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Abstract
A growing number of human diseases have been linked to defects in protein glycosylation that affects a wide range of organs.
Among them, O-mannosylation is an unusual type of protein glycosylation that is largely restricted to the muscular and nerve
system. Consistently, mutations in genes involved in the O-mannosylation pathway result in infantile-onset, severe
developmental defects involving skeleton muscle, brain and eye, such as the muscle−eye−brain disease (MIM no. 253280).
However, the functional importance of O-mannosylation in these tissues at later stages remains largely unknown. In our study,
we have identified recessive mutations in POMGNT1, which encodes an essential component in O-mannosylation pathway, in
three unrelated families with autosomal recessive retinitis pigmentosa (RP), but without extraocular involvement. Enzymatic
assay of these mutant alleles demonstrate that they greatly reduce the POMGNT1 enzymatic activity and are likely to be
hypomorphic. Immunohistochemistry shows that POMGNT1 is specifically expressed in photoreceptor basal body. Taken
together, our work identifies a novel disease-causing gene for RP and indicates that proper protein O-mannosylation is not only
essential for early organ development, but also important formaintaining survival and function of the highly specialized retinal
cells at later stages.
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Introduction
Retinitis pigmentosa (RP) is a Mendelian disorder featured by
night blindness, tunnel vision, progressive retinal degeneration
and eventually complete blindness. Its prevalence worldwide is
∼1 in 3000–7000 (1). The genetic etiology of RP is highly heteroge-
neous, with at least 79 disease-causing genes identified (RetNet,
https://sph.uth.edu/retnet/). However, there are ∼40% RP cases
with unknown causative mutations, strongly suggesting novel
genes involved in RP pathogenesis (2). RP can be linked to syn-
dromic disorders since genes important for retina also play
roles in other tissues (3). For example, defects of various lyso-
somal proteins in patients with neuronal ceroid lipofuscinosis
(MIM no. 256730) have awide range of neurological and behavioral
abnormalities as well as retinal degeneration (4). Also, the loss of
pantothenate kinase leads to HARP syndrome (MIM no. 607236)
featured by central nervous system problems, hematological dis-
orders and RP (5). Similar cases can be seen in other genetic dis-
orders such as Wolfram syndrome (MIM no. 222300), hyper-IgD
syndrome (MIM no. 260920) (6) and a series of ciliopathies (7).

With the advent of whole-exome sequencing (WES) era,
large-scale WES in multiple cohorts have greatly improved our
understanding about the molecular etiology of RP. Specifically,
a number of novel genotype–phenotype correlations have
been identified. In these studies, the phenotype spectrum of
the mutations in syndrome-causing genes was expanded to
non-syndromic RP. For instance, MVK mutations were known
to cause hyper-IgD syndrome (8), which is a systemic inflamma-
tory disorder. However, recent reports show that MVK defects
also lead to non-syndromic RP (9). Another example is CLRN1,
whose mutations were majorly associated with Usher syn-
drome (MIM no. 276902) (10), is also linked to non-syndromic
RP (11). This phenomenon was observed in a long list of recent
reports involving genes such as WDR19 (12), IFT172 (13), IFT140
(14), NEUROD1 (15) and HGSNAT (16). Although these reports
were sporadic findings during the genetic screening of RP, they
together account for a considerable proportion of RP cases. Fur-
thermore, the identification of these genes will improve our
ability of RP molecular diagnosis and our understanding of the
basic biology of retina.

Glycosylation is a highly diverse category of protein post-
translational modifications. It plays essential roles in regulating
the protein subcellular localization, transport and quality control
(17).Mutations inDHDDS, encoding an enzyme that plays a role in
N-glycosylation, were reported to cause non-syndromic RP
(18,19). Another specific type of glycosylation, protein O-manno-
sylation, was originally detected in the brains and muscles of
mammals (20–22) and later found to be functionally important
in these tissues (23,24). Correspondingly, disruption of enzymes
in the O-mannosylation pathway will lead to a spectrum of gen-
etic disorders majorly affecting human neuronal and muscular
systems (25). One of the keymember in the pathway is POMGNT1,
a β-1,2-N-acetylglucosaminyltransferase enzyme that partici-
pates in O-mannosyl glycan synthesis (26). Recessive loss-
of-function POMGNT1 mutations can cause muscle–eye–brain
disease (MEB, MIM no. 253280) (27), featured by extensivemuscu-
lar, neurological and ocular abnormalities (28,29). Specifically, a
series of ocular symptoms are seen in patients including retinal
degeneration, optic nerve atrophy, impaired electroretinogram
(ERG) signals, lens opacification, myopia and strabismus (30).
The retinal abnormalities documented in MEB patients suggest
the possibility that like other ‘syndrome-causing genes with ret-
inal involvement’, POMGNT1mutations might also be associated
with non-syndromic retinal disease.

In this study, we identified recessive POMGNT1 mutations in
three unrelated non-syndromic RP families by WES. Further bio-
chemical studies showed that the mutations significantly im-
paired POMGNT1 enzymatic activity. Immunohistochemical
analysis documented POMGNT1 expression in the photoreceptor
layer. Our results greatly expand the phenotype spectrum of
POMGNT1 mutations and provide the first link between the pro-
tein O-mannosylation pathway and non-syndromic RP.

Results
Three non-syndromic RP families with POMGNT1
mutations were identified

The index case we have investigated belongs to a medium-size
autosomal recessive RP family of Italian origin diagnosed at the
McGill University Health Centre (MUHC), Canada. The proband
(MOGL2063) is a 69-year-old male. He was aware of visual pro-
blems at the age of 10 years old. He currently has a visual acuity
of 20/100 and very restricted visual fields in both eyes (Goldmann
visual field test shows 5°). His fundus images showbone spicules,
narrow vessels, peripapillary atrophy and a tigroid appearance.
The proband’s sister is 78 years old (MOGL2064) and also affected
with RP. She was aware of nyctalopia and vision problems when
she was 12 years old. She currently has visual acuities of 20/80
OD and light perception OS, constricted visual fields (5°) (Fig. 1A
and B) and peripapillary atrophy. Funduscopy featured bone spi-
cules and attenuated retinal vessels. Optical coherence tomog-
raphy (OCT) revealed chorioretinal atrophy, retinal thinning
with absent inner segment/outer segment (IS/OS) junctions
and cystoid macular edema in both eyes (Fig. 1C and D).

We first performed target capture sequencing on patient
MOGL2064 to see if she has mutations in known RP-causing
genes. The capture sequencing data did not identify any putative
causative variants (data not shown). Then we performedWES on
both affected individuals and particularly searched for biallelic
variants shared by these two individuals. After data analysis, var-
iants in POMGNT1 were prioritized as top candidate due to its
known link with a retinal phenotype. Both patients have a
stop-gain variant (c.187C>T; p.R63*) and a missense variant
(c.860T>G; p.I287S) in POMGNT1. The R63* variant is absent in
the ExAC database (http://exac.broadinstitute.org) and the I287S
variant has a frequency of 1 in 40 000, indicating they are rare
in the population (Table 1). The stop-gain variant completely
abolishes the catalytic domain of POMGNT1 and should confer
no enzymatic activity according to previous structure–function
studies (31). The I287S variant affects an amino acid (AA) site
highly conserved in vertebrates (Fig. 2B) and it is considered dam-
aging by all prediction algorithms (Table 2). Themissense variant
was not reported in MEB patients before. We performed Sanger
sequencing and confirmed that the two variants are in trans
and two unaffected siblings are wild-type (WT) or single hetero-
zygous at these two loci (Fig. 2A, Supplementary Material,
Fig. S1). We revisited the patients to see if they have muscular
or neurological abnormalities as shown inMEB patients. Interest-
ingly, both patients (now 69 and 78 years old) have no extraocular
disease. These results strongly suggest that POMGNT1mutations
are associated with non-syndromic RP.

To test our hypothesis that POMGNT1 is a novel gene for non-
syndromic RP, we then screened POMGNT1mutations in theWES
data of 308 unsolved RPpatients. Strikingly,we identified another
two cases. Both patients were Han Chinese and diagnosed in Pe-
king UnionMedical College Hospital (PUMCH). The first patient is
a 32-year-old female born in a consanguineous family (Fig. 2A).
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Figure 1. Clinical findings of non-syndromic RP patients in this study. Visual field test results of MOGL2064, right eye (A) and left eye (B), showing restricted visual field in

both eyes. OCT images ofMOGL2064, right eye (C) and left eye (D), featuring chorioretinal atrophy, retinal thinningwith absent IS/OS junctions. Fundus images of SRF1105,

right eye (E) and left eye (F), showing the tigroid appearance, thinning of mid-peripheral RPE and loss of choroid-capillaries. OCT images of SRF1105, right eye (G) and left

eye (H), showing thinning of outer retinal layer with preserved foveal photoreceptors. (I) ERG results of SRF1105, showing no detectable ERG signals. Fluorescein

angiography results of SRF1105, right eye (J) and left eye (K), showing oval shaped hypofluorescence with a hyperfluorescent ring in the macular and mottled

hypofluorescence area in the peripheral retina. OCT images of SRF1630, right eye (L) and left eye (M), showing thinning of whole retina layers, a flat fovea and

disappearance of IS/OS (right eye more severe than left eye). Visual field test results of patient SRF1630, right eye (N) and left eye (O), showing tunnel vision in both eyes.
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She suffered night blindness since childhood. Her best corrected
visual acuity is 20/25 OD and 20/50 OS. Her diopter is 6.00–2.75 ×
169° OD and−9.75 to 3.00 × 6° OS. Her fundus showed a tigroid ap-
pearance, which possibly indicates thinning of mid-peripheral
retinal pigment epithelium (RPE) and loss of choroid-capillaries
(Fig. 1E and F). OCT revealed thinning of outer retinal layer with
preserved foveal photoreceptor IS/OS junctions (Fig. 1G and H).
Visual field testing demonstrated constricted visual field of
both eyes. The ERG examination displayed non-detectable
waves OU (Fig. 1I). Fundus auto-fluorescence result showed an
oval shaped hypofluorescence with a hyperfluorescent ring in

the macula and mottled hypofluorescence area in the peripheral
retina (Fig. 1J and K). This patient was re-visited, but no syndrom-
ic abnormalities were identified. Her serum creatine kinase level
is normal (60 U/l, reference: 24∼170 U/l) and there is no evidence
of periventricular white matter abnormality, ventriculomegaly,
pontocerebellar hypoplasia or cerebellar cyst in magnetic reson-
ance images. WES data show that she possesses a homozygous
missense variant (c.466G>A; p.E156K) in POMGNT1 (Fig. 2A). The
missense variant is not found in any control database suggesting
it is extremely rare (Table 1). It disrupts a highly conservedAA site
(Fig. 2B) and considered damaging by all prediction algorithms

Table 1. Clinical features and POMGNT1 variants of RP patients in this study

ID/ethnicity Dx Sex Age MS BR Other POMGNT1 variants O Freq EM Freq

MOGL2063/Cau RP M 69 No No No c.187C>T (p.R63*)
c.860T>G (p.I287S)

Absent
3 in 121 400

Absent
1 in 66 738

MOGL2064/Cau RP F 78 No No No c.187C>T (p.R63*)
c.860T>G (p.I287S)

Absent
3 in 121 400

Absent
1 in 66 738

SRF1105/Chi RP F 32 No No No c.466G>A (p.E156K) (homozygous) Absent Absent
SRF1630/Chi RP M 52 No No No c.1895 + 1G>A (p.V633*)

c.1505G>C (p.G502A)
Absent
Absent

Absent
Absent

Chi, HanChinese; Cau, Caucasian; Dx, primary diagnosis;MS, if the patient hasmuscular abnormalities; BR, if the patient has brain abnormalities; Other, if the patient has

other disorders. O Freq, overall frequency, occurrence in ExAC database (all population groups); EM Freq, ethnically matched frequency, occurrence in ExAC database

within the ethnically matched (EM) population group. Specifically in the ExAC database, East Asian is the EM population group for Han Chinese patients. Non-Finnish

European is the EM population group for Caucasian patients; cDNA and protein changes are based on reference cDNA sequence NM_017739.

Figure 2. Genetic findings of non-syndromic RP patients in this study. (A) Four non-syndromic RP patients from three unrelated families with POMGNT1 biallelic variants

were identified. Genotypes (cDNA and protein changes based on reference cDNA sequence NM_017739) are labeled for each family. (B) POMGNT1 protein sequence

alignment among selected vertebrates at the loci of POMGNT1missense variants identified in our study. All the disrupted amino acids are highly conserved in vertebrates.

Table 2. Predicted damaging effect of POMGNT1 missense variants identified in this study.

POMGNT1 missense variants SIFT Polyphen2_HDIV Polyphen2_HVAR LRT Mutation Taster Mutation Assessor FATHMM

c.860T>G (p.I287S) D PD PD De Di M D
c.466G>A (p.E156K) D PD PD De Di M D
c.1505G>C (p.G502A) D PD PD De Di M D

SIFT, scale-invariant feature transform; Polyphen2, polymorphism phenotyping v2; LRT, likelihood-ratio test; FATHMM, functional analysis through hidden Markov

models; D, damaging; PD, probably damaging; De, deleterious; Di, disease-causing; M, medium damaging.

cDNA and protein changes are based on reference cDNA sequence NM_017739.
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(Table 2). The variant is also not found in the list of known
POMGNT1 mutations identified in MEB patients.

The other patient is a 52-year-old male. He presented with
night blindness since his youth. Currently he has a visual acuity
of 20/400 OD, 20/40 OS. OCT features thinning of thewhole retina
with aflat fovea and absent IS/OS junctions (Fig. 1L andM). Bone-
spicule and salt-and-pepper pigment proliferation were scat-
tered in the whole retina with macular involvement in both
eyes. Visual field testing demonstrated tunnel vision in both
eyes (Fig. 1N and O). He has a splicing (c.1895 + 1G>A; p.V633*)
and amissense (c.1505G>C; p.G502A) POMGNT1 variant inherited
from one parent each. The splicing variant was previously re-
ported in MEB patients and it causes intron retention and imme-
diately generates a premature stop codon (32). The missense
variant is absent in control databases, conserved among verte-
brates and also predicated to be damaging by all algorithms
(Fig. 2B, Tables 1 and 2).

In addition, we performed homozygosity mapping using SNP
arrays and identified five index cases with homozygous regions
that include POMGNT1 (Supplementary Material, Table S1). How-
ever, mutation analysis of the whole-coding sequence using
Sanger sequencing did not reveal any possible pathogenic muta-
tion in these patients.

Functional analysis suggested the hypomorphic nature
of the POMGNT1 missense variants

Weperformedbiochemical analyses to further test the pathogen-
icity of POMGNT1 missense variants we identified. Specifically,
we did site-directed mutagenesis on POMGNT1-expressing plas-
mids and transfected them into HEK293T cells. The culture
supernatants were used for western blot analysis and POMGNT1
enzymatic activity measurement. Western blot results showed
the successful expression of POMGNT1 proteins and their
approximately equal molecular weights (Fig. 3A). During the

enzymatic assay, we repeated the experiments five times. Com-
pared with the WT POMGNT1 protein control, the two mutant
POMGNT1 proteins we assayed (E156K and I287S) have sig-
nificantly reduced (P < 10−5) enzymatic activity, with only 30
and 10% of theWT level retained, respectively (Fig. 3B). This indi-
cated that the POMGNT1 variants identified in non-syndromic RP
cases were hypomorphic mutations instead of complete loss-of-
function ones.

POMGNT1 is expressed in photoreceptor cells

We further performed immunohistochemistry to explore the lo-
calization of POMGNT1 protein in the retina. In adult mouse ret-
ina cryo-sections, POMGNT1 shows no expression in nuclear
layers or plexiform layers (Supplementary Material, Fig. S2), but
clear expression in photoreceptor cells (Fig. 4). Specifically, we
found that POMGNT1 is localized at the basal body and daughter
centriole of photoreceptor cells, suggesting functional involve-
ment at these sites (Fig. 4).

Discussion
POMGNT1 catalyzes the formation of GlcNAcβ1-2Man linkage of
O-mannosyl glycans (27). O-mannosyl glycans play roles in the
assembly and organization of the basal membranes in muscular
and nervous systems, thus crucial tomotor activity and neurode-
velopment (33,34). As expected, Pomgnt1-null mice show typical
MEB-like phenotype including muscular dystrophy, brain devel-
opmental defects and eye anomalies (35,36). Specifically, in the
retina of Pomgnt1-null mice, the retinal layers are thinner than
those in WT mice (36) and there is a reactive gliosis of astrocytes
andMüller glial cells (35), which is also seen in other neurodegen-
erative disorders with retinal involvement (37). These mice also
show abnormal retinal vasculature organization and reduced
a- and b-wave ERG response levels (35,36), which are typical fea-
tures of RP. The phenotypes in Pomgnt1-null mice indicated the
essential role of POMGNT1 in the maintenance of retinal struc-
tures and functions. Previous studies have identified O-manno-
sylated dystroglycan and its binding partner Pikachurin are
required for photoreceptor ribbon synapse formation (38,39),
which is crucial for the neuronal connections between photore-
ceptors and second-order neurons. Here, we first showed that
POMGNT1 is indeed expressed in photoreceptor cells, supporting
its functional importance in this cell type. Interestingly, we found
POMGNT1 is specifically localized near photoreceptor cilium
basal body, a subcellular structure critical for protein transport
from inner segments to outer segments, suggesting that POMGNT1
is not only critical for dystroglycanO-mannosylation, but alsomay
modify outer segment proteins. Further proteomic studies would
discover outer segment protein substrates of POMGNT1 and un-
ravel the pathological mechanism of POMGNT1-associated retinal
disease.

Recessive POMGNT1 mutations have been reported to cause
MEB (27). The phenotype spectrum ofMEB is highly variable, ran-
ging fromvery severeWalker–Warburg syndrome-like phenotype
with early lethality (40), to mild phenotype mimicking limb-
girdle muscular dystrophy without mental retardation (41). In
general, congenital or early-onset muscular dystrophy are the
universal features presented, withmost patients also developing
neurological and ocular symptoms. Interestingly, the discoveries
in our study marked a clearly different phenotype from the ca-
nonical phenotypes caused by POMGNT1 mutations.

The non-syndromic feature of RP patients in our study prob-
ably resulted from two reasons. First, the missense POMGNT1

Figure 3. Biochemical studies to test the pathogenicity of two POMGNT1 missense

variants. (A) Western blot analysis of POMGNT1WT and mutant proteins, showing

their expression and approximately equal molecular weights. (B) Enzymatic activity

of POMGNT1 WT and mutant proteins. Both mutants retained significantly lower

activity compared with the WT level. Two-tailed Welch’s t-test. ***P < 10−5. Error

bars indicate sample standard deviations.
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mutations in our study are hypomorphic rather than the com-
plete loss-of-function. The majority of the reported POMGNT1
causal alleles inMEB patients were protein-truncatingmutations
(42,43), which will lead to the loss of protein activity since it was
shown that the deletion of 19 AAs in the C-terminal is sufficient
to abolish POMGNT1 enzymatic activity (31). Another two studies
showed that nearly all missense POMGNT1MEB-causing variants
also completely lose their activities (44,45). These results strongly
argue that the total loss of POMGNT1 activity underlies typical
MEB phenotype. While in our study, both missense variants we
tested still maintains subnormal activity (30 and 10%), which
seems plausible to correspond to the relatively milder non-syn-
dromic phenotype. Interestingly, another report identified a
homozygous hypomorphic POMGNT1 variant in a patient diag-
nosed with limb-girdle muscular dystrophy, a phenotype milder
than MEB (41), further supporting our contention that the
POMGNT1 enzymatic activity level play an important role in de-
termining the phenotype. In fact, studies in other genetic disease
have also observed a correlation between disease severity and re-
sidual enzyme activity (46–48). The specialized structure, highly
dynamic protein turnover and high-energy consumption in ret-
ina (49) probably confer higher threshold of POMGNT1 activity
than other tissues for maintaining normal structure and func-
tions. This model was also proposed recently in other similar
studies identifying RP-related genotype–phenotype correlation
(2,16,50). The unique biological profiles in the retina also explains
why retinal defects often lie in the mild extremity of the spectra
of syndromic phenotypes (51,52).

Secondly, genetic backgrounds or even non-genetic factors
probably affect the phenotypes of individualswith POMGNT1 var-
iants. This has been proposed before (43,53,54) since remarkable
phenotypic difference was observed in MEB patients, even with
the same causative alleles in the same family. In addition,

C57BL/6 Pomgnt1-null mice, which presumably possess the
same genetic background, also show phenotypic variability in
the eyes (35), further suggesting the notion that non-genetic fac-
tors have an impact on phenotype. Future studies on Pomgnt1-
null mice in different genetic backgrounds or under various
conditions might help to reveal the complicated mechanisms
underlying phenotypic variability.

It should be noted that a number of MEB patients with
POMGNT1 mutations show no ocular symptoms or only non-
retinal ocular symptoms including myopia, anterior chamber
malformation, microphthalmia, nystagmus, strabismus and
cataract (30,43,55). One reason may be that those MEB patients
were too young to develop progressive retinal degeneration.
MEB patients have a lifespan between 10 and 30 years (40)
while the patients in our study are at older ages. In addition,
early developmental defects in the eye would hinder the presen-
tation and comprehensive clinical examination of late-onset ret-
inal phenotype. As for the non-retinal ocular symptoms, since
O-mannosyl glycan exist exclusively in neuronal and muscular
tissues (20–22), they could probably be caused by secondary ef-
fects of neurodevelopmental defects or extraocular muscle
anomalies as suggested by previous literature (30,56–60).

In summary, the present study identified POMGNT1 as a novel
disease-causing gene for non-syndromic RP. The significance of
POMGNT1 specifically in the retina has been underappreciated
before since muscular dystrophy and neurodevelopmental de-
fects are the predominant symptoms and major cause for the
short lifespan in MEB patients. Our results greatly expand the
phenotype spectrum of POMGNT1 mutations and highlighted
the functional importance of POMGNT1 and O-mannosyl glycan
in the retina. WES analysis in our cohort suggested POMGNT1
mutations as a rare cause of non-syndromic RP. Nevertheless,
future genetic screening of mutations in other genes involving

Figure 4. POMGNT1 is expressed in photoreceptor cells. For each individual photoreceptor, the POMGNT1 signal is next to the cilia marker (acetylated-α-tubulin) signal.

Two-dot pattern (labeled by double arrows) indicates the localization of POMGNT1 at both the basal body and the daughter centriole of photoreceptor cells. Ac-α-Tub,

acetylated-α-tubulin; OS, outer segments; CC, connecting cilium; IS, inner segments; ONL, outer nuclear layer.
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O-mannosylation pathwaymight improve themolecular diagno-
sis of non-syndromic RP cohorts and enhance our understanding
of glycobiology in the retina.

Materials and Methods
Clinical diagnosis of patients and DNA sample collection

The patients were diagnosed by ophthalmic examinations in-
cluding best corrected visual acuity testing, fundus examination,
optical coherence topography (OCT, 3D OCT-2000 Spectral
Domain; Topcon, Tokyo, Japan), visual field tests (Octopus, Inter-
zeag, Schlieren, Switzerland), autofluorescence (Spectralis HRA +
OCT; Heidelberg, Germany) and ERG (RetiPort ERG system, Roland
Consult, Wiesbaden, Germany). RP was diagnosed according to
medical and family history, typical fundus and OCT features, vis-
ual field defects and attenuated or abolished ERG responses.
Blood samples were obtained from all patients and their family
members if available. DNA was extracted using QIAamp DNA
BloodMidi Kit as instructed by themanufacturer (QIAGEN, Hilden,
Germany). This study adhered to the Declaration of Helsinki and
was approved by the Institutional Review Board at the MUHC
and PUMCH. We obtained informed written consent from all par-
ticipating individuals for this study.

DNA library preparation and next generation sequencing

Approximately 1 μg of the genomic DNA samplewas sheared into
fragments of 200–500 bp in length. The sheared fragments were
blunt-end repaired and a single-adenine base was added to the
3′ends using Klenowexonuclease. Illumina adapterswere ligated
to the repaired ends and DNA fragments were polymerase chain
reaction (PCR) amplified for eight cycles after ligation. In each
capture reaction, 50 pre-capture DNA libraries were pooled to-
gether. The targeted DNA was captured by customized retinal
disease gene panel for retinal capture sequencing to screen for
variants in known disease-causing genes. The detailed informa-
tion of the retinal capture panel was described previously (2). If
no plausible causative variants were identified, the DNA was
then captured by NimbleGenSeqCap EZ Hybridization and
Wash kit (NimblegenSeqCap EZ Human Exome Library v.2.0) fol-
lowing the manufacturer’s protocols for WES. Captured libraries
were sequenced on Illumina HiSeq 2000 (Illumina, San Diego, CA,
USA) as 100 bp paired-end reads according to the manufacturer’s
protocol.

Bioinformatics analysis

Paired-end sequencing reads were obtained for each sample.
Readsweremapped to human reference genome hg19 using Bur-
rows–Wheeler aligner (61). Base-quality recalibration, local re-
alignment and variant calling were performed as previously
described (2). Since RP are rare Mendelian disorders, variants
with a frequency >1/200 (for a recessive model) or 1/1000 (for a
dominant model) in a series of public databases and internal
control databases were filtered out. The list of databases can be
found in previous literature (2). We also retrieved variant fre-
quencies from the Exome Aggregation Consortium (ExAC, http
://exac.broadinstitute.org/) database. After frequency-based fil-
tering, we filtered out synonymous variants, identified known
retinal disease-causing variants and predicted the pathogenicity
of variants using Scale-invariant feature transform (SIFT) (62),
polymorphism phenotyping v2 (Polyphen2) (63), likelihood-ratio
test (LRT) (64), MutationTaster (65), MutationAssessor (66) and

functional analysis through hidden Markov models (FATHMM)
(67) as previously described (2,68).

Sanger sequencing

For each suspected causative mutation, a 500 bp flanking se-
quence at both sideswas obtained from theUCSC genome brows-
er (hg19 assembly). RepeatMasker (http://www.repeatmasker.
org/) was used to mask the repetitive sequences in human gen-
ome. Primer 3 (69) was used to design a pair of primers for gener-
ating a 400–600 bp PCR product to sequence themutation site and
at least 50 bp region surrounding it. After PCR amplification, the
ampliconswere sequenced onABI 3730xl. Familymembers of pa-
tientswere also Sanger-sequencedwhen available for confirming
allele segregation. In addition, five caseswith RP and a significant
homozygous region covering POMGNT1 were screened for muta-
tions using primers (Supplementary Material, Table S2) covering
all coding exons that were designed using the UCSC ExonPrimer
tool (https://genome.ucsc.edu/index.html).

POMGNT1 enzymatic assay

HEK293T cells were maintained in Dulbecco’s modified Eagle’s
medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (FBS), 2 m -glutamine, 100 U/ml penicillin
and 100 µg/ml streptomycin at 37°C with 5% CO2. The expression
plasmids of soluble POMGNT1 were transfected into HEK293T
cells, and the media were replaced with 10 ml fresh FBS-free
Opti-MEM (Invitrogen) 2 days after transfection, and incubated
for one more day. The FBS-free culture supernatants were sub-
jected to western blot analysis and assay for POMGNT1 activity.

The proteins were separated by sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (10% gel) and transferred to a
PVDF membrane. The membrane was blocked in PBS containing
5% skimmilk and 0.5% Tween-20, incubated with anti-POMGNT1
C-terminus antibody (70), and subsequently treated with anti-
rabbit IgG conjugated with horseradish peroxidase (GE Healthcare
Bio-sciences Corp., Piscataway, NJ, USA). Blots were developed
using an ECL kit (GE Healthcare). Purified sPOMGNT1 (70) was
used as amass standard to determine the amount of each protein.
Optical density measurement of the bands (Image J software)
produced a standard curve, which was used to calculate the con-
centration of each mutant protein.

POMGNT1 activity was obtained from the amount of [3H]
GlcNAc transferred to an O-mannosyl peptide (26). The enzyme
reaction were carried out in 20 µl reaction buffer containing
140 m MES (pH 7.0), 0.5 m UDP-[3H]GlcNAc (100 000 dpm/
nmol), 0.5 m O-mannosyl peptide [Ac-AAPT(Man)PVAAP-NH2],
10 m MnCl2, 2% Triton X-100, 5 m AMP, 200 m GlcNAc, 10%
glycerol and 2 μl culture supernatant at 37°C for 2 h. After boiling
for 3 min, themixturewas analyzed by reversed phase high-pres-
sure (or high performance) liquid chromatography with a Wako-
pak 5C18–200 column (4.6 × 250 m). Solvent A was 0.085%
trifluoroacetic acid in distilledwater and solvent Bwas 0.085% tri-
fluoroacetic acid in acetonitrile. The peptide was eluted at a flow
rate of 1 ml/min using a linear gradient of 0–25% solvent B. The
peptide separation was monitored continuously at 214 nm, and
the radioactivity of each fraction was measured using a liquid
scintillation counter.

POMGNT1 immunohistochemistry

Immunohistochemistry was carried out as described in previous
literature (71). Briefly, unfixed eyes of adult WT mice were
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harvested and frozen in melting isopentane,16 μm cryo-sections
were cut, post-fixed in 0.5% PFA for 10 min and treated with 0.1%
Triton X-100 in PBS for 10 min and subsequently blocked in 10%
normal goat serum with 0.1% Triton X-100 in PBS (blocking buf-
fer) for 30 min to 1 h. Cryo-sections were then incubated for over-
night at 4°C with primary antibodies (rabbit POMGNT1; 1:500;
GeneTex) and anti-mouse acetylated α-tubulin (1:200; Santa-
Cruz Biotechnology) diluted in blocking buffer. Slides were then
washed in PBS, incubated with secondary antibody (Alexa 488
anti-rabbit; 1:500 dilution; Invitrogen) (Cy3 anti-mouse; 1:500;
Jackson Immunochemicals) diluted in hybridization buffer at
room temperature for 1 h, washed in PBS, DAPI (1:1000 dilution)
was used for nuclear counter staining, slides were mounted
with anti-fade medium (Prolong gold, Invitrogen) to reduce
bleaching, and cover-slipped. Fluorescent images were captured
with a Zeiss-Apotome.2 microscope, images were processed
using ZEN and Adobe Photoshop CS4.

Supplementary Material
Supplementary Material is available at HMG online.
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