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Abstract

Neural prostheses have the potential to improve the quality of life of individuals with paralysis by 

directly mapping neural activity to limb and computer control signals. We translated a neural 

prosthetic system previously developed in animal model studies for use by two individuals with 

amyotrophic lateral sclerosis (ALS) implanted with intracortical microelectrode arrays. Measured 
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more than a year post-implantation, the demonstrated neural cursor control has the highest 

published performance achieved by a person to date, more than double that of previous pilot 

clinical trial participants.

Clinical trials have recently demonstrated that people with paralysis can control computer 

cursors and/or robotic limbs using neural prostheses that interpret neural signals acquired 

from chronically implanted microelectrodes in motor cortex1-3, scalp 

electroencephalography electrodes4, or cortical surface electrocorticography electrodes5. 

Early studies with nonhuman primates (NHPs)6-8 guided the initial development of neural 

prostheses, and performance in NHPs continues to advance9-15. In the clinical domain, 

increasing neural prosthetic performance is critical to move beyond proof-of-concept 

towards widespread adoption, and thus it is imperative to understand if and how these 

advances in animal models will translate to clinical populations. Through studies in NHPs, 

we recently developed a high-performance neural prosthesis that outperformed existing 

demonstrations of neural cursor control14. In this report we describe the translation of that 

system, as part of the BrainGate2 multi-site pilot clinical trial*, for use by two individuals 

with amyotrophic lateral sclerosis (ALS) (participants T6 and T7). Using this system, the 

two participants achieved the highest neural cursor control performances by a person 

reported to date, as measured by the time required to acquire virtual targets.

To measure performance relative to that observed in previous BrainGate2 studies, 

participants T6 and T7 completed the same cursor control tasks previously completed by 

BrainGate2 participant S3. The S3 study16 represents the highest previously published 

cursor control performance in the BrainGate2 trial and, to our knowledge, represents the 

highest published human neural cursor control performance (see also Supplementary Table 

1). Relative to the system used by S3, the current neural prosthesis (Fig. 1a) integrates 

design choices for four critical components that have demonstrated the potential to increase 

performance: (1) system architecture on which the neural prosthesis is implemented, (2) 

signal conditioning methods applied to measured electrophysiological signals, (3) decoding 

algorithm that maps neural activity to movement intentions, and (4) choice of behavioral 

actions associated with cursor control. Here we outline each of these components:

The current neural prosthesis was built on a real-time hardware and software platform 

designed to reduce latency and jitter from hundreds of milliseconds (S3 study)16 to 20 ± 6 

ms. This advance was motivated by our previous NHP studies, which demonstrated that 

performance significantly increases with lower latency17 and used an earlier version of this 

platform to achieve high performance neural control14,15.

The signal conditioning stage, which extracts neural spike event and local field potential 

features from recorded electrode voltage potentials in real-time, was modified to better adapt 

to the challenges of the clinical study environment (the participants' homes). These settings 

had considerably more electromagnetic noise than a controlled laboratory environment, 

potentially obscuring the features of interest. To compensate, common average 

referencing1,18 and phase-preserving filtering1,19,20 were employed to better separate neural 

*Caution: Investigational Device. Limited by Federal Law to Investigational Use.
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spikes and local field potentials from background noise. In the previous study (S3)16, spikes 

were extracted by thresholding the spikeband (high-pass filtered) signal from each recording 

channel and sorting these waveforms into putative neural units. In contrast, the current study 

(T6 and T7) used simpler threshold crossing counts as neural features. These features 

demonstrated nearly equivalent decoding performance and the potential for greater stability 

in NHP studies21,22 and were used in a previous clinical study1.

In the current study we employ the Recalibrated Feedback Intention Trained Kalman Filter 

(ReFIT) decoding algorithm instead of the Velocity Kalman Filter (VKF) decoding 

algorithm previously used in the S3 study16. In a previous NHP study, we demonstrated that 

ReFIT outperforms VKF14.

The decoding algorithm is typically calibrated with data in which the participant is either 

imagining or attempting specific movements. For participant S3, data from imagined wrist 

movements were used16. In the current study, participants performed (T6) or attempted (T7) 

finger movements, instead of arm or wrist movements, based upon offline analysis 

demonstrating that finger movements were decoded with higher correlation (Supplementary 

Fig. 1).

T6 and T7 repeated two cursor control tasks previously completed by participant S3. The 

first task, “Radial-8”, presented fixed size targets that alternated between the center of the 

workspace and one of eight peripheral locations (see Fig. 1b and Supplementary Videos 1 & 

2). To successfully acquire a target, T6 and T7 held the cursor on the target for 500 ms, in 

contrast to participant S3 who supplied a neurally-derived “click” signal when on target. T6 

and T7 were able to successfully acquire and hold peripheral targets in less than half the 

time required by S3 (Fig. 1c and Supplementary Fig. 2). To assess the generalizability of 

this target acquisition time reduction, we also compared performance in the more complex 

“mFitts1” target acquisition task. This task used variable-sized targets that appeared at 

pseudorandom directions and distances from the previous target (see Supplementary Videos 

1 & 2). Thus, “mFitts1” assessed target acquisition time across a range of target difficulties. 

Mean acquisition times suggest higher performance for T6 and T7 relative to S3 (Fig. 1d). 

As in previous studies16, “mFitts1” performance was summarized using a linear regression 

between target difficulty and acquisition time (see Fig. 1e,f and Supplementary Figures 3 & 

4). The average regression intercepts for T6 and T7 were less than those of S3, suggesting a 

reduction in minimum acquisition time. More importantly, the regression slopes for T6 and 

T7 were less than those of S3 (95% bootstrap confidence intervals), indicating a 

significantly smaller acquisition time penalty as target difficulty is increased.

One potential real-world functional use of a neural prosthetic system for people with motor 

impairment is free-choice, free-paced typing23. We tested our neural prosthetic system in 

such an application with participant T6 using the Dasher assistive typing interface24. This 

software package (used with physical interfaces such as eye-gaze trackers) maps 2-

dimensional cursor control onto discrete typing, and optimizes letter presentation based 

upon letter occurrence probabilities. T6, who had previous Dasher interface experience, was 

able to free-type 115 words in < 19 minutes, or approximately 6 words per minute 

(Supplementary Fig. 5, Supplementary Video 3).
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The ReFIT decoding algorithm used by T6 and T7 was previously developed in NHP studies 

as refinements to the VKF decoding algorithm14, building upon previous VKF based studies 

with NHPs and people16,25. To assess the specific contribution of the ReFIT decoder 

algorithm innovations on cursor control in the present study, we directly compared VKF and 

ReFIT in a block design in which participants were unaware of which control algorithm was 

employed (Fig. 2). Analogous to the previous NHP study and the “Radial-8” task, 

participants performed a center-out-and-back task. Task parameters (target size, target 

distance, and maximum trial duration) were chosen to facilitate a high success rate with 

VKF decoder control and were held constant for both VKF and ReFIT decoder control 

blocks. On average, ReFIT decoder algorithm based target acquisition was significantly 

faster than VKF based target acquisition (Fig. 2a). These findings are consistent with 

relative performance measured in a previous BrainGate2 study comparing similar 

algorithmic innovations26.

Participant T7 made fewer movement direction and orthogonal direction changes (Fig. 2b, c) 

during ReFIT decoder control blocks, indicative of improved path quality. These differences 

were not significant for participant T6. However, subjective self-report suggests that T6 

expended cognitive effort to compensate for relative difficulties in VKF control. After each 

block, participants rated control difficulty on a scale from 0 to 10, with 0 defined as no effort 

(cursor automatically moved to the target) and 10 defined as impossible. Participant T6 rated 

ReFIT decoder blocks as significantly lower difficulty (Fig. 2d). When asked for a 

qualitative description of the cursor control experience, T6 often commented that blocks 

rated with a higher level of difficulty required a cognitive strategy, such as visualizing a 

“ruler between the cursor and target” or imagining “a gravitational force around the target.” 

For VKF decoder blocks, T6 also mentioned trying to slow down cursor movements to 

avoid overshooting the target. In the NHP study, the presence of these overshoots were a 

differentiating feature between VKF and ReFIT, and contributed significantly to the longer 

acquisition times found with VKF. These results suggest that future animal and human 

studies should address the role of cognitive load and strategies in neural prosthetic control, 

perhaps by incorporating cognitive distractors in task designs and assessing cursor control 

performance degradation.

Beyond the described design choices in system architecture, algorithms, and behavioral 

instructions to the participants, other factors may contribute to the higher performance 

demonstrated by T6 and T7 relative to S3 and previous BrainGate2 study participants. One 

potential factor, differences in electrophysiological recording quality, was unlikely to 

contribute – recording quality of S3's array was similar to or better than T6's array 

(Supplementary Fig. 6). Another potential factor is differences in etiology of motor 

impairment – S3 has motor impairment due to brainstem stroke, whereas T6 and T7 were 

diagnosed with ALS. However, two additional BrainGate2 study participants with ALS, 

participants T1 and A1, achieved cursor control performance similar to or lower than that of 

participant S3 (Supplementary Table 1), thus it is unlikely that etiology alone could explain 

the difference. Another potential factor is the differing degrees of motor ability across 

participants. While all three participants had intact sensory pathways, S3 was not capable of 

functionally relevant arm movement. T7 retained limited and inconsistent finger movements 

and T6 was capable of dexterous finger movements. To control for differences in movement 
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ability across participants, we conducted research sessions in which T6 actively suppressed 

her arm and hand movements. The resulting cursor control performance was similar to 

sessions in which movements were not suppressed (Supplementary Table 2 and 

Supplementary Fig. 7), suggesting that movement itself does not improve performance. 

Furthermore, although T7 had limited motor abilities relative to T6, both participants 

achieved similar cursor control performance. Lastly, for all three participants, multiple 

factors not explored in these studies might have increased performance, such as optimizing 

the overall amount of gain and smoothing applied to the cursor velocity. Of course, other 

potential differences between subjects could also lead to performance variation, as is the 

case with healthy subjects and skilled motor tasks (e.g., playing sports or musical 

instruments).

In this study, insights from NHP studies and recent clinical trials were applied to the design 

of a neural prosthesis and resulted in higher performance neural cursor control. The 

continued translation of neural prosthetic system studies from animal model to clinical 

research is vital for both advancing system performance and understanding real-world 

challenges. Incorporating advanced, high performance system design innovations, informed 

and iterated through clinical research, may bring neural prostheses closer to clinical utility 

for people with motor impairments.

Online Methods

Permission for these studies was granted by the US Food and Drug Administration 

(Investigational Device Exemption) and Institutional Review Boards of Stanford University, 

Partners Healthcare/Massachusetts General Hospital, and the Providence VA Medical 

Center. The three participants in this study, T6, T7, and S3, were enrolled in a pilot clinical 

trial of the BrainGate Neural Interface System (ClinicalTrials.gov Identifier: NCT00912041; 

information about the trial is available at www.clinicaltrials.gov/ct2/show/NCT00912041).

Participants

Participants were included following the inclusion and exclusion criteria of the clinical trial 

and informed consent was obtained from all participants. Consent to publish photos of 

participant T6 was obtained from participant T6.

Participant T6 is a right-handed woman, 51 years old at the start of the study, who was 

diagnosed with Amyotrophic Lateral Sclerosis (ALS) and had resultant motor impairment 

(functional rating scale (ALSFRS-R) measurement of 16). In Dec. 2012, a 96-channel 

intracortical silicon microelectrode array (1.0 mm electrode length, Blackrock 

Microsystems, Salt Lake City, UT) was implanted in the hand area of dominant motor 

cortex as previously described16,27. T6 retained dexterous movements of the fingers and 

wrist (see Neural Control Algorithms). Data reported in this study are from T6's trial days 

151, 161, 224, 228, 245, 256, 270, and 628. On all trial days, T6 achieved 94% or higher 

success rates for each control/task type reported. The typing video is from trial day 270.

The second study participant, T7, was a right-handed man, 54 years old at the time of the 

study, who was diagnosed with ALS and had resultant motor impairment (ALSFRS-R of 
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17). Participant T7 had two 96-channel intracortical silicon microelectrode arrays (1.5 mm 

electrode length, Blackrock Microsystems) implanted in the hand area of dominant motor 

cortex. T7 retained limited finger movements (see Neural Control Algorithms). Data 

reported are from T7's trial days 349, 363, 378, and 387. On all trial days, T7 achieved 86% 

or higher success rates for each control/task type reported.

All datasets collected were included in analyses except for those from three sessions with 

participant T6. One session was excluded because of administration of a sedating medication 

unrelated to the clinical trial prior to the session. The second session was excluded because 

participant T6 self-identified deviating from session instructions. The third session was 

excluded because participant T6 was asked to suppress movement during neural control but 

deviated from these session instructions.

Details of data collection from the third study participant, S3, are previously described16.

Task design

Participants engaged in center-out-and-back and random point-to-point target-acquisition 

tasks. Cursor velocities were controlled using a neural control algorithm (described below). 

Targets were acquired by moving the cursor and holding it over the target for 500 ms.

For the center-out-and-back tasks, fixed size targets alternated between the center of the 

screen and one of 8 locations on the periphery. The center-out-and-back task was set up with 

two different sets of target configurations. For performance comparisons to previous trial 

participant S3, target sizes and distances were scaled to match those described previously as 

task parameters for the “Radial-8” task1. Radial-8 data presented are from test blocks T6-

D224-B9/B10, T6-D228-B10, T6-D245-B23, T6-D256-B10, T7-363-B6/B8, T7-D387-

B5/B7 (Participant-Trial Day-Block Number), composed of 665 and 358 trials from T6 and 

T7, respectively.

In order to compare Velocity Kalman Filter (VKF) and Recalibrated Feedback Intention 

Trained Kalman Filter (ReFIT) performance, target sizes were increased to permit a high 

success rate for both VKF and ReFIT based control to facilitate direct comparison of time to 

target and cursor trajectories. VKF data are from test blocks T6-D151-B6/B9/B13, T6-2013-

D161-B3/B5, T7-D349-B17, T7-D363-B11, T7-D378-B105/B108/B110, composed of 418 

and 418 trials from T6 and T7, respectively. ReFIT data are from test blocks T6-D151-

B8/B12/B15, T6-D161-B4, T7-D349-B18, T7-D363-B12, T7-D378-B104/B106/B109, 

composed of 377 and 555 trials from T6 and T7, respectively. (Additional T6 data is 

summarized in Supplementary Fig. 8a, but was excluded from the analysis due to a failure to 

successfully acquire targets using the VKF.)

The random point-to-point target-acquisition task was matched to the “mFitts1” task 

previously run with participant S31. In this task, target size was chosen psuedorandomly 

from three fixed diameters. Subsequent target directions and distances were also chosen 

pseudorandomly, but were adjusted to ensure that targets appeared fully within the computer 

monitor workspace.

For the “mFitts1” task, Index of Difficulty for each trial was calculated as follows:
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where D denotes distance from the cursor's start position to the closest edge of the 

acceptance window, W denotes the acceptance window (which is computed as the sum of 

the target diameter and the cursor radius). This formulation differs slightly from that 

specified in 1 by including two provisions: first, a provision for the effective reduction in the 

distance to the target due to the size of the target and cursor, and second, a provision for the 

effective increase in the acceptance window due to the size of the cursor. This formulation 

allows for more robust comparison across a variety of task designs, as in 14. The “mFitts1” 

results for participant S3 in Fig. 1d-e, were calculated using the above formulation for 

comparison to the current study. These data are from test blocks T6-D224-B8/B12, T6-

D228-B11, T6-D245-B21, T6-D256-B14/B17, T7-D363-B5/B7, T7-D387-B4/B6, 

composed of 1072 and 241 trials from T6 and T7, respectively.

Neural Control Algorithms

ReFIT and VKF decoding algorithms were previously described in detail in a nonhuman 

primate (NHP) study14. Neural control was continuous throughout each test block. The real-

time input to both control algorithms were neural features described below. As in the NHP 

study, algorithm parameters were calibrated with training data collected during the same 

research session as evaluation of neural control performance. All training data were 

collected with a center-out-and-back target configuration. VKF training data were collected 

with either motor based control or automated open-loop control. ReFIT decoder training 

data were collected with VKF decoder based neural control.

In motor-based control (T6), the participant controlled the cursor's position by making 

physical movements with their index finger on a wireless touchpad (Magic Trackpad, 

Apple). T6 was not limited in her ability to span the workspace of the touchpad. Parameters 

of the VKF decoder in the T6 sessions reported in the main manuscript were calibrated with 

motor-based training data. For participant T7, early sessions attempted to use motor-based 

control to calibrate the VKF decoder. T7's movement ability was more limited, however, 

and maximally spanned a small region on the touchpad (∼1/8″-1/4″ wide), resulting in poor 

kinematic data. For all T7 sessions reported, VKF decoder parameters were instead 

calibrated to automated open-loop training data, in which the cursor was automatically 

moved directly towards the target by the computer (as in 16). The T6 sessions reported in the 

Supplementary Table 2 also used automated open-loop training data to calibrate VKF 

control algorithm parameters. Participants were asked to attempt (T7) or imagine (T6) 

finger-based movements for open-loop training. For both motor and open-loop control, the 

choice of finger-based movements was based upon considering various contralateral arm 

and hand movements and choosing movements that elicited the most neural activity 

(detailed in Supplementary Fig. 1). The previous NHP study14 associated cursor movements 

with compound arm movements by tracking end effector kinematics.

Neural control and task cuing were controlled by custom software run on the Simulink/xPC 

real-time platform (The Mathworks, Natick, MA), enabling millisecond-timing precision for 
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all computations. Neural data collected by the NeuroPort System (Blackrock Microsystems, 

Salt Lake city, UT) were available to the real-time system with 5 ms latency. Visual 

presentation was provided by a computer via a custom low latency network software 

interface to Psychophysics Toolbox for Matlab28,29 and an LCD monitor with a refresh rate 

of 120 Hz. Frame updates from the real-time system occurred on screen with a latency of 

approximately 13 ± 5 ms.

Neural Feature Extraction & Selection

The NeuroPort System applies an analog 0.3 Hz to 7.5 kHz band-pass filter to each neural 

channel and samples each channel at 30 kSamples per second. These broadband samples 

were processed via software on the Simulink/xPC real-time platform. The first step in this 

processing pipeline was to subtract a common average reference (CAR) from each 

channel1,18,30. For each sample, CAR was calculated by taking the mean across all properly 

recorded neural channels (channels with outlier noise characteristics are not included). The 

CAR operation is intended to remove noise common across all recorded neural channels 

(e.g. Supplementary Fig. 2. in 18).

Band-pass filters split the signal into spike and high frequency local field potential (HF-

LFP) bands. HF-LFPs were used in combination with spikes (hybrid decoding) as HF-LFPs 

can contain valuable kinematic information not always accessible if signals are restricted to 

recorded spikes18. To extract neural spiking activity a cascaded infinite impulse response 

(IIR) and finite impulse response (FIR) high-pass filter was applied. Although the IIR filter 

efficiently provides a sharp high-pass cutoff, it introduces a phase distortion that reduces 

action potential discriminability from noise. Thus, an asymmetric FIR filter was designed to 

reduce the impact of this phase distortion1,19,20. A threshold detector was applied every 

millisecond to detect the presence of a putative neural spike. HF-LFP power features refer to 

the power within the 150-450 Hz band-pass filtered signal. T6 & T7 sessions reported in the 

main manuscript figures only used only spike-based features. The T6 sessions reported in 

Supplementary Table 2 and the Dasher control session used both spike and HF-LFP power 

features.

Neural features and spike thresholds were selected in session during parameter calibration. 

Neural features were sorted based upon their correlation to velocity control. Features were 

added one by one to the neural control algorithm and an offline assessment of directional 

control was used to predict online control quality (see Supplementary Modeling section 

from 14). This process was repeated for multiple spike detection threshold values, and the 

feature set selected was the one that achieved the minimum decoding error using the fewest 

number of channels. Neural feature values were updated with a fixed period during online 

control sessions. This period varied between 10-50 ms and was always matched between 

VKF and ReFIT.

For sessions with participant T7, neural features showed drifts in baseline rates over time. 

To account for these nonstationarities, baseline rates were computed de novo prior to each 

block, during a 30 second period in which the participant was asked simply to relax. In 

addition, baseline rates were continually updated over the course of the block using the 

following update equation:
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where bk,t denotes the estimated baseline rate of feature k at time t, nk,t denotes the 

instantaneous rate for feature k at time t, and τ; is the adaptation time constant (30 sec). 

These estimated baseline rates were subtracted from the instantaneous rates before being 

passed into the decoding algorithms. Further, to minimize the number of terms that could be 

impacted by nonstationarities, the position feedback component of the ReFIT algorithm 

(detailed in 14) was removed for participant T7. Both modifications (baseline tracking and 

removal of position feedback) were also evaluated with participant T6 in the sessions 

reported in Supplementary Table 2.

Code Availability

Code may be made available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of neural control performance for participants S3, T6 and T7
(a) Neural control paradigm. Broadband neural signals are recorded from an implanted 

microelectrode array. Signal conditioning extracts neural features, multi-unit spike counts 

and high-frequency local field potential power (HF-LFP), which are decoded to estimate 

intended cursor velocity. (b) “Radial-8” cursor trajectories: (top) mean trajectories of fifteen 

randomly selected trials per target and (bottom) ten randomly selected example trajectories 

per target. (c) Target acquisition time (mean ± 95% bootstrap confidence intervals) for 

“Radial-8” (S3: 278 trials, T6: 665 trials, T7: 358 trials). T6 and T7 acquisition times are 

significantly lower than S3 acquisition times (p < 10-100, unpaired t-test). (d) “mFitts1” 

performance summary (S3: 248 trials, T6: 1072 trials, T7: 241 trials): index of difficulty was 

binned at 0.5 bit intervals and mean target acquisition times (mean ± 95% confidence 

intervals) were calculated. (e) Slope and (f) intercept for linear regression of index of 

difficulty vs. acquire time for “mFitts1” (95% bootstrap confidence intervals). T6 and T7 
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acquisition times are significantly lower than S3 acquisition times (p < 1×10-5, analysis of 

covariance). T6 and T7 acquisition time includes the 500 dwell time used by these 

participants to select targets. Sessions shown are 224-256 and 349-387 days post-

implantation for T6 and T7, respectively (T6 achieved comparable performance when tested 

628, 791, and 798 days post-implantation (Supplementary Table 2)). S3 data in panels b-e 

re-plotted with permission from 16. Values plotted in this figure are summarized in 

Supplementary Table 3.
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Figure 2. Comparison of VKF and ReFIT neural control performance for T6 and T7
(a) Target acquisition time, including the 500ms dwell time (performance for individual 

blocks shown in Supplementary Fig. 8a–b). (b–c) Two additional performance measures rely 

on the task movement axis, defined by the direct line path from the cursor position at the 

start of the trial to the target position. (b) Task direction change count is the number of times 

the cursor velocity in the task movement axis reversed signs. (c) Orthogonal direction 

change count is the number of times the cursor velocity orthogonal to the task movement 

axis reversed signs. Data in panels a–c represent 418 (VKF) and 377 (ReFIT) trials for T6, 

and 418 (VKF) and 555 (ReFIT) trials from T7. (d) Participant-reported difficulty scores 

within a range of 0 (effortless control) to 10 (impossible control). Data represent 4 

comparison blocks (T6) and 5 comparison blocks (T7) for each decoder (individual ratings 

shown in Supplementary Fig. 8c). For all bar graphs the mean ± 95% bootstrap confidence 

intervals are shown and * indicates a significant difference between VKF and ReFIT 

(p<0.01, unpaired t-test). Values plotted in this figure are summarized in Supplementary 

Table 4. Channel counts used by each decoder are summarized in Supplementary Table 5.
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