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Abstract Recent advances have uncovered a previously

unknown function of vitamin C in epigenetic regulation.

Vitamin C exists predominantly as an ascorbate anion

under physiological pH conditions. Ascorbate was dis-

covered as a cofactor for methylcytosine dioxygenases that

are responsible for DNA demethylation, and also as a likely

cofactor for some JmjC domain-containing histone

demethylases that catalyze histone demethylation. Varia-

tion in ascorbate bioavailability thus can influence the

demethylation of both DNA and histone, further leading to

different phenotypic presentations. Ascorbate deficiency

can be presented systematically, spatially and temporally in

different tissues at the different stages of development and

aging. Here, we review how ascorbate deficiency could

potentially be involved in embryonic and postnatal devel-

opment, and plays a role in various diseases such as

neurodegeneration and cancer through epigenetic

dysregulation.
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Introduction

The focal function of vitamin C (L-ascorbic acid) is the

essential role that it plays in collagen crosslinking. Severe

vitamin C deficiency can cause scurvy due to incomplete

collagen crosslinking [41, 152, 159]. Besides other known

functions, recent discoveries of vitamin C in epigenetic

regulations, specifically promoting the demethylation of

DNA and histone, are poised to revolutionize our under-

standing of this often overlooked vitamin in health and

diseases. One recent review has provided insights with

respect to the regulation of the epigenome by vitamin C

[166]. This review particularly focuses on the potential

roles of vitamin C in health and diseases from the per-

spectives of epigenetic regulation.

Vitamin C exists predominantly as ascorbate anion

under physiological pH conditions. From here on we will

be discussing the role of vitamin C in terms of ascorbate,

not the disassociated proton. All mammals, except high

primates, guinea pigs and fruit bats, synthesize ascorbate

de novo in the liver. The loss of de novo ascorbate syn-

thesis is due to a mutant and nonfunctional L-gulonolactone

oxidase (Gulo), the enzyme catalyzing the last step of

ascorbate biosynthesis. For high primates, guinea pigs and

fruit bats, ascorbate is a vitamin that needs to be supplied

via diet and/or dietary supplements.

Ascorbate, derived from either dietary sources or the

liver, enters cells primarily through sodium-dependent

vitamin C transporters (SVCTs). The high-capacity, low-

affinity SVCT1 is primarily responsible for ascorbate

absorption and reabsorption in intestinal and renal epithe-

lial cells. In contrast, the low-capacity, high-affinity

SVCT2 distributes ascorbate to most tissues and is

expressed more ubiquitously [158]. As a general reducer,

ascorbate can be oxidized to dehydroascorbic acid (DHA)
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by two rounds of single electron donation to other oxidants

such as oxygen free radicals, peroxides, and superoxide

[96]. DHA is no longer able to pass through SVCTs, but

rather, enters cells through glucose transporters (GLUTs).

Once inside the cell, DHA can be rapidly reduced back to

ascorbate. In a similar manner, ascorbate must leave the

cells in the form of DHA through GLUTs. In the plasma of

healthy humans, the reduced form of ascorbate is domi-

nant, and DHA is at a very low level [76, 87], suggesting

that most cells take up and accumulate ascorbate primarily

through SVCTs. However, it is also known that DHA, not

ascorbate, can pass through the blood–brain barrier and

blood–retina barrier to enter into the brain and the retina,

respectively [54, 105].

In addition to being a general antioxidant, ascorbate

serves as a cofactor for a list of monooxygenases and

dioxygenases. Ascorbate-dependent monooxygenases con-

tain dopamine b-hydroxylase and peptidyl-glycine a-
amidatingmonooxygenase,which require Cu2? as a cofactor

and ascorbate as another cofactor (electron donor) [111]. On

the other hand, ascorbate-dependent dioxygenases include

collagen prolyl 4-hydroxylase (P4H), collagen lysyl

hydroxylases, transmembrane P4H, asparaginyl hydroxy-

lase and other enzymes, which utilize Fe2? as a cofactor,

2-oxoglutarate (2OG, also known asa-ketoglutarate) as a co-
substrate, and require ascorbate as another cofactor (electron

donor) for full catalytic activity [95].

The mechanistic role of ascorbate in these enzymes is

exemplified in collagen P4H and its involvement in scurvy.

In the absence of ascorbate, the initial hydroxylation cat-

alyzed by collagen P4H can proceed at a maximal rate.

However, during this process the conversion of reduced

iron (Fe2?) to catalytically inactive oxidized iron species

(mainly Fe3?) soon results in the inactivation of collagen

P4H, leading to an incomplete hydroxylation of residues in

collagen, which in turn causes incomplete crosslinking and

eventually the characteristic signs of scurvy [40]. When

available, ascorbate has the capacity to reduce Fe3? to

catalytically active Fe2?. Thus, ascorbate repletion assists

collagen P4H to complete the collagen hydroxylation,

effectively curing and preventing scurvy.

By serving as a cofactor for these enzymes, the avail-

ability of ascorbate influences some important biological

functions such as catecholamine synthesis, collagen

crosslinking and hypoxia-induced factor-a degradation.

Recent progress in the epigenetics field identified a number

of Fe2? and 2OG-dependent dioxygenases, which catalyze

the epigenetic modifications of DNA and histone. Some of

them may also require ascorbate to maintain their catalytic

activities [102]. Therefore, the availability of ascorbate

also has an influence on the epigenome, which in turn has

an impact on health and diseases.

Demethylation of DNA and histone

The epigenome constitutes the interface of a dynamic

environment and the genome. Identifying enzymes and

essential cofactors that catalyze epigenetic modifications is

the key to understanding molecular connections between

the epigenome and the environment. Methylation at the C5

position of cytosine (5-methylcytosine, 5mC) is the major

covalent modification of mammalian DNA and plays

essential roles in regulating transcription and maintaining

genome stability and cellular identity [125]. Although 5mC

is relatively stable, it can be lost by dilution via a lack of

maintenance during DNA replication, which would result

in passive demethylation [9]. It remained largely unclear

whether and how the methyl group in 5mC could be

actively removed, i.e., active demethylation, until only a

few years ago.

A group of enzymes termed methylcytosine dioxyge-

nase ten-eleven translocation (TET, including TET1, TET2

and TET3) was identified to catalyze the hydroxylation of

5mC to 5-hydroxymethylcytosine (5hmC) [63, 80, 138].

TETs can further oxidize 5hmC to 5-formylcytosine (5fC)

and 5-carboxylcytosine (5caC) [64]. In addition to the

passive dilution of 5hmC during DNA replication, both 5fC

and 5caC could be excised by the DNA repair enzyme

thymine DNA glycosylase to produce an abasic position,

which is eventually replaced by an unmodified C, thus

completing the process of DNA active demethylation

(Fig. 1) [51, 92]. Although it involves multiple steps, the

TET-mediated cascade oxidation in combination with base

excision repair constitutes one of the most important and

consistent pathways responsible for the active demethyla-

tion of DNA.

It has been shown that 5hmC is relatively stable with a

unique distribution pattern in the genome, while 5fC and

5caC are rare in the genome [129, 133]. 5hmC recruits very

different sets of binding proteins compared to 5mC [99,

134, 164]. Therefore, in addition to being a DNA

demethylation intermediate, 5hmC also serves as an epi-

genetic mark with unique regulatory functions.

TETs belong to the Fe2? and 2OG-dependent dioxyge-

nase superfamily. Several lines of evidence have

demonstrated that, like collagen P4H, the catalytic activity

of TETs is dependent on Fe2? and 2OG. For instance,

introducing mutations at the iron-binding sites in TETs, as

well as supplementation of 2-hydroxyglutarate (2HG), a

competitive inhibitor of 2-oxoglutarate, suppresses their

catalytic activity in converting 5mC to 5hmC [63, 138,

162, 163]. Elevated levels of 2HG and reduced levels of

5hmC have been found in multiple cancers with gain of

function mutations in the isocitrate dehydrogenase (IDH)

[162]. These mutant IDHs aberrantly produce 2HG instead
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of 2OG [78, 136]. Further, recombinant TETs require both

Fe2? and 2OG to hydroxylate 5mC to 5hmC in test tubes to

initiate the conversion of 5mC to 5hmC [63, 138], which

strongly supports the idea that 2OG and Fe2? act as co-

substrate and cofactor, respectively. The requirement for

ascorbate as an additional cofactor for P4H and other

dioxygenases suggests a potential role for this reducing

cofactor in TET-mediated DNA demethylation. However,

initial in vitro enzymatic analysis suggested that ascorbate

was not essential for TET-mediated hydroxylation of 5mC

[138].

Initial observations in the Wang lab showed that

ascorbate enhanced 5hmC generation in cultured cells,

most likely by acting as a cofactor for TET to hydroxylate

5mC [26, 101]. This new function of ascorbate was initially

discovered in mouse embryonic fibroblasts (MEF) that

expressed TETs at low, but detectable levels [27, 73].

Thus, MEFs constituted a convenient and useful tool to

analyze TET enzymatic requirements in a cell-based

experimental setting. Interestingly, standard cell culture

media usually lack ascorbate in their formula. However,

when ascorbate is available, it can enter into cells mainly

via SVCT2 transporters. The content of 5hmC was extre-

mely low in MEFs cultured in ascorbate-free medium.

Addition of ascorbate dose- and time-dependently

enhanced the generation of 5hmC [101]. Treatment with

another reducer, glutathione, did not change the level of

5hmC. Blocking the entry of ascorbate into cells and

knocking down TETs expression by short interference

RNAs significantly inhibited the effect of ascorbate on

5hmC. The effect of ascorbate did not involve an increased

expression of TET or IDH, the enzymes responsible for

producing 2OG. Furthermore, the effect of ascorbate on

5hmC was also independent of the cellular uptake of iron

[26]. It is known that ascorbate has the capacity to reduce

Fe3? to catalytically active Fe2? for TETs, as it does for

collagen P4H. Taken together, these results indicate that

ascorbate promotes TETs to catalyze the hydroxylation of

5mC to 5hmC, most likely as a cofactor of TETs. The

promotion of 5hmC by ascorbate is not limited to MEF, but

ubiquitous to all cell types being tested.

Subsequently, the effect of ascorbate on DNA

demethylation was also reported by multiple groups in

other experimental settings such as embryonic stem cells,

induced pluripotent stem cells (iPSC) and Gulo knockout

(Gulo-/-) mice [10, 20, 165]. Blaschke et al. showed that

ascorbate (L-ascorbic acid 2-phosphate), but not other

antioxidants, enhanced the activity of recombinant TET1 in

an in vitro assay. The ascorbate-induced conversion of

5mC to 5hmC was further demonstrated on certain chro-

mosomal regions in cultured embryonic stem (ES) cells by

genome-wide high-throughput sequencing. The ascorbate-

5C

5mC

5caC

5fC

5hmC

2O
G

, O
2 , Fe

2+, Asc

Fig. 1 Ascorbate and DNA demethylation. The methylation of an

unmodified 5C could be established by DNMT1. 5mC can also be

passively diluted by the failed maintenance during DNA synthesis.

Ascorbate promotes the TET catalyzed cascade oxidation of 5mC, to

5hmC, to 5fC and to 5caC. Unable to maintain 5hmC in the newly

synthesized DNA leads to the passive dilution of 5hmC. Both 5fC and

5caC could be excised by the DNA repair enzyme thymine DNA

glycosylase to produce an abasic position, which is eventually

replaced by an unmodified C, thus completing the process of DNA

active demethylation and a cycle of DNA methylation-demethylation
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induced changes in 5hmC and 5mC were entirely sup-

pressed in TET1 and TET2 double knockout ES cells [10].

Liu et al. found that ascorbate (ascorbic acid) could directly

enhance the catalytic activity of TET dioxygenases to

oxidize 5mC by uniquely interacting with the C-terminal

catalytic domain of TETs. Ascorbate was shown to sig-

nificantly increase the levels of all 5mC oxidation products,

particularly 5fC and 5caC. The effect of ascorbate on 5mC

oxidation was further validated in vivo in Gulo-/- mice

[165]. Chen et al. reported that TET1 promoted somatic

cell reprogramming independent of mesenchymal-to-ep-

ithelial transition (MET) in the absence of ascorbate. When

ascorbate was available, TET1 regulated 5hmC formation

at loci critical for MET in an ascorbate-dependent fashion

[20]. With the evidence provided by each of these four

groups, a previously unknown function of ascorbate in

modulating the epigenetic control of genome activity has

thus been uncovered.

Besides cytosine methylation in DNA, lysine and argi-

nine residues in histones can also be methylated in the

chromatin. Histone methylation is another key component

of the epigenome, which is closely associated with either

the activation or silencing of transcription [67]. There are

two groups of histone demethylases: (1) lysine-specific

histone demethylases (LSD1 and LSD2) that can

demethylate mono- and di-methylated lysine residues in

histones; (2) JmjC domain-containing histone demethy-

lases that can demethylate mono-, di-, and trimethylated

histone lysine/arginine residues [71, 147]. So far, about 20

proteins that belong to the JmjC domain-containing histone

demethylase family have been discovered to have the

catalytic capacity to demethylate histones [102]. JmjC

domain-containing histone demethylases, like TETs,

belong to the Fe2? and 2OG-dependent dioxygenase

superfamily. For the first time, the Zhang group reported

that ascorbate is required for optimal catalytic activity of

JHDM1; additionally, the demethylation mediated by

JHDM3A was halted when ascorbate was withdrawn from

an in vitro assay [71, 147]. The promoting effect of

ascorbate on histone demethylation was further verified in

the transition from pre-iPSC phase to fully reprogrammed

iPSC [21, 156]. These studies suggest that ascorbate could

be a cofactor for some JmjC domain-containing histone

demethylase family, thus modulating histone demethyla-

tion in a similar way as it does in the case of DNA

demethylation.

To date, our understanding is that ascorbate acts as a

cofactor role in DNA demethylation catalyzed by TETs

and in histone demethylation mediated by some JmjC

domain-containing histone demethylases by regenerating

the catalytically active Fe2?. Deficiency of ascorbate,

especially in the nucleus, may not be able to meet the

requirement of TETs or some JmjC domain-containing

histone demethylases. This will disrupt the methylation-

demethylation dynamics of DNA and histone, which can

subsequently contribute to phenotypic alterations or even

diseases. Furthermore, the expression of these Fe2? and

2OG-dependent dioxygenases such as TETs shows spatial–

temporal dynamics in the body throughout development

and aging. How to adjust diet and dietary supplementation

of ascorbate to meet the needs of these enzymes and to

avoid unnecessary epigenomic alterations to stay healthy

remains a question yet unanswered.

Variation in ascorbate availability

The availability of ascorbate to TETs and some JmjC

domain-containing histone demethylases in the nucleus is

now considered critical in maintaining the epigenome.

Because of the abundance of ascorbate in certain fruits and

vegetables, and the comparably low price of ascorbate

supplementation, there has been little attention paid to the

implications of ascorbate deficiency, which is often defined

as the critical level at which the signs of scurvy begin to

appear. Although the current incidence of scurvy is rela-

tively low, instances of scurvy are still reported in the

industrialized countries [106]. In the USA, more than 7 %

of the population ([20 million individuals) is estimated to

be deficient in ascorbate (concentrations\11.4 lM in the

plasma) [123]. Marginal ascorbate deficiency was defined

as a plasma concentration below 23 lM, which has been

estimated to affect about 10 % of adults in the industrial-

ized world [150]. Furthermore, the turnover rate of

ascorbate appears to be quite rapid [131]. In Gulo-/- mice,

which like humans cannot synthesize endogenous ascor-

bate, the concentration of ascorbate in most tissues, except

for the brain, steadily decreases to near zero within

approximately 1 week after the withdrawal of dietary

ascorbate [153]. If humans have a similar turnover rate, it

may help explain the relatively high prevalence of ascor-

bate deficiency in humans.

Certain life styles, such as smoking and alcohol con-

sumption, have significant impacts on ascorbate

availability. Cigarette smoking has been shown to strongly

reduce ascorbate levels in the plasma [88, 120]. Chronic

alcoholic individuals also have lower levels of ascorbate,

possibly due to the alcohol-enhanced excretion of ascor-

bate or its metabolites in the urine and low dietary

ascorbate [34]. Furthermore, economically low-income

populations have a much higher risk of ascorbate defi-

ciency, estimated at 25 % incidence for men and 16 % for

women [103]. People with clinical conditions that affect

the absorption and reabsorption of ascorbate are also at risk

of deficiency. These include digestive diseases such as

Crohn’s disease, ulcerative colitis, and chronic kidney
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diseases [13, 25]. Patients undergoing dialysis, due to a

kidney failure, have an even higher prevalence of ascorbate

deficiency.

Genetic variations in ascorbate transporters also influ-

ence the availability of ascorbate. It is known that SVCT1

is responsible for the absorption and reabsorption of

ascorbate. In the dbSNP database, there are about 60 non-

synonymous single nucleotide polymorphisms (SNP) in the

SLC23A1 gene (encoding SVCT1), all of which are rare in

the population [minor allele frequency (MAF) \0.5 %].

Emerging evidence indicates that some of these variants

influence the level of circulating ascorbate. For example,

one study suggests that SNP rs35817838 (amino acid

change M258V) causes approximately 75 % decline in

human plasma ascorbate regardless of ascorbate intake (up

to 2.5 g/day), while SNPs rs33972313 (V264M),

rs34521685 (I218V), and synonymous rs6886922 (I60I)

decrease 40–50 % of plasma ascorbate [24]. A meta-

analysis of five studies with over 15,000 participants shows

that SNP rs33972313 is associated with reduced circulating

ascorbate [144]. Furthermore, genotype GG at intronic

SNP rs4257763 is correlated with a reduced serum ascor-

bate level [15]. Genotype CC at another intronic SNP

rs6596473 is associated with a lower level of ascorbate in

aqueous humor, but not plasma [127].

SVCT2 is known to distribute ascorbate to most types of

tissues. There are 40 non-synonymous SNPs in the

SLC23A2 gene (encoding SVCT2) in the dbSNP database.

The impact of these variants on SVCT2 function remains

largely unclear. However, one study shows that genotype

TT at an intronic SNP rs12479919 is associated with a

reduced level of ascorbate in the lens of the eye [127].

Although the functional analysis of the genetic variation in

SLC23A1 and SLC23A2 is not complete, individuals car-

rying certain genetic variants could have a higher risk of

ascorbate deficiency [47].

Ascorbate deficiency can be presented systematically,

spatially and temporally in different tissues or cells.

Intracellular ascorbate, or more accurately nuclear ascor-

bate, refers to the ascorbate available to Fe2? and 2OG-

dependent dioxygenases in the nucleus. However, the

ascorbate level in the cell nucleus remains largely unknown

because a majority of published studies have conveniently

measured ascorbate levels in serum or plasma. Currently,

the recommended dietary allowances by the Institute of

Medicine of the USA are 90 mg for adult males and 75 mg

for adult females [62]. It remains unclear whether these

amounts of ascorbate can meet the needs of TETs and some

JmjC domain-containing histone demethylase in different

tissues along different developmental and aging stages.

Moreover, it is expected that once ascorbate fulfills the

cofactor epigenetic enzymatic requirements, any further

increase would not exert additional enhancement on these

enzymatic activities.

Epigenetic regulation of ascorbate in embryonic
development

Epigenetic reprogramming is critical to embryonic devel-

opment. Two rounds of DNA demethylation–remethylation

happen at early stages of mammalian embryonic develop-

ment. It is now known that both TET-mediated oxidation and

passive dilution could participate in these demethylation

processes. Immediately after fertilization of an oocyte, 5mC

in the paternal chromatin is rapidly replaced by 5hmC via

TET3-mediated oxidation as shown initially. 5hmC cannot

be maintained during the rapid DNA replication in pre-im-

planted embryos, leading to passive demethylation and the

erase of most of the paternal 5mC patterns [61]. The

demethylation of the maternal chromatin, though occurring

slightly later, appears to be also mediated by TET3 from

zygote to four-cell embryos [155]. Later reports suggest that

other pathways such as TET3-independent passive

demethylation during DNA replication might play an even

bigger role inDNAdemethylation of pre-implanted embryos

[45, 108, 128]. A second round of epigenetic reprogramming

happens in primordial germ cells (PGC), which is also

involved in TET2/3-mediated active demethylation [74]. At

these stages, TETs are expressed at a much higher level

[139], suggesting that a significant amount of ascorbate is

required to meet the need of TETs. If the available ascorbate

cannot satisfy the needs of TETs, the programmed embry-

onic development could be disrupted by an incomplete DNA

demethylation, which could potentially lead to birth defects.

The function of ascorbate as a cofactor is expected during

these developmental steps. In fact, ascorbate is needed for

demethylation in the DNA of embryonic stem cells and is

needed in the induction of TET1 and TET2 dependent DNA

demethylation in stem cells [10, 22]. Further, ascorbate has

been shown to maintain the methylation pattern and

expression of theDlk1–Dio3 imprinting region in embryonic

stem cells [37, 135]. Overall, the current data indicate that

ascorbate is essential for the global DNA demethylation in

early embryonic stages. The importance of the correct DNA

methylation patterns during development has been high-

lighted by recent publications showing that maternal or

paternal nutrition has an impact on the methylation status of

the offspring [28, 66, 82, 145]. Furthermore, histone

demethylationmediated by JmjC domain-containing histone

demethylases is also critical to embryonic development [68,

84, 130, 154, 157]. Thus, it is necessary to take consideration

of dietary ascorbate consumption and supplementation dur-

ing the peri-pregnancy period.
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Variations in ascorbate availability, due to genetic fac-

tors or an insufficient intake during pregnancy, could affect

the embryonic development by changing the catalytic

activity of TETs. One genetic study showed that certain

variations in SVCT1 and SVCT2 conferred the risk of

spontaneous preterm birth [31]. Ascorbate deficiency has

been linked to certain types of developmental defects. For

example, women at a high risk for neural tube defect

(NTD) recurrence tend to have lower leucocyte ascorbate

levels compared with low-risk women [12, 124]. Lower

intake of ascorbate also increases the risk of gastroschisis

in infants, which is a congenital defect of the abdominal

wall [146].

Plasma ascorbate levels, however, often decrease

throughout the pregnancy [16]. The prevalence of ascor-

bate deficiency (\22.7 lM) can be as high as 30.8 % in

pregnant women during the later pregnancy terms [90]. The

maternal deficiency in ascorbate leads to fetal ascorbate

deficiency, which could disrupt prenatal development

[121], suggesting that ascorbate supplementation might be

necessary for pregnant women. It is worth noting that

ascorbate supplementation in pregnant women should be

aimed at satisfying the needs of TETs and other Fe2? and

2OG-dependent dioxygenases in both the mother and the

fetus. In the case of sufficient dietary ascorbate intake,

higher doses of ascorbate may not necessarily exert addi-

tional benefits [110]. Currently, it is not clear how much

ascorbate is really needed from diet and/or supplements to

completely satisfy the requirement of TETs in the pre-

vention of potential embryonic defects caused by

inappropriate DNA demethylation. Due to the fact that

ascorbate consumption from dietary sources is almost

impossible to control quantitatively in human subjects, a

recent review of seven studies concluded that ascorbate

supplementation does not exert obvious benefits to prevent

preterm birth [137]. No significant difference was found in

neonatal outcomes from the women supplemented with

ascorbate in other studies [29].

Contrary to the inconsistent studies of human subject,

results from animal studies suggest that ascorbate is

essential to embryonic development. Maternal ascorbate

deficiency in guinea pigs (which have no endogenous

production of ascorbate) during pregnancy resulted in

lower fetal levels of plasma ascorbate, and reduced fetal

body weight and brain weight [122]. Insufficient ascorbic

acid intake during the gestation of Gulo-/- mice (also have

no endogenous ascorbate production) resulted in neonatal

lethality [70]. These mice had abnormal cardiac dilation,

congestion of the liver and lungs and incompletely

expanded pulmonary alveoli, suggesting that the epigenetic

regulation of ascorbate could be one of the pathways crit-

ical to normal tissue development [70]. Ascorbate

improves the development of embryos produced by

somatic cell nuclear transfer [58, 59, 69, 93]. Additionally,

ascorbate has been shown to improve the development of

the blastocyst in in vitro fertilization [55, 65, 116, 140].

The exact mechanism by which ascorbate improves

embryo development in vitro was assumed to be due to its

antioxidant properties [43, 86]. However, it is possible that

an epigenetic role of ascorbate in the in vitro embryo

development has been missed.

Overall, ascorbate could be essential to embryonic

development by maintaining the catalytic activity of TETs

and some of the JmjC domain-containing histone

demethylases, especially during the epigenetic reprogram-

ing at early embryonic stages. However, the amount of

daily ascorbate intake that is required prenatally to aid in

the prevention of possible birth defects remains unknown.

Epigenetic regulation of ascorbate in postnatal
development

Ascorbate deficiency may affect the postnatal development

of various organs and tissue types through the aforemen-

tioned epigenetic pathways. Here we will discuss the

impact of ascorbate deficiency on neurogenesis and neu-

ronal myelination based on published results. Breast milk

or formula milk is the major source of ascorbate for new-

born babies. The level of ascorbate in breast milk is

reduced if breastfeeding women consume insufficient

ascorbate, and also declines as lactation progresses [8].

Ascorbate content in formula is often higher than breast

milk, however, no ascorbate exists in cow’s milk unless

artificially added [30]. Therefore, there is a risk of ascor-

bate deficiency in newborns if the primary food source is

cow’s milk or breast milk produced by an individual with

deficient ascorbate levels.

Animal studies suggest that deficient ascorbate may

affect biogenesis of certain cell types during development,

a process largely controlled by epigenetic events. For the

newborn guinea pigs (6–7 days old), insufficient supply of

ascorbate (though adequate to prevent scurvy) for 2 months

caused a reduced number of neurons in the hippocampus

and spatial memory deficits [149]. Consistent with this

finding, maternal ascorbate deficiency during pregnancy

also persistently impaired hippocampal neurogenesis in the

offspring of guinea pigs [151]. It is likely that disrupted

demethylation of DNA and histone underlie the impaired

neurogenesis in the hippocampus.

Myelination of certain peripheral nerves by Schwann

cells is critical for proper neural functioning. The myelin

sheaths encircle axons to provide metabolic support and

allow rapid nerve conduction. At embryonic stages, neural

crest progenitor cells differentiate to Schwann cell pre-

cursors to immature Schwann cells. Then, in the postnatal
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stages, pre-myelinating Schwann cells appear and further

differentiate to myelinating Schwann cells, which wrap

individual nerve fibers to form unique myelin sheath, or

differentiate to non-myelin forming Remak Schwann cells

[35].

A potential role of ascorbate in myelination has long been

proposed, primarily because of its function in collagen

crosslinking and the synthesis of other basement membrane

components [98]. In the 1980s, ascorbate (50 lg/ml) was

identified to fully restore the myelination of axons in vitro by

Schwann cells due to serum withdrawal [14]. Schwann cells

would be arrested in a basal-lamina-free pre-myelination

stage if serum and ascorbate were deprived from themedium

[160]. In the defined medium used for co-culture of neurons

and Schwann cells, myelin is not formed if ascorbate is

absent from themedium [107]. In contrast, myelin formation

by olfactory ensheathing cells is not dependent on ascorbate

[6], suggesting the specificity of the requirement of ascorbate

for the myelin formation by Schwann cells. However, how

ascorbate mechanistically regulates the Schwann cell-me-

diated myelination remained largely unclear until only a few

of years ago. An animal model study with reduced levels of

an ascorbate transporter provided a breakthrough in the field.

Ascorbate enters and accumulates in Schwann cells

primarily via SVCT2 [38]. Haploinsufficiency of the

SLC23A2 gene (encoding the SVCT2 protein) caused a

lower protein level of SVCT2, which resulted in deficient

ascorbate within Schwann cells and other cells, but not in

extracellular milieu. In SLC23A2?/- mice, the myelin layer

of sciatic nerve fibers was thinner and the nerve conduction

velocity was also reduced compared to the wild type mice

[39]. This suggests that the intracellular ascorbate defi-

ciency, rather than the extracellular ascorbate deficiency,

affects the process of myelination by Schwann cells.

The transformation of cell identity from precursors, to

pre-myelinating Schwann cells, and to myelinating Sch-

wann cells is largely controlled by the epigenome [109,

117]. Although intracellular ascorbate may exert multiple

functions, from the available knowledge, it is likely that the

demethylation of DNA and histone, which is regulated by

the intracellular ascorbate, plays a key role in Schwann

cell-mediated myelination. Future studies may provide

experimental evidence on how ascorbate impacts the epi-

genome and regulates proliferation, differentiation, and

myelin formation of Schwann cells.

Epigenetic regulation of ascorbate in aging

Both human and animal studies have shown a correlation

between the declining ascorbate levels in tissues and the

process of aging [100]. Multiple mechanisms could be

involved in the age-related ascorbate decline including

increased usage, accelerated turnover, decreased absorp-

tion/reabsorption, and reduced cellular uptake. For

example, ascorbate level declines *50 % in leukocytes in

individuals at age 85 and older compared to those at age 60

[5]. Distinct from peripheral tissues, ascorbate crosses the

blood–brain barrier in the form of DHA through GLUTs,

which are expressed in endothelial cells [1]. Upon uptake

by the neurons and glial cells in the brain, DHA can be

converted to ascorbate. Although there are little available

data on ascorbate in human brains, one early study shows

that ascorbate level in the cerebral cortex is decreased

77 % from individuals at age 80 and older, compared to

individuals at age 50 and younger [119]. Thus, if no

additional ascorbate is provided or its uptake is not

improved, there would be persistent ascorbate decline in

aged brains, which may cause phenotypic changes such as

neurodegeneration. Studies have examined the potential

role of ascorbate in neurodegenerative diseases from the

oxidative stress angle [7]. Emerging evidence indicates that

dysregulation in 5hmC, which can be caused by ascorbate

shortage in the brain, could contribute to the age-related

neurodegenerative diseases [3].

Increased age is one primary risk factor for Parkinson’s

disease (PD), which is characterized by the progressive loss

of dopaminergic neurons in the substantia nigra [114]. It is

not plasma ascorbate, but cellular ascorbate that may be

associated with PD. One study shows that lymphocyte

ascorbate levels in patients with severe PD are significantly

lower compared with those at less severe stages [60].

Although the status of ascorbate in the midbrain affected

by PD remains unclear, it is possible that the change could

be similar to the change that occurs in lymphocytes. In the

midbrain of SLC23A2?/- mouse embryos, the number of

dopaminergic neurons is decreased. Ascorbate supple-

mentation greatly enhances the differentiation of midbrain

derived neural stem cell toward dopaminergic neurons,

which is correlated with TET-mediated 5hmC generation

and Jmjd3 catalyzed loss of H3K27m3 [52]. Thus, it

appears that ascorbate plays a role in dopaminergic neuron

differentiation. It is reasonable to deduce that the failure to

maintain the epigenetic signature of dopaminergic neurons

(higher 5hmC and lower H3K27m3) due to the age-related

ascorbate decline in the midbrain, could lead to a shift in

cell identity and eventually contribute to the development

of PD.

Alzheimer’s disease (AD) is another common neurode-

generative disorder, which has an increased incidence with

aging [36]. Like PD, there is a lack of data on the status of

ascorbate in human brain regions that are critical to AD

pathogenesis. However, many studies suggest that main-

taining healthy ascorbate levels can have a protective

function against AD [49]. Findings on the relationship

between 5hmC and AD are not consistent in published
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studies, most of which use immunohistochemistry, a crude

method for measuring global 5hmC content. For example,

levels of TET1, 5mC, and 5hmC are increased whereas

levels of 5fC and 5caC are decreased in the hippocampus

gyrus of AD subjects [11]. Levels of 5mC and 5hmC are

low in astrocytes and microglia, but high in the neurons of

the hippocampus gyrus in human AD brains [23]. A sig-

nificant decrease in global 5hmC is reported in entorhinal

cortex and cerebellum of AD patients [23], which, how-

ever, has not been replicated by another group [83].

Overall, the available data of DNA demethylation from

human brain studies are inconsistent. Future studies may

uncover the potential impact of the age-related ascorbate

decline on the epigenome and AD pathogenesis.

Epigenetic regulation of ascorbate in cancer

The TET-mediated DNA active demethylation appears to

be downregulated in most, if not all, types of human cancer

[81]. A low level, or even loss, of 5hmC has been recog-

nized as a novel epigenetic hallmark of cancer [85]. The

major known mechanisms for the loss of 5hmC in cancer

are the following. (1) Mutations in TETs; for example

TET2 mutations, which are likely loss of function, impair

5hmC generation in myeloid cancers [72]. (2) Mutations in

IDHs; instead of producing 2OG, the mutant IDH produces

2HG, which competes with 2OG for TETs and results in

the reduction of 5hmC and DNA hypermethylation in

cancers [118, 148, 162]. (3) Deficient expression of TETs

or IDHs, which can reduce 5hmC generation in cancers

[85, 104]. Ascorbate, if deficient, may also affect the

enzymatic activity of TETs and further lead to 5hmC

reduction.

Observational studies have correlated the occurrence of

scurvy and cancer. One group found a higher incidence of

scurvy in cancer patients in a clinic [33]. Subclinical

scurvy is also observed in patients with different malignant

diseases [79]. However, some reports show a role of

ascorbate in enhancing the risk for certain cancers [4]. The

reasons for the mixed results of ascorbate in the risk of

cancer could be the following: (1) it is difficult, if not

impossible, to control dietary ascorbate quantitatively in

human subjects. Ascorbate supplements in treatment

groups can easily be confounded by the consumption of

ascorbate-rich fruits and vegetables in control/placebo

groups; (2) most studies examined ascorbate supplements

by questionnaire or other indirect self-report methods, but

did not verify the effects of ascorbate levels in related

tissues or serum directly; (3) the effect of ascorbate can be

complicated by other antioxidants or micronutrients.

Recent meta-analyses confirmed the benefits of ascorbate

in breast cancer treatment. One meta-analysis of published

studies (n = 40) indicates that higher plasma level of

ascorbate is associated with reduced breast cancer risk [57].

Thus, an inverse association between ascorbate and the risk

of breast cancer seems to exist.

Genetic studies indicate an association between ascor-

bate transporters and cancer. Variations in SVCT1 and

SVCT2 have been associated with the risk of certain types

of cancers including advanced colorectal adenoma [32],

muscle-invasive bladder cancer [44], gastric cancer [161]

and non-Hodgkin lymphoma [132]. Furthermore, recurrent

mutations in the splicing factor SF3B1 have been identified

in chronic lymphocytic leukemia, uveal melanoma, as well

as other cancers [113]. The mutant SF3B1 causes a trun-

cated, most likely nonfunctional, SVCT2 that can result in

intracellular deficiency of ascorbate in cancer cells [113].

These studies suggest that variation in ascorbate avail-

ability due to altered transporters could contribute to the

pathogenesis of cancer.

There is a long controversial history of ascorbate as a

treatment for cancer. Possibly due to the fact that it is

nearly impossible to quantitatively control dietary ascor-

bate consumption in human subjects, results from clinical

trials have been inconsistent [94]. However, a recent meta-

analysis of published studies clearly demonstrated benefits

of vitamin C supplement in reducing the mortality caused

by breast cancer in over 17,000 patients studied [48].

Furthermore, animal studies show an obvious benefit of

ascorbate in cancer treatment. Depletion of ascorbate

increased the growth and metastasis of murine melanoma

xenografts in Gulo-/- mice, while supplementation of

ascorbate inhibited the growth and metastasis of murine

melanoma xenografts [17, 18]. These preliminary studies

suggest that an ascorbate supplement could be included as

adjuvant therapy for melanoma.

It has been shown that the overexpression of TET1 in

breast cancer and the overexpression TET2 in melanoma

could partially reestablish a normal 5hmC profile in these

cancer cells and decrease malignancy, especially invasive-

ness [56, 85]. These findings suggest that a means of

rebuilding the 5hmC content could offer a potential treat-

ment for these cancers. However, it might not be feasible to

clinically overexpress TET or IDH in patients. As a cofactor

for TETs, ascorbate enhances, and possibly maximizes, the

catalytic activity of the existing TETs in cancer cells. It is

likely that some of the beneficial effects of ascorbate in

treating melanoma xenografts inGulo-/-mice are mediated

by the induction of 5hmC generation in cancer cells. One

recent study shows that ascorbate treatment increases 5hmC

content in cultured melanoma cells, while decreasing their

malignancy [46]. Future studies should assess whether

ascorbate treatment can aid in the reprogramming of cancer

cells by promoting the activity of TETs and some JmjC

domain-containing histone demethylases.
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Epigenetic regulation of ascorbate in Scurvy

Although scurvy is a forgotten disease, due to its rare occur-

rence in modern times, case reports of scurvy do appear

periodically [2]. The pathogenic mechanism of scurvy

involves mainly these aspects: (1) the hydroxylation and

crosslinking of procollagen catalyzed by P4H and lysyl

hydroxylase, and (2) the dramatically decreased transcription

of procollagen, which has been considered to be the major

effect of ascorbate deficiency [97]. The level of type IV col-

lagen mRNAwas decreased to*50 % of the normal level in

blood vessels of ascorbate deficient guinea pigs [91]. Further,

in vitro culture experiments clearly supported that ascorbate

was one key factor in promoting de novo collagen synthesis

[19, 50, 53, 89, 112]. The role of ascorbate as a cofactor for

P4H and lysyl hydroxylase to complete the procollagen

hydroxylation and crosslinking is well elucidated. However,

the mechanism bywhich ascorbate enhances the transcription

of collagen genes remains largely unclear.

Overwhelming evidence has demonstrated that DNA

hypermethylation, specifically the ones at the promoter

regions, inhibits the transcription of various types of col-

lagen in different cells [42, 75, 115, 126, 143]. The

transcription of collagens is activated after CpG sites at its

promoters have been demethylated [167]. Furthermore,

inhibition of H3K27 trimethylation increases the expres-

sion of collagen [77]. It is reasonable to hypothesize that

ascorbate deficiency causes the hypermethylation in the

promoter regions due to the failure of promoter demethy-

lation of DNA and histone catalyzed by TETs and some

JmjC domain-containing histone demethylase, which

inhibits the transcription of collagens and further leads to

scurvy. We can predict that any animal model with a loss

of either one or a combination of TET enzymes and JmjC

domain-containing histone demethylases will have a defi-

ciency in collagen production and will be more sensitive to

ascorbate depletion. In support of this hypothesis, it has

been shown there is a TET1-mediated increase in 5hmC

near the transcription start site and gene body of activated

collagen genes in chondrocytes [142]. In TET1 knockout

mice, the expression of collagen is decreased during bone

development [141]. In this regard, scurvy could also be

considered as an epigenetic disease; thus, some of its

clinical manifestation could be cured and prevented epi-

genetically by ascorbate treatment.

Conclusions

Recent progress in the epigenetics field indicates that

ascorbate could play a critical role in the demethylation of

DNA and histone. Although exclusive evidence is still

missing, results obtained from in vitro and in vivo exper-

iments support that ascorbate is likely serving as a cofactor

for TET and some JmjC domain-containing histone

demethylases by regenerating the catalytically active Fe2?.

Ascorbate, if deficient, may disrupt the methylation-

demethylation dynamics of DNA and histone, which can

consequently contribute to phenotypic alterations. In

humans, ascorbate deficiency can be presented systemati-

cally, spatially and temporally in different tissues or cells

along the developmental stages and aging. By regulating

the epigenome, ascorbate can be involved in embryonic

development, postnatal development, aging, cancer and

other diseases (Fig. 2). Future systematic studies may help

uncover the epigenetic role of ascorbate in human health

and diseases.
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