
Clusterless Decoding of Position From Multiunit Activity Using A 
Marked Point Process Filter

Xinyi Deng1, Daniel F. Liu2, Kenneth Kay2, Loren M. Frank3, and Uri T. Eden1

1Department of Mathematics and Statistics, Boston University, Boston, MA

2UC Berkeley–UCSF Graduate Program in Bioengineering, UCSF, San Francisco, CA

3Department of Physiology, UCSF, San Francisco, CA

Abstract

Point process filters have been applied successfully to decode neural signals and track neural 

dynamics. Traditionally, these methods assume that multiunit spiking activity has already been 

correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting 

cannot be performed with high precision such as real-time decoding for brain-computer interfaces. 

As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that 

takes advantage of recent insights about clusterless decoding. Here we present a new point process 

decoding algorithm that does not require multiunit signals to be sorted into individual units. We 

use the theory of marked point processes to construct a function that characterizes the relationship 

between a covariate of interest (in this case, the location of a rat on a track) and features of the 

spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-

dimensional vector of the maximum amplitudes of the spike waveform on each of the four 

electrodes. In general, the marks may represent any features of the spike waveform. We then use 

Bayes’ rule to estimate spatial location from hippocampal neural activity.

We validate our approach with a simulation study and with experimental data recorded in the 

hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately 

reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the 

quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. 

Our analyses show that the proposed decoding algorithm performs equivalently or better than 

algorithms based on sorted single-unit activity. These results provide a path toward accurate real-

time decoding of spiking patterns that could be used to carry out content-specific manipulations of 

population activity in hippocampus or elsewhere in the brain.

1 Introduction

Neural systems encode information about external stimuli in temporal sequences of action 

potentials. Because action potentials have stereotyped, impulse waveforms, they are most 

appropriately modeled as point processes (Brillinger, 1992). Neural systems are moreover 

dynamic in that the ensemble firing of populations of neurons, representing some 

biologically relevant variable, continually evolves. Decoding algorithms based on adaptive 

filters have been developed to study how the firing patterns maintain dynamic 

representations of relevant stimuli. More specifically, both discrete-time and continuous-
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time point process filter algorithms have been applied with great success to address 

problems of estimating a continuous state variable (Eden et al., 2004; Smith & Brown, 2003; 

Smith et al., 2004), such as the location of an animal exploring its environment (Brown et 

al., 1998; Huang et al., 2009; Koyama et al., 2010).

A prerequisite for these increasingly efficient decoding methods is the application of spike-

sorting: the waveforms recorded extracellularly at electrodes must be clustered into putative 

single neurons. Therefore, the accuracy of the spike-sorting critically impacts the accuracy 

of the decoding (Brown et al., 2004). Many algorithms for spike-sorting, whether real-time 

and automatic or offline and manual, have been developed since the 1960s (Lewicki, 1998; 

Wild et al., 2012). The majority of these algorithms are clustering-based methods, allocating 

each spike to a putative single cell based on the characteristics of spike waveforms. These 

types of pure waveform, hard boundary spike-sorting algorithms, suffer from many sources 

of error such as nonstationary noises, non-Gaussian clusters, and synchrony (Lewicki, 1998; 

Harris et al., 2000; Quiroga, 2012). In addition, they also have been shown to yield biased 

and inconsistent estimates for neural receptive fields (Ventura, 2009b). Another clustering 

method, soft or probabilistic spike assignment, has been incorporated into some decoding 

paradigms and analyses have shown that these algorithms can yield unbiased estimates of 

stimulation parameters (Ventura, 2008, 2009a). Nonetheless, these algorithms, like most 

hard sorting methods, are not well suited to real-time implementations, both because the 

algorithms are too computationally intensive and because they rely on having the entire 

dataset available for the clustering algorithm.

More recently, decoding methods without a spike-sorting step have been investigated 

(Luczak & Narayanan, 2005; Stark & Abeles, 2007; Fraser et al., 2009; Chen et al., 2012; 

Kloosterman et al., 2014). Chen et al. (2012) and Kloosterman et al. (2014) developed a 

spike feature decoding paradigm for unsorted spikes using a time-homogeneous spatio-

temporal Poisson process. It incorporates a covariate-dependent method to estimate a 

nonparametric distribution of the animal’s position. This improves decoding performance by 

using information that is otherwise excluded by sorting spikes into discrete clusters. 

However, this method does not incorporate a model of the animal’s position trajectory, and 

therefore the decoding results can depend substantially on specific model parameters such as 

the choice of a discrete time bin width: if the time scale is too broad, the algorithm cannot 

track the stimuli fast enough; if too narrow, it cannot integrate information provided by 

spikes nearby in time. Additionally, this algorithm extracts information from spike intervals, 

but does not optimally incorporate information from intervals that contain no spikes. In the 

Extensions and Discussion to Chen et al. (2012), they suggested the possibility of applying a 

state-space framework with a temporal prior, but do not provide a complete algorithm or an 

implementation of this method.

To address these issues, we generalize and extend this decoding paradigm for unsorted 

spikes to allow for general marked point process models. In doing so, we develop an 

iterative algorithm that solves the marked point process filter problem. In particular, this 

allows us to model neural activity that is dependent on the timing and mark values of 

previous spikes. In the current work, we propose a novel algorithm for adaptive decoding of 

spiking activity which avoids the clustering problem of spike-sorting entirely by defining a 
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joint model for the spike waveform and receptive field structure, and uses a state-space 

model to incorporate knowledge of the properties of the signal to decode. The resulting 

algorithm is a general marked point process filter.

The goal of the proposed algorithm is to decode an adaptive state variable, in this case the 

dynamic trajectory of the rat along a track, by computing the posterior distribution of the 

state process conditioned on the set of observations up until the current time. Our algorithm 

takes directly as inputs the recorded spikes where each spike is associated with a vector of 

characteristic features selected from the raw waveforms. Such inputs can be mathematically 

described by a marked point process, where the points are the spike times and the marks are 

their corresponding waveform. In their seminal book on point processes in 1980, D. R. Cox 

and V. Isham have already explicitly suggested that “in the neurophysiological example 

mentioned […] the mark could be the magnitude of the peak signal at the point in question” 

(Cox & Isham, 1980).

In this paper, we first characterize the spiking activity of an ensemble of neurons using the 

conditional intensity function for marked point processes. Next, we construct a stochastic 

state marked point process filter to iteratively calculate the full posterior probability for the 

state variable. We illustrate our approach in a simulation study where the decoding 

algorithm is used to reconstruct an animal’s position from unsorted multiunit place cell 

spiking activity. We also apply the algorithm to experimental data recorded in the 

hippocampus of a rat navigating a linear environment. We then compare the quality of fit of 

our clusterless decoding algorithm to that of a traditional spike-sorting and decoding 

algorithm.

2 Methods

Any orderly point process can be fully characterized by its conditional intensity function 

(Daley & Vere-Jones, 2003). A conditional intensity function describes the instantaneous 

probability of observing a spike, given previous spiking history. By relating the conditional 

intensity function to specific biological and behavioral signals we can specify a spike train 

encoding model. The conditional intensity function also generalizes to the marked case, in 

which a random vector, termed a mark, is attached to each point. In the case of tetrode 

recordings, for example, the mark could be a length four vector of the maximum amplitudes 

on each of the four electrodes at every spike time. A marked point process is completely 

defined by its joint mark intensity function

(1)

where Ht is the history of the spiking activity up to time t.  represents a joint 

stochastic model for the marks as well as the arrivals of the point process.

The joint mark intensity function characterizes the instantaneous probability of observing a 

spike with mark  at time t as a function of factors that may influence spiking activity. We 

posit that the spiking activity depends on some underlying internal state variable x(t), such 

as an animal’s location in space, that varies across time. We can therefore model the spiking 
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activity as . When taking an integral of  over the 

mark space , we get the probability of observing a spike regardless of the mark value:

(2)

Λ(t|Ht) can be understood as the conventional conditional intensity function of a temporal 

point process. For a marked point process, Λ(t|Ht) is called the intensity function of the 

ground process (Daley & Vere-Jones, 2003). The mark space  can be of any dimension.

The goal of our decoding algorithm is to compute, at each time point, the posterior 

distribution of the state variable given observed marked spiking activity. To do this, we 

apply the theory of state-space adaptive filters (Haykin, 1996). Recursive filter equations 

can be solved in both discrete-time and continuous-time (Eden et al., 2004; Eden & Brown, 

2008). In this paper we present an algorithm in discrete-time.

To describe the discrete-time filters, we partition an observation interval [0, T] into {tk : 0 ≤ 

t1 < ⋯ < tN ≤ T} and let Δk = tk − tk−1. The posterior density for the state variable at time tk 

can be derived simply using Bayes’ rule,

(3)

where xk = x(tk) is the state variable at time tk, ΔNk is the number of spikes observed in the 

interval (tk−1, tk], and Hk is the spiking history up to time tk.  represents a collection of 

mark vectors , i = 1, ⋯ ,ΔNk, observed in the interval (tk−1, tk].

The first term in the numerator on the right hand side of equation (3), p(xk|Hk), is the one-

step prediction density defined by the Chapman-Kolmogorov equation as

(4)

Here we have assumed that given the past state value, xk−1, the distribution of the current 

state does not depend on past spiking activity. The integral in equation (4) typically cannot 

be solved analytically, but multiple numerical and approximation methods are available to 

compute its value at each time point. In this case, we performed numerical integration over a 

one-dimensional state space using a simple Riemann sum. If the state variable is high-

dimensional, alternative methods can be considered to improve computational efficiency. In 

particular, when prior knowledge allows us to assume unimodality of the posterior density, a 

linear recursive Gaussian approximation to the posterior density can be constructed (Brown 

et al., 1998; Eden et al., 2004; Smith & Brown, 2003). Alternatively, when the posterior 

distribution is unknown, sequential Monte Carlo methods, also called particle filters, can 

provide efficient estimation (Doucet et al., 2001; Ergun et al., 2007). We show the 

construction of these two types of algorithms in the Appendix.

Equation (4) has two components: p(xk|xk−1), which is given by a state evolution model 

under the Markovian assumption, and , which is the posterior 
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density from the last iteration step. We multiply this probability density function with the 

posterior distribution of the state variable at the previous time step tk−1, and numerically 

integrate the product over all possible values of the previous state, xk−1. The resulting 

integral is the a one-step prediction density at the current time tk.

The second term in equation (3), , is the likelihood or observation 

distribution at the current time, and can be fully characterized by the joint mark intensity 

function :

(5)

We can interpret equation (5) by separating the product on the right hand side into two 

terms. The  term characterizes the distribution of firing ΔNk 

spikes, such that the mark value of the ith spike in the interval (tk−1, tk] is mki, where i = 1, 

⋯ ,ΔNk. If no spike occurs, i.e., ΔNk = 0, this term equals 1. The exp [−ΔkΛ(tk|Hk)] term 

gives the probability of not firing any other spikes in the observation interval, where 

 as defined in equation (2).

The discrete-time likelihood or observation distribution defined by equation (5) assumes that 

within a small time step Δk, conditional on the history Hk and the current value of the state 

vector xk, spiking activity for the neural ensemble is independent. However, the spiking 

activity at a given time step can explicitly depend on the past history of activity from the 

entire population, including dependencies between neurons.

The observation distribution is then multiplied by the one-step prediction density to get the 

posterior density at the current time. Note that we can drop the normalization term, 

 because it is not a function of xk. Substituting equation (4) into equation 

(3) yields a recursive expression for the evolution of the unnormalized posterior density:

(6)

3 Simulation Study

We first tested this approach on simulated data corresponding to the activity of two “place 

cells” firing as an animal traverses a linear track. Place cells are neurons in the hippocampus 

that are activity primarily when an animal is located in a certain portion of it’s environment 

(O’Keefe & Dostrovsky, 1971; O’Keefe, 1979). Substantial amount of information about the 

position carried by place cells have been reliably quantified with a formal statistical 

algorithm and used to reconstruct the trajectory and predict the future position of the rat 

(Muller & Kubie, 1989; Wilson & McNaughton, 1993; Zhang et al., 1998; Brown et al., 

1998).
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In this section, we apply the clusterless decoding algorithm to the problem of decoding a 

one-dimensional position of a rat on a linear track using a marked point process arising from 

two hippocampal place cells, where the one-dimensional mark represents the peak height of 

the spike waveform. Here we note that accurate decoding of position based on place cell 

activity normally requires many cells. Our goal here is therefore not to test the accuracy of 

decoding, but rather to provide intuition about how our approach works in a simple case. 

First, we simulate the rat’s trajectory using an autoregressive process and the joint mark 

intensity function of the two cells using a mixture of two bivariate Gaussian distributions. 

Then, we use marked point process filter to reconstruct the location of the rat at each time 

step. We show that the filter yields exact full posterior densities that are often multimodal. 

We also reconstruct the trajectory using a traditional algorithm in which decoding was 

applied after spike-sorting. Last, we compare the performance of the clusterless decoding 

algorithm to the traditional decoding algorithm.

3.1 Data Simulation

We simulated the movement of a rat running back and forth along a linear track with the 

following transition probability

(7)

where we set α = 0.98 and σ = 0.05 to generate an autoregressive process whose steady-state 

standard deviation is 1.26.

We defined the joint mark intensity of two hippocampal place cells using a bivariate 

Gaussian mixture function,

(8)

This model assumes that spikes originate from an ensemble of two cells and that the joint 

mark intensity function for each cell’s place field and marks is a multivariate Gaussian 

function. In other words, each cell has a place field with a Gaussian shape, and the marginal 

distribution of the marks given the rat’s position is a multivariate Gaussian distribution.

The parameters for this model include αc for c = 1, 2, which controls the maximum in-field 

firing rate for the cth neuron. x(t) is the animal’s linearized position at time t and  is the 

one-dimensional mark value.  is the center of the place field and  is the mean of the 

density function for marks for neuron c.  and  are the standard deviations of the place 

field and the mark space for neuron c respectively. In this illustrative example, we set the 

centers of the place field at  and  respectively, with a 

variance. We set the maximum in-field firing rate of both neurons to α1 = α2 = 100 spikes 

per second. The one-dimensional mark space for the two neurons are centered at 

and  respectively, with standard deviations  varying between 0.01 and 

5.
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By plugging in the simulated position trajectories, x(t), into Equation (8), we computed the 

instantaneous intensity at each time step. The underlying unmarked spike trains are 

generated under an inhomogeneous Poisson process model with rate Λ(t|Ht) given by 

equation (2). The marks associated with the spike trains are sampled from the probability 

density .

Figure 1 displays the results of a representative, one-second trial where spiking activity of 

two neurons with moderate mark space overlap  was simulated. Figure 1(A) shows the 

simulated trajectory of the animal with the linear location on the y-axis. Figure 1(B) plots 

the simulated spike train with the mark value on the y-axis. Visually, we cannot identify a 

clear clustering of the mark values. Figure 1(D) shows the true joint mark intensity function 

 used to simulate the marked spike train in Figure 1(B). The two simulated neurons 

overlap over a moderate amount of mark space, but are fairly localized in space, with little 

overlap of their place fields.

3.2 Decoding Results

In this subsection, we present the decoding results of the simulated data described in 

subsection 3.1 Data Simulation using the clusterless decoding algorithm described in the 

Methods section. When calculating the observation distribution defined in Equation (5), we 

used the true joint mark intensity function specified in Equation (8). In real data, we will 

need to estimate an encoding model for the joint mark intensity function. However, this 

simulation study affords us the opportunity to explore errors due purely to the decoding 

algorithms.

Figure 2(A) shows the posterior density for the position of the animal during a one-second 

trial as a function of time, using the clusterless decoding algorithm. The blue line shows the 

true position of the animal, and the red region is the estimated posterior density at that time 

step. We can see that the estimate tracks the true position relatively closely, and the region 

of high posterior density covers the true position most of the time.

In order to compare with the traditional approach where decoding is applied after spike-

sorting, we also implemented a decoding algorithm on individual neurons after classifying 

the spikes into clusters using linear discriminant functions (Bishop, 2006). Here we assume 

the number of neurons being recorded is known and that we have true knowledge of the rate 

function λc(t) about neuron c. This is more knowledge than is typically available for 

clustering and decoding, where both the number of neurons and place fields must be 

estimated. The time-dependent rate function for individual neuron, λc(t), takes the following 

form:

(9)
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Note that λc(t) represents the conventional rate function for an inhomogeneous Poisson 

process, not the joint mark intensity process we have used to define our marked point 

process model.

Figure 1(C) plots the spike raster of the two simulated neurons sorted using a linear 

discriminant function on their marks. Figure 1(E) shows the true condition intensity function 

λc(t) for each neuron c, i.e., the place field of each neuron.

In this case, the unnormalized posterior density is of the form

(10)

The probability of seeing  spikes from neuron c during the time interval (tk−1, tk] is

(11)

where, for simplicity,  denotes λc(tk).

Figure 2(B) and 2(D) are results using decoding with spike-sorting where the decoder is 

applied after classifying the spikes into two clusters. Figure 2(B) shows the posterior density 

using decoding with spike-sorting. Visually, we obtained comparable tracking for the 

animal’s trajectory.

To illustrate the advantage of using a clusterless decoding algorithm when clear clustering of 

neurons is difficult, we zoomed in on the decoding results at times between 400 ms and 600 

ms, shown in Figure 2(C) and 2(D). From Figure 1(B) and 1(C), we can see that even 

though the rat’s position is positive, and therefore only Neuron 2 is spiking, the spike 

waveforms cannot be perfectly resolved. This leads to incorrect decoding results using the 

presorted spiking activity. However, the marked point process decoder results in a bimodal 

posterior distribution that accurately reflects the uncertainty due to the waveform overlap. 

Figure 2(C) demonstrates the multimodality of the posterior estimated by a clusterless 

decoder. For example, at time around 430 ms when a new spike arrives, the posterior density 

splits into two modes, one near a linearized position of −1 and another around a linearized 

position at 1.5. The posterior density is slightly higher in the region correctly predicting the 

animal’s position in the negative regime. For the decoding with spike-sorting results shown 

in Figure 2(D), the algorithm has some trouble tracking the trajectory after new spikes from 

both neurons arrive because the posterior density in this case is not multimodal. For example 

at time around 430 ms, the posterior density incorrectly estimates the animal’s position at a 

positive value near 1.

3.3 Goodness-of-Fit Analysis

In order to compare the quality of fit between the two decoding algorithms, we simulated 

100 trials of spiking activity for different degrees of overlap between the two neurons in the 

mark space. We evaluate the ability of these two algorithms to track the location of the 

animal when the overlaps in the mark space between the joint mark intensity functions of the 
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simulated neural ensemble vary from low ( ) to high ( ) in units of the number 

of standard deviations, using two different measures: the root-mean-squared error (rMSE) 

between the true positions of the animal and their estimated values and the percentage of the 

time that the true position values were covered by the 99% highest posterior density (HPD) 

region (Casella & Berger, 2001).

To calculate the 99% HPD region, we find the largest value y0 such that

(12)

where ρk denotes the posterior density at time step tk as defined in equation (3) for marked 

point processes and in equation (10) for the unmarked case. The 99% HPD region is thus 

given by {x : ρk(x) > y0}. Because an HPD region indicates the region of highest posterior 

probability regardless of contiguity, it is a useful measure of uncertainty when the posterior 

density can be multimodal. If the state space model is correct, the 99% HPD region should 

contain the true position of the animal at any time step with probability 0.99.

Figure 3(A) shows the rMSEs between the true positions of the animal and their estimated 

values averaged across 100 trials as a function of σm. Error bars represent 2 standard 

deviations from the mean rMSE. The dotted line represents the performance of the 

clusterless decoding method. The solid line represents the performance of the decoding with 

spike-sorting method. When the standard deviations of both mark spaces exceed 1, the 

clusterless decoder consistently gives the lower mean rMSE and there is no overlap between 

the error bars for the two algorithms.

The comparison of the rMSEs shows that as the overlap between the marks for the 

individual neurons increases and clustering of the spike waveforms becomes more difficult, 

the clusterless decoding algorithm provides a consistently more accurate estimate of the rat’s 

position than the decoding algorithm using presorted spikes.

Figure 3(B) shows the fraction of time that the true position values were covered by the 99% 

HPD region averaged across 100 trials as a function of σm, which measures how well each 

algorithm characterizes their uncertainty. The flat dotted line with narrow error bars 

illustrates that regardless of the degree of the overlap between mark spaces, the true 

trajectory stays in the 99% HPD region of the clusterless decoding method around 99% of 

the time with very little variance about this percentage of time across the 100 repeated trials 

of the simulation. The descending solid line with widening error bars illustrates that, for 

decoding with spike-sorting, as the degree of the overlap between mark spaces increases, the 

fraction of time that the true trajectory stays in the 99% HPD region is decreasing from 99% 

to 80% with an increasing variance.

The comparison of the 99% HPD region illustrates two advantages of the clusterless 

decoding algorithm regarding the uncertainty of the state estimates. First, the width of a 99% 

HPD describes the degree of uncertainty in the estimates. As the overlap between the mark 

spaces increases, the width of the 99% HPD region of the decoding algorithm using 

presorted spikes increases, indicating decreasing certainty in the estimated position. 

However, the clusterless decoding algorithm provides a narrower 99% HPD region 
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regardless of the mark space overlap. This means that the clusterless decoding algorithm 

provides more estimates of the rat’s position and is less influenced by the degree of overlap 

in the mark space. Second, the percentage of time within the 99% HPD represents the 

accuracy of uncertainty in the estimates. As the overlap in the mark distribution between the 

neurons increases, the decoding with presorted spikes estimates the uncertainty in position 

with less accuracy, while the estimated certainty of the clusterless decoding algorithm 

remains the correct at around 99%. Therefore the estimated certainty for the clusterless 

decoding algorithm is both higher and more accurate than the estimated certainty for 

decoding with presorted spikes.

4 An Application to Position Decoding from Multiunit Activity in Rat 

Hippocampus

We also applied the clusterless decoding algorithm to experimental data recorded using a 

multi-electrode array in the hippocampus of a rat running back and forth on a linear track. 

The data used in this analysis were recorded from 5 tetrodes in the dorsal CA1 and CA2 

regions of the hippocampus. Manual clustering of spike waveforms above a 40 μV threshold 

during the linear track session yielded fifteen distinct unit clusters. Four units with less than 

100 spikes during the 840 second recording session were excluded. One of the remaining 

units was a putative interneuron, identified by firing rate exceeding 7 Hz and exceptionally 

narrow spikewidth. In the clusterless decoding, all of the thresholded spikes above the 40 μV 

threshold, including this putative interneuron, were included. Details of the experimental 

preparation, data acquisition and choice of spike-sorting method can be found in the 

Appendix.

When recording from multi-electrode arrays, each electrode records the signals from nearby 

neurons, and these signals can be combined across electrodes. Thus, by combining tetrodes 

together, we can gain additional spatial information about each signal. In this case, assuming 

that conditional on the spiking history and the current state variable the spiking activity is 

independent between tetrodes, we can augment the observation distribution in equation (5) 

to be

(13)

where S is the number of groups of recordings, in this case the number of tetrodes.  is 

the number of spikes observed from neurons on tetrode s during (tk−1, tk]. 

, where  defines the joint mark intensity function 

for neurons on tetrode s, where s = 1, ⋯ , S.

In this analysis, we propose a marked Poisson, nonparametric clusterless encoding model to 

estimate the joint mark intensity function , given an observation interval t ∈ (0, T] 

with a sequence of N spike times 0 < u1 < ⋯ < ui < ⋯ < uN ≤ T:
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(14)

where N is the total number of spikes, ui is the time of ith spike, and T is the total time of the 

experiment.  is a multivariate kernel in both the place field and the mark space whose 

smoothness depends on both the smoothing parameter Bx and the bandwidth matrix 

(Ramsay & Silverman, 2010). K is a univariate kernel on the spatial component only and its 

smoothing parameter is bx.

Here we used Gaussian kernels for both  and K:

(15)

(16)

where d = 4 is the dimension of the mark space. The bandwidths were chosen based on 

previous knowledge of two things: variability in the waveform structure for a single neuron 

and prior information about spatial extent of a place field. For this analysis, bx and Bx were 

set to 1.5% of the linear track length, and  was set to a 4-dimensional scalar matrix 

whose diagonal entries equal 20 mV. We found that our results remain consistent for a wide 

range of bandwidths.

We then compare the results to decoding based on sorted data. These data included a total of 

11 active place cells across an 840 second recording session. To assess whether the models 

generalize well to unobserved data as well as to limit overfitting, both algorithms are carried 

out using a 5-fold cross-validation.

Figure 4 illustrates the decoding results from signals recorded from 5 tetrodes in the CA1 

and CA2 regions of the hippocampus using the two different algorithms. Here we display 

the first 125 seconds of decoding results in both panels. Figure 4(A) are decoding results 

using the clusterless decoding algorithm. Figure 4(B) are decoding results where the decoder 

is applied after the spikes have been manually sorted into clusters. The blue line shows the 

true position of the animal, and the red region shows the estimated posterior density at that 

time step. We can see that the estimate tracks the true position closely, and the region of 

highest posterior density covers the true position most of the time. In contrast, as shown in 

Figure 4(B), the posterior density using decoding with spike-sorting has some trouble 

tracking the true trajectory, for example between time 6250 seconds and 6260 seconds.

To assess quality of fit, we calculated the root-mean-square error (rMSE) in centimeters and 

the percentage of the time that the true position values fall within the 99% HPD region. We 
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compared the rMSE and percentage of time within 99% HPD region for the decoding results 

on the entire 840 seconds of recording. The posterior density computed through the 

clusterless decoding algorithm has an rMSE of 14.3 cm and remains within the 99% HPD 

region 74.25% of the time. The size of the 99% HPD region for the clusterless decoding 

algorithm has a mean of 10.5 cm and a standard deviation of 6.96 cm. The posterior density 

computed by first spike-sorting and then decoding has a rMSE of 26.0 cm and remains 

within the 99% HPD region 70.76% of the time. The size of the 99% HPD region for the 

decoded with sorted spikes has a mean of 17.2 cm and a standard deviation of 13.14 cm.

The clusterless algorithm has narrower 99% HPD region, more accurately reflecting the 

uncertainty of the decoding estimates. The algorithm that uses spike-sorting has wider 99% 

HPD region, suggesting less certainty in the estimates. Therefore the estimated certainty for 

the clusterless decoding method is both higher and more accurate than the estimated 

certainty for the spike-sorting based method. Both visually and numerically, we showed that 

our proposed clusterless algorithm performs as well as or better than algorithm based on 

sorted spikes.

5 Discussion

We previously used point process theory to develop efficient decoding algorithms based on 

spike train observations (Brown et al., 1998; Eden et al., 2004; Huang et al., 2009; Koyama 

et al., 2010). In each of these cases, a key assumption is that the signals have been accurately 

sorted into single units before the decoding algorithm is applied. Although new spike-sorting 

algorithms are actively being developed, spike-sorting still remains a time-consuming, 

difficult task, suffers from many sources of errors, and likely provides biased estimates 

(Lewicki, 1998; Harris et al., 2000; Quiroga, 2012). In this article, we have proposed a novel 

clusterless decoding algorithm that maintains the accuracy of previous methods, but avoids 

spike-sorting.

The proposed clusterless decoding algorithm has several important advantages. First, this 

algorithm does not require that the multiunit activity has been accurately sorted into single 

units. Instead, by using the theory of marked point processes, the algorithm characterizes 

directly the relationship between a desired variable and features of the spike waveforms. We 

bypass spike-sorting by modeling the spiking activity as a joint function of the state variable 

to decode and of features of the spike waveforms. Therefore, this new algorithm can 

incorporate information from spikes that, in previous decoders that relied on spike sorting, 

may have been thrown out because of difficulties in clustering, or misclassified. Indeed, in a 

recent analysis of the effects of spike-sorting schemes on decoding performance, Todorova 

and colleagues confirmed that discarding waveforms that do not match any template—the 

“hash”—systematically degrades decoding (Todorova et al., 2014), consistent with previous 

studies (Stark & Abeles, 2007; Fraser et al., 2009).

Another advantage of the marked point process approach is that the joint intensity mark 

function defines a population level place receptive field structure, which will typically have 

multimodal structure. That is, the joint intensity mark function is expected to have multiple 

peaks in the joint place and mark space. Previous work by Huang et al. has shown that 
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decoding algorithms that allow for highly non-Gaussian and multimodal posterior densities 

perform better at reconstructing the animal’s trajectory and predicting future decisions 

(Huang et al., 2009).

Last, formulating the decoding problem within a state-space paradigm offers a number of 

specific benefits. It allows us to incorporate knowledge about the system we are decoding, in 

this case the rat’s position trajectory. This also imposes an implicit continuity constraint, 

preventing large fluctuations in the state estimates. This allows us to track the state variable 

smoothly without high dependence on the choice of time step during decoding. Moreover, 

due to the state-space approach, the resulting decoding algorithm incorporates information 

from both spike intervals and non-spike intervals.

We tested the new decoding algorithm on tetrode recordings from the hippocampus of a rat 

running back and forth on a linear track. We showed that the clusterless decoding algorithm 

provided a slightly improved accuracy than that of the decoding with manual spike-sorting 

approach. The intention of this example is to demonstrate comparable decoding accuracy 

without the additional, time-consuming spike-sorting step, thus making this algorithm a 

suitable candidate for real-time application.

There are a number of directions in which this work may be extended. The numerical 

integration we used to compute the filtering is efficient when decoding low-dimensional 

signals. When the desired variable is high-dimensional, alternative adaptive algorithms can 

be used to ensure efficiency, such as sequential Monte Carlo methods or Gaussian 

approximate filters.

In the application example, we presented a nonparametric encoding model to estimate the 

joint mark intensity function based on kernel methods. We have found that our results 

remain consistent for a wide range of bandwidths. Therefore, in real-time decoding, it is 

reasonable to set the smoothing parameter and bandwidth matrix before-hand. We also 

recognize for non-parametric kernel based encoding, the computation time increases with 

the total number of spikes. In the interest of real-time applications, it is possible to explore 

other more efficient models as well. Within the family of non-parametric encoding model, 

one can include a time dimension with receding horizon to reduce the number of spikes 

encoded at any given time.

Another choice of encoding model is semi-parametric models, for example, a multi-

dimension grid interpolated for the joint distribution of mark and place field. This grid can 

serve as a kind of look-up table for the estimated joint mark intensity function. By 

calculating this grid beforehand, we can perform real-time clusterless decoding without any 

computation time spent in encoding. A more general approach to reduce encoding time is to 

perform dimension reduction on the multi-dimensional mark space before encoding.

Finally, as we move away from the prerequisite of spike-sorting, multivariate marked point 

process models can be developed to describe coupling between neurons (Ba et al., 2014).

Another future role for these methods is in the development of new types of closed-loop 

experiments. Traditionally, experiments designed to study the role of specific spike patterns 
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in stimulus-response tasks take one of two forms: observational studies that characterize 

statistical properties of neural activity during such tasks or interventional studies that 

broadly alter neural activity over an entire neural population or brain region. However, new 

closed-loop experiments designed based on the content of neural signals aim to characterize 

causal relationships between neural activity and the biological and behavioral signals they 

encode. The proposed algorithm can allow investigators to manipulate millisecond-timescale 

spike patterns in a content-specific way, altering spiking activity related to certain neural 

patterns while leaving activity related to other patterns intact.

In conclusion, we develop a novel method for modeling neural response properties and 

decoding biological and behavioral signals by expanding the class of neural models to 

incorporate marked point processes. We found that the resulting decoding signals were 

estimated with higher accuracy and more confidence than traditional spike-sorting based 

methods. We believe this work has broad implications, allowing for better neural coding 

models across a wide range of brain areas and neural systems.
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6 Appendix

6.1 Hippocampal data collection and preprocessing

The hippocampal data in this paper are from a single male Long-Evans rat (500-600 g) 

trained to alternate in a linear track for liquid reward (condensed milk). A microdrive array 

containing 21 independently movable tetrodes was implanted targeting the hippocampal cell 

layers according to University of California San Francisco Institutional Animal Care and 

Use Committee and US National Institutes of Health guidelines. All neural signals were 

recorded relative to a reference tetrode in the corpus callosum. Following data collection, 

electrode locations were verified histologically to localize to the CA1–CA2 region of the 

hippocampus.

Data were collected using the NSpike data acquisition system (L.M.F. and J. MacArthur, 

Harvard Instrumentation Design Laboratory). An infrared diode array with a large and a 

small cluster of diodes was attached to the preamps during recording. Following recording, 

the rats position on the track was reconstructed using a semi-automated analysis of digital 

video of the experiment. Individual units (putative single neurons) were identified by 

clustering spikes using peak amplitude, principal components, and spike width as variables 

(MatClust, M. Karlsson) (Karlsson & Frank, 2008).

6.2 Gaussian approximation to the posterior density

Because in this paper the state variable is low-dimensional, we used a simple Riemann sum 

to perform numerical integration over the state space in order to solve the one-step 
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prediction density in equation (4). If the state variable is high-dimensional and the posterior 

density can be assumed to be approximately Gaussian, a stochastic state point process filter 

(SSPPF) can be used. The SSPPF is constructed using a Gaussian approximation to the 

posterior density. Detailed derivation of approximate Gaussian filters for temporal point 

processes can be found in (Brown et al., 1998; Eden et al., 2004). Here we provide an 

extension of the SSPPF to the marked case.

For estimating higher-dimensional state variables, a linear recursive Gaussian approximation 

to the posterior density at each time step, p(xk|ΔNk, mk) can be constructed with the 

estimated conditional mean xk|k and variance Wk|k as follows:

where, for simplicity,  denotes  and Λk denotes 

. In the posterior mean equation, the innovation includes 

two terms. The first term, , depends on the marks of the observed spikes. The 

second term  includes Λk, which is the intensity function of the ground process and 

relates to the intensity of observing any spikes regardless of the mark.

6.3 Sequential Monte Carlo decoding algorithm

When the state variable is high-dimensional and the posterior density cannot be assumed to 

be approximately Gaussian, another computationally efficient alternative is a sequential 

Monte Carlo algorithm. Point process adaptive filters using sequential Monte Carlo 

approximations to the posterior density have been developed in previous literature (Ergun et 

al., 2007; Meng et al., 2011). Here we provide a pseudo-code description of the algorithm 

with extension to marked point processes. This is a bootstrap filter, so the proposal 

distribution is based on the one-step prediction density from the previous time step.

At each time step t, the algorithm produces a collection of weighed samples, or particles, 

each containing proposed values for the state variable xt. We construct estimates for the state 

variable by computing their sample means over all the particles, and construct approximate 

95% confidence intervals.

1. Initialization:

Deng et al. Page 15

Neural Comput. Author manuscript; available in PMC 2016 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Set t = 0 and for i = 1, ⋯ , n particles, draw the initial states and parameters from an initial 

probability distribution and set the importance weight of the ith particle  for all i. Set 

t=1.

2. Importance sampling:

Using the particles from the previous step which represent the one-step prediction density 

defined in equation (4) as the sampling distribution, update all of the states xt.

Evaluate the importance weight of the ith particle

where  is computed by equation (5) or (13).

Normalize the importance weights

3. Resampling:

Resampling can be performed at any fixed interval. Draw n particles 

from  using the residual resampling approach. Reset the weights to 

 to obtrain the Monte Carlo estimate of the probability density

where δ(·) is the Dirac delta function, indicating a point mass at 0.

4. Repeat steps 2–3.
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FIGURE 1. 
(A) Simulated trajectory of the animal running back and forth on a linear track. (B) One 

second unsorted spike train with marks from two simulated neurons. (C) One second raster 

plot of spikes without marks where the spikes were sorted via a linear discriminant function 

on their mark values. (D) True joint mark intensity of the two simulated neurons as a 

function of linear position on the y-axis and mark value on the x-axis. The place fields 

center at −1.5 and 1.5 respectively, with a 0.1 variance. The mark spaces are one-

dimensional with mean of 10 and 13 respectively, and standard deviation of 2. (E) True rate 

of each of the two simulated neurons as a function of linear position. It represents the place 

field of each neuron.
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FIGURE 2. 
Decoding results for two simulated neurons. (A) Posterior density of the animal’s linear 

position using the clusterless decoding algorithm. The blue line represents the actual 

position of the animal. The red represents the posterior density at each time step. (B) 

Posterior density of the animal’s linear position using the decoding with spike-sorting. (C) 

Clusterless decoding results zoomed in at time between 400 and 600 ms, showing the 

multimodality of the posterior around 430 ms. (D) Decoding with spike-sorting results 

zoomed in at time between 400 and 600 ms.
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FIGURE 3. 
Quality of fit comparison between the two decoding algorithms. (A) Root-mean-squared 

error (rMSE) between the true positions of the animal and their estimated values averaged 

across 100 trials as a function of the overlap between mark spaces of two simulated neurons. 

Error bars represent 2 standard deviations from the mean rMSE. The dotted line represents 

the performance of clusterless decoding method. The solid line represents the performance 

of decoding with spike-sorting method. (B) Fraction of time that the true position values 

were covered by the 99% highest posterior density (HPD) region averaged across 100 trials 

as a function of the overlap between mark spaces of two simulated neurons. Error bars 

represent 2 standard deviations from the mean coverage probability. The dotted line 

represents the performance of clusterless decoding method. The solid line represents the 

performance of decoding with spike-sorting method.
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FIGURE 4. 
Decoding results for hippocampus data. (A) Posterior density of the rat’s linear position 

using the clusterless decoding algorithm. The blue line represents the actual position of the 

rat. The red represents the posterior density at each time step. The posterior density 

computed through the clusterless decoding algorithm has an rMSE of 14.3 cm and remains 

within the 99% HPD region 74.25% of the time. (B) Posterior density of the rat’s linear 

position using decoding with manual spike-sorting. The posterior density computed by first 

spike-sorting and then decoding has a rMSE of 26.0 cm and remains within the 99% HPD 

region 70.76% of the time.
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