brightest pixels; Observer C relies on the mean chromaticity of the image. In Experiment 1, 

the four observers who perform better than the others (Observers 1-4) perform at a similar 

level to Observers A and B for the Sphere condition of Experiment 1, in all but the highest 

specularities. In the Gradient and Scrambled conditions, the real observers fall well below 

the performance of Observers A and B, particularly at high specularities, despite having 

access to the same chromatic information for the brightest pixels. The observers who are 

performing at the lowest levels (Observers 7 and 8) make classifications that are consistent 

with the level of discrimination that would be obtained using the mean image chromaticity.

In Experiment 2, Observer 4’s performance on the Bumpy stimuli follows that of Observers 

A and B, whereas the others fall somewhat below this level. In the Marbled condition, 

performance is good for all Observers 1-4, and at low specularities exceeds that predicted by 

Observers A and B. This improvement with marbled stimuli is a curious result and deserves 

some discussion. If performance were simply based on the chromaticity of the brightest 

pixels, there should be an advantage for Bumpy stimuli over Marbled, since the box plots in 

Figure 2 show that for the lower specularity levels, the brightest pixels are closer to the 

illuminant chromaticity for the Bumpy stimuli than for the Marbled stimuli. The relative 

improvement in the Marbled case is predicted by an alternative strategy, namely that 

observers base their judgement on the spatial region of the image that they have learned is 

associated with a specular highlight (given the fixed curvature of the spherical stimulus and 

the fixed geometry of the light sources). The I to IR proportions of these values are shown in 

the grey box-plots in Figure 2C, and the corresponding performances of Observers A and B 

are shown in grey on Figure 8. This alternative strategy might explain the trend for 

Observers 1-4 to out-perform the ideal brightest-pixel observer at low specularities in the 

Marbled case. It is a strategy that is consistent with the idea that observers are sensitive to 

the perceptual organisation of surfaces and the lights that illuminate them, rather than 

making a decision based on simple chromatic statistics in the image.
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E. Conclusion

We have shown that observers are, in general but to varying degrees, able to use low levels 

of surface specularity to discriminate between illuminant changes and reflectance changes. 

We tested observers’ performances in the absence of other cues by using rendered scenes 

that contained only a single isolated surface. Parametric testing of the effect of the 

specularity parameter in the Ward reflectance model shows an approximately linear increase 

in d’ with logarithmic increases in specularity. While it seems that the changes in chromatic 

statistics of the image that accompany increases in specularity allow reliable performance in 

this task by themselves, performance is better when observers are presented with a plausible 

image of a glossy object. It is possible that the visual system parses the complex spatial 

arrangement of diffuse and specular reflections in an image and can use them to accurately 

attribute image changes to either changes in reflectance or illumination.
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Fig. 1. 
Chromaticitic distributions from stimulus images, plotted in the MacLeod-Boynton [17] 

chromaticity diagram (Constructed using the Stockman and Sharpe cone fundamentals [18, 

19] with the S-cone fundamental scaled so that the maximum S/(L+M) value of the 

spectrum locus is 1 and the L- and M-cone fundamentals scaled so that they sum to V*(λ) 

[20]). These are taken from animations of spheres with high specularity. The blue dots show 

chromaticities from the first frame of the animation and the red dots show the chromaticities 

from the final frame. The top and bottom panels show the conditions to be descriminated in 
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an operational constancy task: (top) a change in the spectral reflectance function of the 

sphere surface, with no change in the illuminant (I(λ)R1(λ) to I(λ)R2(λ)); and (bottom) a 

change in the spectral power distribution of the illuminant, with no change in the reflectance 

(I1(λ)R(λ)toI2(λ)R(λ)). The red and blue square symbols plot at the chromaticity of the 

product of the corresponding illuminant and reflectance functions (IR) projected onto the 

zero-luminance plane, and the + and × symbols plot at the chromaticity of the illuminant I. 
These I chromaticities have been plotted with reduced luminance since they were never 

directly viewed, and would be outside the range of the plot axes if plotted at their actual 

luminances. The 2D insets in each plot show the same chromaticity distributions projected 

onto an isoluminant plane.
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Fig. 2. 
Chromaticities of the brightest pixels in our stimulus images, expressed as a proportion of 

the distance from the chromaticity of the diffuse component (IR) to the chromaticity of the 

illuminant (I), for the different specularities and conditions used in our experiments. The left 

panel shows the distributions for all three conditions of Experiment 1, since they share the 

same chromatic statistics. The centre and right panels show the distributions for the Bumpy 

and Marbled stimuli from Experiment 2. In (C), the extra series of grey boxes shows the 

distributions identified by selecting the centre of the highlight, rather than the brightest 

pixels in the images.
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Fig. 3. 
Examples of changes in normalized cone excitations elicited by our stimuli. Only excitations 

of L-cones are shown, but excitations of the M- and S-cones show similar patterns. In each 

plot, the L-cone excitation from the first frame is plotted on the abscissa and the 

corresponding excitation from the final frame is plotted on the ordinate. Each dot represents 

a pixel in the animation. The number inside each plot indicates the specularity of the surface 

in the stimuli: high specularity in the bottom panels and zero in the top panels. The left-

hand-side panels show chromaticities from a reflectance-change stimulus and the right-hand-

side panels show chromaticities from an illuminant-change stimulus. Note that the 

transformation in an illuminant change is multiplicative but, with non-zero specularity, this 

is not the case for a reflectance change (lower left panel).
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Fig. 4. 
Examples of images from the stimulus animations used in our experiments. The left two 

columns show the first and final images from an animation of a reflectance change, while 

the right two columns show the first and final images from an animation of an illuminant 

change. To aid comparison of these stimulus types, the reflectance and illuminant for the 

final frame of the reflectance-change example are the same as the reflectance and illuminant 

for the first frame in the illuminant-change example. Pairs of rows show images for the 

lowest and highest specularities (0.00 and 0.10 respectively) for the Sphere, Gradient, 
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Scrambled conditions of Experiment 1, and the Bumpy and Marbled conditions of 

Experiment 2. Note that the color changes in the zero specularity condition are identical for 

reflectance and illuminant changes, despite the difference in the source of this change. Color 

reproduction in this figure will not be accurate.
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Fig. 5. 
Top panel: Chromaticities of the brightest points in the first and final frames of our stimulus 

animations in the MacLeod-Boynton [17] chromaticity diagram. Yellow + symbols represent 

surfaces under sunlight, and blue + symbols represent surfaces under skylight. Points with 

lower saturaton indicate chromaticites with higher specularity. Each of the black polygons 

encloses chromaticities from stimuli with a particular specularity. The outermost polygon 

contains surfaces with zero specularity and the smaller polygons enclose stimuli with higher 

specularities. The chromaticities of the illuminants themselves are indicated by the green 
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symbols in the centres of the corresponding clusters. Lower four panels: Chromaticities 

visited by the brightest points in our stimulus animations with zero specularity (upper small 

panels), and specularity = 0.1 (lower small panels) in the same color space as the top panel. 

Each line connects the chromaticity from the first frame to that of the final frame in one 

animation. Purple lines (left panels) represent reflectance changes and orange lines (right 

panels) represent illuminant changes.
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Fig. 6. 
Pseudocolor images to represent the chromatic gradients available in the stimulus images in 

different conditions of Experiments 1 and 2. The color map represents the chromaticity of 

the corresponding pixel in the stimulus image, expressed as a proportion of the distance 

from the chromaticity of the diffuse component (IR) to the chromaticity of the illuminant (I). 
Green corresponds to (IR) and purple to (I). By removing the intensity variations that are 

present in the real stimulus images, these plots emphasize the spatial distribution of 

chromatic statistics.
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Fig. 7. 
Results from real and simulated observers in Experiment 1. The top panels show d’ at each 

measured value of specularity, and the lower panels show the corresponding ln(β) values, for 

the three conditions, Sphere, Gradient and Scrambled. Each real observer is represented by a 

different colored line (consistent across all plots), as indicated in the key. Error bars show 

95% confidence intervals based on the binomial distribution. Each real observer’s data 

points are slightly horizontally offset by a different amount so that that error bars can be 

seen, although the specularities used were the same for each observer. The black dashed 

lines represent the simulated observers A, B and C (see text). The upper solid black line 

indicates the maximum measurable d’, given the number of trials in the experiment.
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Fig. 8. 
Results from real and simulated observers in Experiment 2, for the two conditions, Bumpy 

and Marbled. The formatting of these plots is the same as in Figure 7, and the symbol colors 

correspond to the same observers. The additional grey lines in the right panel represent the 

simulated observers A and B using the alternative strategy as described in the text (Section 

4B).
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