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The clustered Hox genes play fundamental roles in regulation of axial patterning and elaboration of the basic
body plan in animal development. There are common features in the organization and regulatory landscape of
Hox clusters associated with their highly conserved functional roles. The presence of transcribed noncoding
sequences embedded within the vertebrate Hox clusters is providing insight into a new layer of regulatory

information associated with Hox genes.

Hox gene clusters are one of the most ancient and highly conserved
multigene loci in the animal kingdom (1, 2). Tandem duplication and
unequal crossing over in an ancestral organism created a cluster of Hox
genes, which then underwent further duplication and divergence from
the common ancestral cluster (3). Functional studies in a wide range of
invertebrate and vertebrate species have underscored the conserved
roles of the HOX family of transcription factors as central players in
the regulation of axial patterning during elaboration of the basic body
plan in the evolution of animals (2, 4-7). The series of genome duplica-
tions associated with vertebrate evolution have generated multiple Hox
complexes and sets of paralogous genes within a species. This creates a
situation whereby a subset of Hox genes or clusters may fulfill ancestral
functions in axial patterning, whereas the others are available to evolve
new roles or activities and become coupled to regulation of different
developmental processes (1, 3, 8).

Many fundamental properties of the organization, regulation, and
function of Hox gene clusters, such as colinearity, posterior prevalence,
response to major signaling pathways, auto-, para-, and cross-regulation,
and long-range or global regulation, appear to be common features of
the regulatory landscape of Hox clusters among widely diverse species
(2,9-11). Studies on the expression, regulation, and evolutionary origins
of Hox gene clusters have primarily focused on the protein-coding re-
gions (12). However, recent advances in genomics have unearthed a
treasure trove of transcribed sense and antisense noncoding sequences
embedded within the vertebrate Hox clusters and their flanking regions
(for example, Hotair, Hottip, Hobbit, Halr1, Hotdog, mir10, and mir196),
providing insight into a new layer of regulatory inputs for temporally and
spatially restricted patterns of Hox expression. Ironically, Lewis, in his
original analysis, postulated that many cis-regulatory regions in the
Drosophila bithorax complex were regulatory RNAs (7). This has prov-
en to be correct, but for a long time, this concept received little attention
from the community (13-15). This raises the intriguing question of
whether noncoding transcripts are also common features of the ances-
tral Hox clusters or newly evolved properties of complex vertebrate gen-
omes. Here, we will focus on the current state of knowledge of
noncoding transcripts associated with mammalian Hox clusters, their
regulation, and putative functions as a basis for thinking about their im-
plications in development, disease, and evolution.

Extensive transcription of long intergenic noncoding transcripts
(lincRNAs) is a key characteristic of many multigene loci, including glo-
bin, immunoglobin, and Hox gene clusters (16-19). These intergenic
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transcripts are implicated in activation and repression through opening
large chromatin domains, maintenance of active chromatin state, or
RNA interference-mediated silencing processes, as shown for the glo-
bin gene cluster (16, 18, 20). These lincRNAs can affect gene regulation
through both cis and trans mechanisms on Hox and non-Hox genes
(21-25). Mammalian and invertebrate Hox clusters show extensive
transcriptional activity from both strands of coding and noncoding re-
gions during development (19, 26-31). The functional significance of
such noncoding transcription is beginning to emerge as evidence from
several groups suggests the important roles of noncoding transcription
in the regulation of Hox clusters (19, 26, 32-34) (Fig. 1). Intergenic tran-
scripts are often associated with active Hox genes. Analysis of human
HOX clusters identified 15 antisense transcribed regions that represent
38% of spliced transcripts from these clusters (38.46% for HOXA, 33.11%
for HOXB, 13.16% for HOXC, and 34.84% for HOXD) (31). Figure 2
illustrates extensive syntenic or positional conservation of many non-
coding transcripts, including Mirs between human and mouse Hox
clusters. This suggests that there may be common functional roles for
these transcripts.

There appear to be more noncoding transcripts both within and
flanking the HoxA cluster relative to other clusters (Fig. 2). Positioned
50 kb 3" of the HoxA cluster, in the intergenic region between Hoxal
and Skap2, is a ~16-kb region (Heater) that gives rise to a large number
of spliced and unspliced polyadenylated transcripts originating from
both strands (Halrl and HalrlosI) (30, 34, 35). These transcripts have
multiple isoforms and epigenetic marks (H3K4Me3 and H3K27Me3),
and occupancy of Pol II (RNA polymerase II) indicates that they arise
from at least four different start sites. From a regulatory perspective,
mouse halrl, halrlosl, and their isoforms are among the most rapidly
induced transcripts upon retinoic acid (RA) treatment of embryonic
stem (ES) cells and also respond to RA in developing embryos (30).

The Heater region may be important for potentiating the response of
Hoxal to retinoids (Fig. 3A) because knockdown of three Halr1 iso-
forms leads to increased levels of Hoxal in uninduced ES cells (34).
Halr1 interacts with PURB (purine-rich element binding protein B),
a single-stranded DNA/RNA binding protein involved in transcription-
al regulation (36), and knockdown of PURB leads to increased expres-
sion of Hoxal. There appears to be a strict threshold on the number of
Halr] molecules per cell (<10 transcripts per cell) (34), and RA treat-
ment of ES cells alters this relationship by increasing both the levels and
composition of Halr1 and HalrIos] transcripts through addition of new
isoforms (30). These changes to the transcriptional repertoire have the
potential to decouple interactions between Halrl and PURB, altering
regulatory input on Hoxal (Fig. 3A). Retinoids appear to directly induce
the Heater lincRNAs because two flanking regions (H-ARI and H-AR2)
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Fig. 1. Functions of Hox cluster lincRNAs and Mirs in cis and trans. Cis function is defined as the functional impact of a lincRNA and Mirs on Hox

genes from the same cluster.

contain multiple retinoic acid response elements (RAREs) that display
dynamic occupancy of retinoic acid receptors [RARs and RXRs (retinoid
X receptors)] (30). This suggests a model for how a key signaling pathway
in development (retinoids) may regulate noncoding transcripts that, in
turn, affect the expression of the adjacent Hoxal gene.

Within the human HOXA cluster, at the 3’ end between HOXA1
and HOXA2,is HOTAIRM1, alincRNA from the noncoding strand ini-
tially identified in association with myelopoiesis in humans (28). In
mice, along with Hotairm1l, a new isoform and a novel transcript,
Hotairm2, has been mapped to this region, and they display dynamic
expression patterns during development (30). Intriguingly, these lincRNAs
are also rapidly induced by RA in human myeloid lineages and dur-
ing mouse ES cell differentiation and embryonic development (28, 30).
This reveals conservation in both their syntenic position and regulatory
response to retinoids. HOTAIRM1 feedbacks into RA induced changes
in gene expression because its knockdown in NB4 cells results in altera-
tions related to RA-induced growth arrest at G; and granulocytic mat-
uration (37). This further highlights regulatory interactions between
retinoids and multiple Hox lincRNAs.
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Functionally, HOTAIRM1 modulates gene expression in both cis
and trans (Fig. 1). Reducing the levels of HOTAIRMI results in a loss
of gene expression of 3" HOXA cluster genes (cis) and alterations in
B,-integrin signaling through CD11b and CD18 and in integrin switch
mechanism involving CD11c and CD49d (trans) (28, 37). This impli-
cates HOTAIRMI in cell cycle regulation through moderation of G;/S
transition.

Further 5 in the HoxA cluster, HoxA-AS2 is a lincRNA with several
isoforms expressed from the noncoding strand between Hoxa3 and
Hoxa4 (38). HOXA-AS2 is induced by RA, IFN-y (interferon-y), and
TNF-o (tumor necrosis factor-a) and is functionally linked with the
repression of apoptosis through modulation of the caspase 8 and 9 path-
ways (38). Overlapping with the promoter region of Hoxall is a con-
served antisense RNA, HOX11AS (human) and Hoxal Ios (mouse), which
shows mutually exclusive expression throughout development with
Hoxall (39, 40). This is illustrated by the expression of human HOXAI1AS
during the menstrual cycle, which peaks at midproliferative stage in an
inverse relationship to HOXA11 expression (41). Mechanistically, ec-
topic expression of Hoxallos does not down-regulate endogenous
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Hoxall expression in murine uterus, which appears to rule out po-
tential degradation of Hoxall by sense-antisense pairing and raises
the possibility of modulation via promoter interference (41). In addition
to the examples above, there are an extensive series of lincRNAs em-
bedded in and spread throughout the HoxA cluster in human and
mouse that display varying degrees of syntenic conservation, but their
functional significance is yet to be explored (Fig. 2).

The 5’ end of the HoxA cluster is also marked by two lincRNAs,
HIT18844 and HOTTIP. HIT18844 contains a highly conserved 265-bp
block in vertebrates that maps 1.8 kb upstream of Hoxal3 gene (29).
HOTTIP is expressed from the noncoding strand 330 bp upstream of
HOXA13, and the HOTTIP region displays both H3K4me3 and
H3K27me3 epigenetic marks (bivalent) that change upon activation
and expression (22). Depletion of Hottip leads to shortening and
bending of distal bony elements in the limb similar to the loss-of-function
phenotype of Hoxall and Hoxal3. Regulatory analyses suggest that
HOTTIP is implicated in the regulation of 5 HOXA genes in a directional
manner, in that it only alters expression of adjacent Hox genes, not Evx2
(22). Furthermore, the strongest effects are seen on the immediately ad-
jacent Hoxall and Hoxal3 genes, and progressively less severe re-
ductions are observed on Hoxal0-Hoxa7, consistent with the limb
phenotypes. This may be related to the ability of Hottip to bind WDR5
(WD repeat-containing protein 5)-MLL (mixed lineage leukemia pro-
tein 1) complexes, which could provide a means for targeting the MLL
trithorax group of histone methyl transferases to the adjacent posterior
HoxA genes to modulate their activity. Knockdown of Hottip leads to a
loss of H3K4Me2 and Me3 from whole HoxA complex including Hottip,
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whereas HeK27me3 is increased only over Hottip. However, ectopic ex-
pression of Hottip in lung fibroblasts does not lead to activation of pos-
terior Hox genes or changes in the nature of bivalent marks over the
HoxA cluster. Thus, the precise biochemical mechanism through which
Hottip modulates posterior HoxA genes is yet to be established.

Hottip has other functional roles outside of input into Hox regula-
tion. In combination with microRNA mir-101, it regulates cartilage
development through modulation of integrin-al by means of DNMT-
3B-mediated epigenetic regulation (42). Together, all these studies on
the HoxA cluster clearly indicate the large extent and emerging impor-
tance of noncoding transcription, which needs to be integrated in think-
ing about the general roles and regulation of Hox clusters. For example,
many of the observed changes in epigenetic marks over the Hox clusters
may be related to expression of noncoding transcripts.

Many of these features on expression and regulation of noncoding
RNAs are also observed to a lesser degree in other clusters. HoxD-Asl
(Haglr), a noncoding RNA from the intergenic region of HoxdI and
Hoxd3, is implicated in the regulation of RA-induced differentiation and
activation by the PI3K (phosphatidylinositol 3-kinase)/AKT pathway. This
RNA is implicated in metastasis through regulation of genes associated
with angiogenesis and inflammation, on the basis of knockout analyses
in SH-SY5Y cells (43). An interesting feature of a incRNA (HobbitI) from
the HoxB cluster transcribed from the sense strand between Hoxb4 and
Hoxb5 is that it shares cis-regulatory elements with the adjacent coding
genes (Figs. 2 and 3B). The unspliced and polyadenylated Hobbit1
transcript is expressed in developing embryos and rapidly induced dur-
ing RA-mediated differentiation of murine ES cells (30). Consistent
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with the kinetics of induction, there is a rapid gain of the H3K4Me3
mark, associated with gene activation. In mouse embryos, Hobbit1 ex-
pression is dependent on an RARE that plays a role in the regulation of
multiple Hox genes (Fig. 3B) (30, 44). This opens the possibility that
many noncoding RNAs embedded in the Hox clusters may share com-
mon regulatory components with the protein-coding genes.
LincRNAs may also be associated with long-range regulation and
sharing through physical interactions. For example, a pair of noncoding
transcripts, Hotdog (HoxD telomeric desert IncRNAs) and Tog (twin
Hotdog), arise from the gene dessert downstream of the HoxD cluster.
Hotdog and fog are transcribed from the noncoding strand and display
restricted expression in developing cecum (45). Furthermore, their
transcription start sites show enrichment of H3K4me3 and Pol II and
display strong physical interactions with active HoxD genes (Hoxd4 or
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Hoxd11) in the cecum. Hotdog and Tog expression levels are completely
abolished by deletion of the region from Hoxd9 to Hoxd11. Disruption
of contact between Hotdog/ Tog and Hoxd genes by chromosomal inver-
sion leads to complete loss of HoxD expression. This suggests a model of
long-range enhancer sharing between lincRNAs (Hotdog and tog) and
HoxD genes (Fig. 3C) (45).

One of the most studied lincRNAs is HOTAIR (HOX transcript an-
tisense intergenic RNA), which is a spliced, antisense, and polyadenyl-
ated transcript generated from the intergenic region between HOXC11
and HOXCI2 (19). HOTAIR serves as a scaffold for interaction with
PRC2 (Polycomb repressive complex 2) and LSD1 (lysine-specific
demethylase 1A) complex. The interaction between HOTAIR and
PRC2 modulates enzymatic activity, which is mediated by interplay be-
tween EZH2 (enhancer of zeste homolog 2), EED (embryonic ectoderm
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development), and JARID2 (jumonji, AT-rich interactive domain 2).
Thus, HOTAIR works in trans to play roles in development and disease
by localizing the PRC2 complex on its genome-wide targets, which in-
clude posterior HoxD genes and WIF-1 (Wnt inhibitory factor-1) (46-49).
Quantitative proteomic analysis following knockdown of HOTAIR in
HelLa cells reveals differential expression of a large number of proteins
(~170) involved in diverse cellular processes, including the dynamics of the
cytoskeleton and mitochondrial structure and function (50). Over-
expression of HOTAIR is a hallmark of many human cancers and is
linked to aspects of carcinogenesis, including metastasis, epithelial-to-
mesenchymal transition, invasion, aggression, and apoptosis (46). In
mouse development, Hotair is expressed in limb buds and the posterior
trunk, in an area corresponding to the future lumbosacral vertebra
(47, 48). Deletion of Hotair in mice leads to vertebral transformations
and abnormal development of metacarpal and carpels, including dele-
tion and/or fusion of digit elements. These phenotypes are attributed
to anterior expansion of Hoxd10 and Hoxd11 in the trunk and ectopic
expression of the imprinted gene DIk1. In addition, there is a large-scale
derepression of target genes, further confirming its role as part of a
repressor complex (48).

It is challenging to establish orthologous relationships between ver-
tebrate lincRNAs because, in light of their noncoding nature, they dis-
play varying degrees of sequence conservation. HOTAIRM1, HoxAllas,
and HOTAIR display some level of sequence similarity in mammals
(51). For example, exon 1 of HOTAIRM1 is conserved and displays sim-
ilar expression profiles across all mammals. HOXA11AS is highly
conserved in eutherian mammals but shows less conservation in mar-
supials, suggesting that it arose after the eutherian-marsupial divide. In
the case of HOTAIR, there are larger transcripts and different exon/intron
organizations in human compared to other species. For example, the
two exons of mouse Hotair match with exon 4 and exon 6 of the human
transcript (47, 51). Exon 4 is highly conserved in all mammals, whereas
exon 6 is conserved in eutherian mammals, but in marsupials there is a
reduced degree of conservation.

In addition to the lincRNAs, the human and mouse Hox clusters are
embedded with multiple microRNAs, including Mir196a/b, Mir10a/b,
Mir615, and MIR3185. With the exception of MIR3185, these microRNAs
are conserved between mouse and human and seen in syntenic regions
(Fig. 2). Mir10 family members are positioned between the group 4 and
5 paralogous genes in the HoxB and HoxD clusters (Fig. 2). Their expres-
sion correlates with the adjacent Hox genes, including direction of tran-
scription and response to RA and ethanol (52-56). As illustrated with
Mir10a (Fig. 3B), this may reflect the role of shared regulatory elements
in potentiating expression of nearby Hox genes, lincRNAs (Hobbit1),
and Mirs. The Mir10 family of microRNAs regulate Hox genes in both
cis and trans (Fig. 1) (56-59), and major signaling pathways (Wnt, Fgfs,
and Notch) are key non-Hox targets of the Mirl0 family (60). Because
these signaling pathways are also targets of Hox genes, Mirl0 RNAs
have feedforward regulatory inputs into Hox gene regulatory networks.

Three Mir196 family members, Mir196a, Mir196b, and Mirl96a-2,
are present in the mouse and human HoxA, HoxB, and HoxC clusters
(Fig. 2). These Mir196 paralogs also regulate the expression of Hox genes
in cis and trans and play important roles in the patterning of mid-thoracic
skeletal element through modulating Hox genes and Wt signaling (61).
Mir196 paralogs directly regulate the expression of Rarf, which, in turn,
affects axial patterning (62). Transcriptome analyses suggest that MIRs
in Hox clusters are functionally involved in the progression, metastasis, and
prognosis of various diseases, including cancers. MIR10b, MIR196a,
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MIR196b, and MIR615 are up-regulated in Huntington’s disease (63),
whereas MIR196a/b is up-regulated and MIRI0 is down-regulated in
head and neck cancer (64). Current evidence implies that integration
of MIRs in Hox clusters provides another layer of regulation for Hox
genes and their targets, in fine-tuning developmental processes under
Hox control.

From an evolutionary perspective, microRNAs provide insight into
exploration conservation of noncoding transcripts in Hox clusters. The
Mir10 family is located near Hox paralogous group 4 in vertebrates and
adjacent to Antennapedia in Drosophila (65, 66). Mirl0s appear to be
the most ancient microRNAs because they are present in the common
ancestor of eumetazoa (67, 68). Mir10 in Nematostella vectensis indi-
cates origins predating the cnidarian-bilaterian split (69-71). Mirl0s
are not only seen in conserved syntenic regions but also display se-
quence conservation among bilaterians. The loss of Mir10 family is
linked to disintegration of anterior Hox genes as in the case of nema-
todes and tunicates (72). The presence of Mir196 paralogs in jawless
lamprey but not in nonvertebrate chordates suggests their origin at
the base of vertebrate evolution before initial cluster duplication.

With respect to evolutionary conservation of lincRNAs, in a manner
analogous to the vertebrate Hox clusters, large numbers of intergenic
noncoding transcripts (iabs) arise from Drosophila HOM-C and exhibit
spatial colinearity in expression and function (7, 13-15). Their domains
of expression are normally delimited by insulator elements, and if
transcription proceeds through these elements, there is a loss of insula-
tor function and associated segmental transformations (73-76). Sustained
expression of these iabs also alters Polycomb-mediated repression and
serves to maintain active chromatin states in the bithorax complex. Hence,
they are linked with modulation of segment-specific expression of genes
in the bithorax complex (74). In red flour beetle, Tribolium castaneum,
the Hox cluster has three noncoding transcripts, one located in the first
intron of Utx/Tc-Ubx and two positioned between ptl/Tc-Antp and Utx/
Tc-Ubx (77). In hemichordates, in addition to the syntenically con-
served position of Mirl10, their single Hox cluster has two sense and an-
tisense noncoding transcripts (78). Because some of the lincRNAs and
Mirs in vertebrates show syntenic conservation in insects and hemi-
chordates, noncoding transcripts within Hox clusters may be an ances-
tral feature with functional relevance. It will be interesting to see how
intermingled the functional and regulatory relationships between Hox
coding genes and lincRNAs are as we learn more about their roles in
evolution, development, and disease. They may well be two sides of the
same coin in Hox-associated gene regulatory networks.
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