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Abstract

Individuals with cognitive impairment can benefit from intervention strategies like recording 

important information in a memory notebook. However, training individuals to use the notebook 

on a regular basis requires a constant delivery of reminders. In this work, we design and evaluate 

machine learning-based methods for providing automated reminders using a digital memory 

notebook interface. Specifically, we identify transition periods between activities as times to issue 

prompts. We consider the problem of detecting activity transitions using supervised and 

unsupervised machine learning techniques, and find that both techniques show promising results 

for detecting transition periods. We test the techniques in a scripted setting with 15 individuals. 

Motion sensors data is recorded and annotated as participants perform a fixed set of activities. We 

also test the techniques in an unscripted setting with 8 individuals. Motion sensor data is recorded 

as participants go about their normal daily routine. In both the scripted and unscripted settings a 

true positive rate of greater than 80% can be achieved while maintaining a false positive rate of 

less than 15%. On average, this leads to transitions being detected within 1 minute of a true 

transition for the scripted data and within 2 minutes of a true transition on the unscripted data.

Index Terms

Activity Recognition; Prompting Systems; Change-Point Detection; Smart Environments

I. Introduction

The world’s population is aging, with the estimated number of individuals over the age of 85 

expected to triple by 2050 [1]. Currently 50% of adults aged 85+ need assistance with 

everyday activities, and one in three households is anticipated to have at least one family 

member with cognitive decline within the next decade [2]. Research has demonstrated that 

individuals with mild cognitive impairment (MCI), defined as an intermediate state between 

normal aging and dementia [3], can successfully learn to use memory compensation 

strategies in the laboratory and clinical environment (e.g., memory notebooks or mnemonic 

techniques) [4]–[6]. However, after the initial training sessions there are few methods to 

promote or ensure that the individual remembers to use the techniques in everyday life, aside 

from placing additional burden on a caregiver to prompt for use.
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Significant recent advances in the use of smart environments for activity recognition and 

prompting [7], [8] suggest that smart technologies can augment traditional rehabilitation 

techniques and support functional independence. Most applications of smart technology for 

health assistance to date have focused on a narrow set of tasks or have been performed in 

controlled laboratory settings [8]–[10], and do not couple smart environment contributions 

with other technological healthcare innovations. Furthermore, many of the technologies fail 

to build upon efficacious rehabilitation strategies or to incorporate cognitive rehabilitation 

theory when designing interventions [11]. In this work we advance the state of the art by 

partnering mobile electronic technologies, smart environments, and traditional clinical 

interventions to provide memory assistance. The long-term goal of our work is to develop 

technologies to support proactive health care that will successfully improve the functioning 

and quality of life of individuals with MCI and dementia, and reduce their reliance on 

caregivers. In this paper, we describe one such technology that will contribute to this overall 

goal. The technology is a digital memory notebook (DMN) that builds on a smart home / 

mobile technology partnership.

Memory impairment, one of the earliest and most problematic symptoms of MCI, can 

significantly impact everyday functional independence [12], [13]. Recently, evidence-based 

cognitive rehabilitation approaches that enhance everyday independence in traumatic brain 

injury [14] have been applied to older individuals with MCI [5], [6]. Unlike prior non-drug 

interventions used with MCI and dementia populations (e.g., cognitive stimulation or 

reminiscence therapy), these newer approaches aim to maintain functional independence and 

delay dementia diagnosis by teaching the use of practical memory strategies for everyday 

activities (e.g., remembering appointments and daily tasks). Prior work [6], [15] 

demonstrates that individuals with MCI can learn to journal in a memory notebook and 

effectively use the notebook to schedule, plan, and carry out daily activities independently 

with the assistance of a care-partner (i.e., spouse, child, or friend).

The cornerstone of the original version of this intervention was a pen-and-paper notebook 

with three components: 1) a daily log and to-do-today list used to record, store and retrieve 

information about daily activities; 2) a calendar coordinated with the daily log used to record 

and retrieve important appointments and upcoming events; and 3) a personal notes section to 

store birthdays, medications, bus schedules and other personal information. Preliminary data 

showed that, in comparison to standard care, MCI individuals in the intervention group were 

able to effectively apply note-taking and problem solving strategies post-intervention. They 

also self-reported fewer symptoms of depression and greater use of memory strategies in 

their everyday lives, while the care-partners reported better coping self-efficacy [16].

The work we describe here improves upon the paper-and pencil notebook intervention by 

developing a smart home / DMN partnership. Such a partnership facilitates learning and 

continued use of the memory notebook to support functional independence through activity 

recognition and context-aware prompting.

Teaching a memory-impaired individual to use a memory notebook takes time (typically 

12–20 training sessions) and using the notebook is itself a memory exercise for the 

individual [17]. The memory impaired individual must be aware of his or her memory 
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difficulties, learn to integrate the memory notebook into his or her everyday routine, and 

develop a habit of consistently using the notebook in the appropriate context [6]. This is 

usually accomplished through reminder prompts, which can come from a care-partner, a 

time-based alarm, or aspects of the individual’s routine (e.g., refer to memory notebook at 

meals) [17]. If an individual with memory impairments does not overlearn the process of 

using the memory notebook, the use of the notebook will be forgotten and the tool itself will 

become ineffective, or will place additional burden on a care-partner to monitor and prompt 

for memory notebook use.

We use machine learning and pervasive computing technologies to provide automated 

prompting for DMN use. Prompting technologies have been shown to increase adherence to 

instructions, decrease errors in everyday instrumental activities of daily living (IADLs), 

reduce frustration due to interruptions increase independence and increase activity 

engagement in individuals with cognitive impairment [18]–[21]. Some mobile prompting 

systems have been designed which allow for the setting of reminder prompts [22]. Such 

time-based prompting may help individuals use the aid more often, but requires the user to 

do extra work to learn how to use the system and set the prompts which may reduce overall 

use [23]–[25]. Furthermore, to help an individual acquire the habit of regularly looking at 

and entering information into a memory notebook, a time-based prompt delivered when the 

person is taking a nap or actively engaged in an activity will likely be ineffective [26], [27]. 

Similarly, a prompt delivered after the individual has already completed the task will only 

result in annoyance. While location-based prompting provides some contextual input, 

researchers have found that incorporating information about current activities reduces the 

limitations of current prompting systems [11], [28].

Prompting during transition periods, a period of time when the user is not engaged in an 

activity, has been suggested as an effective prompting time [29], [30]. Detecting and using 

transition periods for prompting is supported theoretically by results from dual-task studies. 

Prompting during an attention-demanding activity can create instances of information 

overload and reduce the efficiency with which the individual can complete the task [31], 

[32]. Our approach to prompting individuals to use their DMN is thus based on the idea of 

detecting activity transitions and prompting them during these times.

In this paper we develop and assess machine-learning algorithms that will detect transition 

periods between activities. We hypothesize that activity transitions can be detected, 

independent of the specific activities performed, using traditional supervised learning 

algorithms for activity recognition by representing it as a two-class problem (activity or 

transition). Furthermore, we hypothesize that activity transitions are also accompanied by 

corresponding changes in the data distributions of the feature-space and can thus be detected 

without the use of labeled data (i.e. in an unsupervised manner) by looking for changes in 

the data distributions. To test our hypothesis we have participants complete twelve tasks of 

everyday living (such as cooking, cleaning, and watching television) in a smart home. The 

smart home is equipped with infrared motion sensors, magnetic door sensors, temperature 

and light sensors, and some object shake sensors that will allow us to track the participant’s 

movements. We then apply the machine-learning techniques to the sensor data to 

successfully detect activity transitions.
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A. Related Work

Automated activity recognition plays an important role in the proposed technology. There 

have been a number of machine learning models that have been used for activity 

recognition. These can be broadly categorized into template matching, generative and 

discriminative approaches. Template matching techniques employ k-NN classifiers using the 

distance computed between subsequences of sensor events [33]. Generative approaches to 

activity recognition utilize probabilistic graphs such as naive Bayes models, hidden Markov 

models, dynamic Bayes networks, or Gaussian mixtures that can model activity sequences 

for generation of data as well as labeling of activity classes [34]–[36]. Discriminative 

approaches that model the boundary between the different classes have also been popular for 

activity recognition. These include decision trees, support vector machines, and conditional 

random fields [7], [37]–[39].

A key component of our approach is recognizing transitions between activities. Focusing on 

activity transition detection allows us to abstract away the activities being performed and 

simplifies the task of finding transition points. Similar work has been pursued in activity 

segmentation where a continuous stream of sensor data is segmented into discrete 

meaningful units that can be separately classified. Approaches have been tried that train 

supervised learning algorithms based on examples of activity starts and stops, examples of 

activity transitions, or examples of activity pairs [40], [41]. Lack of confidence in the 

activity classification has also been used to indicate a possible transition between activities 

[42]. Unsupervised approaches analyze statistical parameters of the sensor data to explicitly 

look for clusters that represent cohesive activities or changes in the parameters that indicate 

activity transitions [29], [30], [43].

Our approach to unsupervised detection of activity transitions is based on an approach to 

detecting abrupt changes in time series data, known as change-point detection [44]. To do 

this, we can compare the probability distributions of time series samples drawn from 

different periods of time. The larger the difference between two distributions, the more 

likely a change-point has occurred. These differences can be computed using cumulative 

sum, generalized likelihood-ratio, or change finder [45]–[47].

More recently, techniques have been developed which skip the estimation of the two 

separate probability densities and instead just estimate the probability density ratio between 

the two samples [45], [48]. The intuition behind these techniques is that knowing the 

probability densities implies knowing the probability density ratio, although the reverse is 

not true. Knowing the probability density ratio does not imply knowing the probability 

densities, which indicates that estimating the probability density ratio should be an easier 

problem. Examples of direct density ratio estimation include kernel mean matching, logistic 

regression, Kullback-Leibler importance estimation, unconstrained least-squares importance 

fitting, and relative unconstrained least-squares importance fitting (RuLSIF) [44], [45], [48]. 

Bayesian inference techniques can be used for real-time estimation [49], but estimating the 

distribution function and data parameters must be performed a priori. RuLSIF has been 

shown to be one of the most promising techniques for direct-density estimation and change-

point detection, so we use it for our transition detection problem.
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II. Transition Detection

We implement two different algorithms to detect activity transitions. The first is a 

supervised learning algorithm and the second is an unsupervised change-point detection 

algorithm. The premise for detecting transitions under each model is different. The 

supervised learning algorithm operates under the assumption that a transition period can be 

detected as a distinct activity independent of what activities the user is transitioning 

between. In contrast, the unsupervised learning algorithm operates under the assumption that 

the distribution of sensor event data changes as the user transitions from one activity to 

another activity and hence transitions can be detected by changes in the event data 

distribution without supervised training. Implementation details for these algorithms are 

described next.

A. Supervised Learning

Our supervised activity recognition algorithm provides real-time activity labeling as sensor 

events arrive in a stream [50]. To do this, we formulate the learning problem as that of 

mapping a sequence consisting of the most recent sensor events within a sliding window of 

length k to a label representing the activity to the last (most recent) event in the sequence. 

The sensor events preceding the last event define the context for this last event. Data 

collected in a smart home consists of events generated by the sensors. These are stored as a 

4-tuple: (Date, Time, Sensor Id, Message). For example, the following sequence of sensor 

events would be mapped to a Sleep activity label.

2011-06-15 03:38:23.271939 BedMotionSensor ON

2011-06-15 03:38:28.212060 BedMotionSensor ON

2011-06-15 03:38:29.213955 BedMotionSensor ON

We extract features from data point i, where the data point corresponds to a sensor event 

sequence of length k. The vector xi includes values for the 64 features summarized in Table 

1. Each yi corresponds to the activity label that is associated with the last sensor event in the 

sequence. A collection of data points xi and the corresponding labels yi are fed as training 

data to a classifier to learn the activity models in a discriminative manner. The classifier thus 

learns a mapping from the sensor event sequence to the corresponding activity label.

Our activity recognition algorithm employs a decision tree learner because this method 

provides consistently accurate results while imposing minimal computational requirements 

for training and testing the models. However, we also use the WEKA toolkit [51] to provide 

comparative results using naïve Bayes, logistic regression, supportvector machine and 

adaboost algorithms. Although these algorithms are capable of handling many class labels 

simultaneously, we are specifically interested in detecting transitions independent of the 

activities that the user is transitioning between. Therefore, we formulate the problem as a 

two-class problem (i.e., Transition or Non-Transition).
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B. Unsupervised Learning

Our unsupervised activity transition technique uses Relative Unconstrained Least Squares 

Importance Fitting (RuLSIF) to estimate the probability density distribution ratio between 

two samples. This ratio can then be used to detect changes in the underlying data 

distribution. As a result, this approach detects activity transitions by detecting changes in the 

underlying probability distributions, using the assumption that the distribution changes as 

the activities change. This can be viewed as the change-point detection problem encountered 

in time-series data, which is formally defined as follows. Let y(t) ∈ ℝd represent a series 

sample at time t. Let Y (t) ≔ [y(t)T, y(t + 1)T, …, y(t + k − 1)T]T ∈ ℝdk be a forwarded 

subsequence of the time series starting at time t with length k. By treating Y (t) as a sample 

instead of y(t) we can incorporate time-dependent information. Finally, let γ(t) be a set of n 

subsequence samples starting at time t such that

(1)

Given two consecutive segments γ(t) and γ(t + n), the problem is to determine whether a 

change-point has occurred between these two segments. RuLSIF determines whether a 

change-point has occurred by computing a dissimilarity measure for the two segments as 

PE(P‖P′) + PE(P′‖P), where P and P′ are the probability distributions of the samples in γ(t) 

and γ(t+n), respectively. PE here represents the α-relative Pearson Divergence

(2)

where p(Y) and p′(Y) are probability density functions of P and P′, respectively, and 

 is the α-mixture density. The term p′α(Y) places an upper 

bound on the density ratio of 1/α for α > 0. Unfortunately, p(Y) and p′(Y) are typically 

unknown, thus we are unable to compute the Pearson divergence directly. Rather than 

estimating these probability densities, which is a difficult problem, we instead estimate the 

density ratio directly [44]. The advantage of adapting RuLSIF for use in activity transition 

detection is that it provides an analytic solution and has been shown to perform well in 

detecting change-points in time-series data [44].

For detecting activity transitions, we create our times series data in the following manner. 

The current state of all of the sensors is defined as a single data point. This gives us a d-

dimensional data point, where d is the number of sensors in the smart apartment. The current 

state is then updated at every time step to yield our time series data. RuLSIF is an offline 

change-point detection method, requiring n + k time steps of data ahead of the current point t 

+ n to detect a change-point. However, in our work we redefine the change-point score as 

occurring at time step t + 2n + k instead of t + n and thus eliminate the lag at the cost of a 

reduction in accuracy. The difference in accuracy is examined in Section IV. All the values 

reported in the rest of this paper assume the change point score is for the point at t + 2n + k.

We can improve the accuracy of the transition detection for both the supervised and 

unsupervised learning techniques by recognizing the fact that activities and transitions occur 
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over a period of time. If the previous time-window is classified as an activity than the 

current time window is likely an activity also. Similarly, if the previous time-window is 

classified as a transition, then the current time-window is likely a transition as well. To 

incorporate this fact we calculate the final time-window prediction based upon the sum of 

the classification probabilities (or PE for the RuLSIF technique) for the previous m time-

windows. If the summed probability that the time-window is a transition period (or summed 

PE score) is above a specified threshold than we output a transition label for the current 

time-window. Table II shows an example of how this works when m = 3. In addition to 

increasing the accuracy of the transition detection (by reducing false positives) the technique 

also facilitates adjusting the trade-off between true-positives and false-positives by 

manipulating the threshold value.

III. Methods

In order to evaluate our proposed supervised and unsupervised approaches to activity 

transition detection we need some ground truth labeled data by which the algorithms 

performance can be evaluated. However, obtaining detailed and accurate labeled activity 

data is itself a challenging problem. One approach is to collect data in a controlled 

environment. This allows for accurate and detailed labeling of the participant’s activities but 

the performed activities may not be as realistic as if the activities had been performed in less 

controlled environment. Another approach is to collect data in the natural environment of 

the participant. This approach captures more realistic activities but it is also more difficult to 

obtain detailed and accurate activity labels in such an environment due to privacy concerns. 

In a controlled laboratory setting, live video cameras can be used to accurately label the 

activities but in the natural environment of the participant a live video camera is often 

viewed as too invasive.

The first dataset (referred to as scripted) represents activities performed in a scripted 

environment and has been collected specifically for the purpose of analyzing and detecting 

activity transitions in a memory notebook prompting study. In contrast, the second dataset 

(referred to as unscripted) is collected in an actual smart home installation while residents 

perform their normal daily routines.

We use two different performance metrics to evaluate our transition detection algorithms. 

For the first metric we evaluate transition detection as a type of classification problem. 

Correspondingly, we calculate the area under the curve (AUC) of the receiver operating 

characteristic curve, to compare the performance of two binary classifiers across the entire 

spectrum of true positive and false positive rates (TPR and FPR, respectively). As in the 

work of Liu et al. we consider a transition detected at time step t as correct if t ∈ [t′−δ, t′+δ], 

where t′ is a true transition point. Similarly, a transition detected at time step t is considered 

incorrect if t ∉ [t′ − δ, t′ + δ] for all possible true transition points t′. Transitions detected 

within δ seconds of a previously detected transition point are ignored. In our experiments we 

use δ = 20 seconds. An ROC curve is generated for the AR and RuLSIF techniques by 

ordering the transitions points according to the transition score output by each algorithm. 

The TPR and FPR are then updated for each point until all of the transition points have been 

processed.
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The second performance metric we use calculates the root mean squared error (RMSE) for 

the classification threshold value yielding a TPR > 80%. RMSE is defined as

(3)

where n is the number of transitions detected and we define SE(i) as

(4)

where ti is the time step of the ith detected transition and t′ is the closest true transition point.

A. Scripted Data

1) Participants—For the scripted data, 15 healthy adults were recruited as participants. 

The participants ranged in age from 18 to 36 years old with a mean age of 21.6 years old. 9 

females participated in the study and 6 males also participated in the study.

2) Procedure—Data was collected in the WSU smart apartment (SA) on campus (See 

Figure 1). The SA is equipped with infrared motion sensors, door sensors, light switch 

sensors, and power usage sensors. There were also nine shake (vibration) sensors attached to 

items related to the activities participants were asked to perform in the SA. These items 

included a broom, dustpan, duster, oatmeal container, puzzle box, television remote, picnic 

basket, and water filter. All sensor events are transmitted wirelessly to a central server and 

stored in a relational database.

There were twelve total activities used in this project. These activities were selected as part 

of a larger ongoing effort to perform assessment and intervention design for older adults. 

The selected activities represent instrumental Activities of Daily Living that have been 

shown in the literature to be disrupted by individuals who experience cognitive difficulties 

[52]. These activities included: sweeping the kitchen, dusting the house, making oatmeal, 

watching television, doing a math worksheet, playing with a handheld game, putting an 

outfit together, collecting items from around the house, collecting ingredients, completing a 

puzzle, reading a magazine, and copying a recipe. While participants were completing each 

task, they were observed from a separate room by the experimenter. The experimenter used 

a Real-time Annotation Tool (RAT) [53] to record into a database what the participant was 

doing, when activity transitions occurred, and when memory notebook prompts were 

delivered.

Participants were introduced to the SA and oriented to the general layout, as well as given a 

brief description of what they would be expected to do. The experimenter delivered 

instructions to the participants through an intercom while observing the participants’ 

activities from a room upstairs via a web camera (see Figure 3), using a Wizard of Oz 

experiment design. The tasks given to the participant were counterbalanced in that half of 

the participants were given similar tasks side by side (two back-to-back inactive tasks 

followed by two back-to-back active tasks) and the other half were given tasks that varied by 
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the location in the apartment where they took place. This counterbalancing strategy was 

applied so that the machine learning algorithm would not recognize activity transitions as a 

function solely of the participant location or solely based on activity level. Table 2 lists the 

order of the tasks for the two conditions. Directions for each task were delivered at set times 

during the preceding task so as to facilitate smooth transitions between activities. To ensure 

that each transition between activities happened naturally, participants were informed of the 

next task before they completed the current task. In this way, the participant did not have to 

pause and wait for directions between tasks.

For the RuLSIF algorithm we set k = 16 and n = 60 with a step size of .5 seconds. We found 

these values to yield good results without being too computationally expensive. The number 

of previous windows to consider, m, is set to a value of 10 which represents a reasonable 

trade-off between incorporating previous time-window classifications and keeping the 

classification relevant to the current time-window.

3) Experimental Design and Analysis—We use a leave-one out approach for the 

training and testing of the supervised learning algorithms. The supervised learning algorithm 

is trained on all of the annotated data from the other fourteen participants and the algorithm 

is then tested on the data from the fifteenth participant. This process is repeated for all 

fifteen participants and the average performance is then reported.

The unsupervised techniques do not require any training data. Each algorithm is tested on 

data collected for each participant and the average performance is reported.

For both performance metrics, we perform a repeated measures one-way analysis of 

variance (ANOVA) test to verify the difference between algorithms is significant. The 

performance metric score is the dependent variable and the learning algorithm used is the 

independent variable.

B. Unscripted Data

1) Participants—For the unscripted data, 8 older adults in an assisted care facility were 

recruited as participants. The participants ranged in age from 73 to 91 years old with a mean 

age of 83.25 years old. 2 males participated in the study and 6 females also participated in 

the study.

2) Procedure—We also evaluate our approach using data collected in smart home testbeds 

that were installed in 8 apartments at a retirement community in Seattle, Washington. Each 

of the apartments houses a single older adult (age 75+) resident who performs a normal daily 

routine while sensors in the apartment generate and store events. The sensors include 

combination wireless motion/light intensity sensors and combination door/temperature 

sensors. There is an average of 25 sensors installed in each apartment. For each apartment, 

we analyze approximately three hours of data starting when the participant first wakes up. 

The collected data has been annotated with 30+ activity labels corresponding to activities of 

daily living (ADLs) and other activities of interest. Since this annotated data does not 

specifically include activity transition annotations, we define transition periods in the 

following manner. Transitions are defined as the last two sensor events of one activity and 
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the first two sensor events of the second activity if the two activities are not labeled as 

“other”. “Other” activities lasting less than 1 minute are labeled as transitions and “other” 

activities lasting more than 1 minute are treated as actual activities. The resulting problem is 

a two class, or binary, learning problem to distinguish activities from transitions.

For the RuLSIF algorithm we set k = 8 and n = 30 with a step size of 1 second. As can be 

noted, the timing is the same between the scripted and the unscripted settings with the only 

difference being the time step granularity. The scripted setting has many more sensors than 

the unscripted setting which necessitates the smaller step sizes to better capture the current 

state of all of the sensors. The value of m is again set to 10.

3) Experimental Design and Analysis—We use a leave-one out approach for the 

training and testing of the supervised learning algorithms. The supervised learning algorithm 

is trained on all of the annotated data from the other seven participants and the algorithm is 

then tested on the data from the eighth participant. This process is repeated for all eight 

participants and the average performance is then reported.

The unsupervised techniques do not require any training data. Each algorithm is tested on 

data collected for each participant and the average performance is reported.

For both performance metrics, we perform a repeated measures one-way analysis of 

variance (ANOVA) test to verify the difference between algorithms is significant. The 

performance metric score is the dependent variable and the learning algorithm used is the 

independent variable.

IV. Results

We first examine the loss in accuracy due to the redefinition of the location of the change-

point in the RuLSIF algorithm. RuLSIF is an offline change-point detection method, 

requiring n + k time steps of data ahead of the current point t+n to detect a change-point. 

However, in our work we need an online algorithm and thus we redefine the change-point 

score as occurring at time step t + 2n + k. Figure 4 shows the effect this has on performance. 

In the scripted setting, the online method causes the accuracy to drop by approximately 0.09 

units while the RMSE increases by about 12 units. Similar results are seen in the unscripted 

with the accuracy dropping by 0.02 units and the RMSE increasing by approximately 42 

units.

Next, we compare our results against two different baselines, Fixed and Random. The Fixed 

baseline detects transitions at fixed-time intervals of length δ. In order to generate an ROC 

curve for this method, the transitions are ranked in the following order: n/2, n/4, 3n/4, n/8, 

3n/8, 5n/8, 7n/8 … n where n is the total number of transitions detected. The Random 

baseline repeatedly selects a random time-step at which to detect a transition. As with the 

other techniques, transitions detected within δ time-steps of a previously-detected transition 

are ignored. An ROC curve is generated for the Random baseline by updating the TPR and 

FPR after each sample is drawn.
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The results of the supervised learning techniques are shown in Figures 5 and 6. AR-DT, AR-

NB, AR-LR, AR-BOOST and AR-SVM represent the Decision Tree, Naïve Bayes, Logistic 

Regression, AdaBoost and Support Vector Machines algorithms, respectively. Error bars 

indicate the standard error of the mean. For scripted data, the AR-DT, AR-LR, AR-BOOST 

and AR-SVM algorithms outperform the baseline classifiers. A repeated measures ANOVA 

with a Greenhouse-Geisser correction determined that mean AUC scores differed 

significantly between algorithms (F(2.227, 31.172) = 46.866, P < 0.0005). The AR-NB 

algorithm has a similar performance to the Fixed baseline on the scripted data and both 

perform better than the Random baseline. The results are similar for the RMSE metric with 

AR-SVM giving the best performance and the other AR techniques still performing better 

than the baseline techniques. Again, the differences are significant on the scripted data 

(F(3.386, 47.405) = 33.154, P < 0.0005).

Figures 5 and 6 also show the results of the supervised learning algorithms when applied to 

the unscripted setting. AR-DT, AR-LR and AR-NB outperform the baseline techniques but 

AR-BOOST and AR-SVM do not. The differences are still significant (F(3.046, 21.322) = 

16.082, P < 0.0005). The RMSE results show greater variation in the unscripted setting and 

the differences between algorithms are not significant.

The results of the unsupervised learning technique (RuLSIF) are shown in Figures 7 and 8. 

For comparison purposes we also include the top performing supervised technique, AR-LR, 

as well as the two baselines, Fixed and Random. The AR-LR is not included in the tests for 

statistical significance since it is not an unsupervised algorithm. As can be seen in the 

figures, on the scripted data, the AUC score for RuLSIF is not as high as AR-LR but it 

matches the performance of the Fixed baseline and outperforms the Random baseline. On 

the unscripted dataset RuLSIF performs much better, nearly matching the performance of 

the supervised technique and clearly outperforming the Fixed and Random baselines. A 

repeated measures ANOVA with a Greenhouse-Geisser correction determined that mean 

AUC scores on the scripted dataset differed significantly between algorithms (F(1.845, 

25.833) = 10.06, P = 0.001). The AUC score differences are also significant for the 

unscripted datasets (F(1.5, 10.5) = 19.027, P = 0.001). The acceptable performance of the 

Fixed algorithm is probably due to the nature of the scripted data. Although the exact timing 

of the transitions is usually left to the participant, the activities have been structured in such 

a way as to last between 3–7 minutes. This structure benefits the Fixed algorithm as it 

chooses transition points at fixed-time intervals.

The results are similar for the RMSE metric. RuLSIF is, not surprisingly, unable to match 

the performance of the supervised learning algorithm in the scripted setting but still 

outperforms the baseline techniques. These differences are significant (F(1.108, 15.509) = 

5.357, P = 0.032). In the unscripted setting, RuLSIF actually outperforms all the other 

techniques including the supervised learning algorithms. The RMSE differences are 

significant (F(1.019, 7.135) = 5.713, P = 0.047).

To better understand how the AUC score relates to the TPR and the FPR we also include the 

average ROC for each algorithm in Figure 9. As can be seen, a higher AUC score generally 

translates into higher TPR at comparable FPRs, but which algorithm is better may depend on 
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the desired trade-off between the TPR and the FPR. In almost every case both the supervised 

and the unsupervised algorithms are better than the baseline algorithms indicating that 

transitions can indeed be detected using these techniques. In both the scripted and unscripted 

settings a true positive rate of greater than 80% can be achieved while maintaining a false 

positive rate of less than 15%.

The RMSE can be thought of as the average time between when a transition occurs and 

when the transition is detected. For the scripted setting this value is close to one minute. For 

the unscripted setting it is approximately two minutes. Ideally, we would like to minimize 

these times to reduce task interruption. On the other hand, a minute or two into an hour-long 

task may not be that significant. Additionally, the RMSE has been measured at the 80% 

detection rate of all transitions. This may be a much higher accuracy than is needed for most 

prompting systems and selecting a point lower on the ROC curve may yield better RMSE 

values as the confidence in the prediction increases.

The final question remaining to be addressed is what these results indicate for the automatic 

detection of transitions to improve prompting and notification technologies. In a separate 

experiment with 42 participants, prompts to record recent events in a digital memory 

notebook were delivered manually by experimenters either during activity transitions 

(transition-based condition) or every five minutes (time-based condition), with half of the 

group being assigned to each condition. Participants had the option to respond to each 

prompt either immediately, after a second prompt (given one minute later) or not at all if the 

prompt felt unnatural and inconvenient.

We evaluate the effectiveness of the prompting based on four measures: the percentage of 

participants that responded to the first prompt for each group, prompt compliance (use of the 

digital memory notebook) for each group, number of task interruptions that occurred as a 

result of the prompt for each group, and the mean time spent on each task. Participants that 

were assigned to the transition-based condition responded to the first prompt 68% of the 

time (SD=0.29), while those in the time-based condition responded to the prompt only 45% 

of the time (SD=0.23). Prompt compliance was 90% for the transition-based condition 

(SD=0.15) in comparison with 59% for the time-based condition (SD=0.28). The number of 

task interruptions that occurred from the transition-based condition was 9% (SD=0.15) as 

opposed to 40% (SD=0.28) for the time-based condition. Finally, the mean task time for the 

transition condition is 193.47 seconds (SD=81.48) and for the time-based condition is 

228.35 seconds (SD=86.46). In each of the cases, the difference between the measure for the 

group is significant (p < 0.01). This study provides some evidence that providing prompts 

during activity transitions is a more effective intervention mechanism that has less impact on 

other activities the individuals perform in their normal routine.

V. Conclusions

Our results from this study indicate that both supervised learning and change-point detection 

are valid techniques for detecting activity transitions. The next step is to integrate this work 

with a smart home prompting system to test the effectiveness of the techniques in real-time. 

We are currently conducting a study with this goal in mind. Our future studies will also 
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evaluate the technology for use by older adults. We anticipate that usage will differ 

substantially based on the types of conditions that these adults face, and will consider these 

factors individually.

In the future, some limitations of the current approaches need to be addressed. In real-world 

situations, transitions are not always clearly defined. For example, a user may interleave two 

or more activities with no clear transitions between them. Also, a user may pause for a large 

amount of time in the middle of completing an activity. We will need to adapt our 

algorithms to handle these types of situations. Factors such as the length of an activity, the 

similarity of different activities, the number of possible activities, and the transition time 

between activities may also influence performance and can be evaluated separately. We also 

plan to assess the amount of time which can elapse between a transition and a notification 

without becoming a burden to the user. Furthermore, we plan to continue to investigate new 

supervised and unsupervised algorithms to better detect activity transitions.

Transition detection is an important problem for prompting systems, notification 

management systems and other applications, but automatically detecting transition periods 

using ambient sensors has received little attention in the literature. We have adapted two 

techniques to accurately detect activity transitions, supervised activity recognition and 

RuLSIF. Both algorithms have been tested in the context of time series data, but the 

application of these algorithms to a context-aware prompting system is novel. To our 

knowledge this is the first work showing that one can use the same features used for activity 

recognition to detect activity transitions independent of the activities being performed. 

Additionally it is the first attempt to use change-point detection to detect activity transitions 

in a smart environment. Finally, this work is novel because we are providing the first design 

and real-world implementation of a digital memory notebook with automated prompts for 

notebook use.

A memory notebook can be an effective intervention for individuals with MCI. However, 

the initial training to use the memory notebook requires a constant delivery of prompts and 

reminders. Traditionally, these are delivered by a care-partner or a time-based alarm. By 

automating the detection of transition periods we can increase the effectiveness of the 

prompts and simultaneously decrease the workload of the care-partner.

Our results indicate that both techniques are able to detect transitions and each technique has 

associated trade-offs. The supervised learning technique performs well when enough 

training data is available to accurately model activity transitions. The RuLSIF technique 

does not require any label data and generalizes well but does not match the performance of a 

well-trained supervised learning model. The development of accurate transition detection 

algorithms will lead to more efficient prompting and notification systems which will in turn 

result in less burdensome interruptions to the end-user.
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Fig. 1. 
The layout of the smart apartment and sensor placement. Sensor labels starting with “M” 

indicates motion sensors, “L” indicates light sensors, “D” indicates door sensors, “T” 

indicates temperature sensors, and “I” indicates item sensors.
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Fig. 2. 
An individual accesses the Digital Memory Notebook.
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Fig. 3. 
An experimenter observes a participant performing everyday activities via web cameras and 

logs information using the RAT.
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Fig. 4. 
Comparison of a) AUC and b) RMSE between RuLSIF Online vs. Offline mode. As 

expected the Online mode suffers a small decrease in performance. Error bars represent the 

standard error of the mean.
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Fig. 5. 
AUC scores for supervised learning on the scripted and unscripted datasets. AR-DT, AR-

LR, AR-BOOST and AR-SVM show significant improvement over the baseline techniques 

of Fixed and Random in the scripted setting while only AR-DT and AR-LR outperform the 

baselines in the unscripted setting. Error bars represent the standard error of the mean.
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Fig. 6. 
RSME scores for supervised learning on the scripted and unscripted datasets. All of the AR 

techniques outperform the baseline techniques of Fixed and Random. Error bars represent 

the standard error of the mean.
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Fig. 7. 
AUC scores for the unsupervised learning technique on the scripted and unscripted datasets. 

AR-LR is a supervised learning technique but is included for comparison purposes. RulSIF 

outperforms the baseline techniques. Error bars represent the standard error of the mean.
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Fig. 8. 
RMSE scores for the unsupervised learning technique on the scripted and unscripted 

datasets. AR-LR is a supervised learning technique but is included for comparison purposes. 

RulSIF outperforms the baseline techniques and even outperforms AR-LR in the unscripted 

setting. Error bars represent the standard error of the mean.
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Fig. 9. 
ROC curves for both the supervised and unsupervised learning algorithms on the unscripted 

and scripted data. Which algorithms has the best performance depends on the desired trade-

off between the true positive and false positive rates. In both the scripted and unscripted 

settings a true positive rate of greater than 80% can be achieved while maintaining a false 

positive rate of less than 15%.
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TABLE I

The feature vector describing a data point

Feature # Value

1–30 # Times each sensor generated an event in the sequence (30 unique sensors)

31 Elapsed time (in seconds) since previous sensor event occurred

32 Time duration of window (in seconds)

33–34 The identifier of the sensor generating the most events for the previous window (and for the window prior to the previous 
window)

35–64 Elapsed time (in seconds) since each sensor previously generated an event
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TABLE II

Example of summing probabilities with m = 3. Here the first column identifies a particular data instance being 

classified, the middle column represents the probability that the instance is a transition (generated by the 

classifier), and the last column represents the summed probability over m = 3 instances.

i P(yi = Transition|xi) Summed Probability

0 0.10

1 0.13

2 0.78 1.01

3 0.89 1.80

4 0.95 2.62

5 0.56 2.40

6 0.31 1.82
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TABLE III

Order of activities performed in the smart apartment for each condition

Order Condition A Condition B

1 Read Magazine Dust Apartment

2 Watch TV Copy Recipe

3 Build Puzzle Get Items From Closet

4 Do Math Problems Read Magazine

5 Copy Recipe Get Ingredients for Recipe

6 Make Oatmeal Watch TV

7 Play Handheld Game Get Items for Day Out

8 Get Items From Closet Build Puzzle

9 Get Ingredients for Recipe Sweep Kitchen

10 Sweep Kitchen Do Math Problems

11 Get Items for Day Out Make Oatmeal

12 Dust Apartment Play Handheld Game
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