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Summary

The T-cell receptor (TCR) controls the cellular adaptive immune response to antigens, but our 

understanding of TCR repertoire diversity and response to challenge is still incomplete. For 

example, TCR clones shared by different individuals with minimal alteration to germline gene 
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sequences (public clones) are detectable in all vertebrates, but their significance is unknown. 

Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those 

operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to 

stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the 

T-cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic 

challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid 

generation of protective T-cell immunity allowing a short temporal window for the development 

of more specific private T-cell responses.

Graphical abstract

Introduction

The T-cell repertoire, constituted by the pool of T-cell receptor (TCR) specificities, governs 

the ability of the immune system to respond to both foreign and self-derived immune 

challenges (Linnemann et al., 2013; Newell and Davis, 2014; Nikolich-Zugich et al., 2004; 

Turner et al., 2009). Ninety five percent of the TCRs are composed of an α and a β protein 

chain. The antigen specificity of the TCR is primarily determined by the CDR3 of α and β 

chains (Rudolph et al., 2006), which interacts with the peptide MHC complex (Davis and 

Bjorkman, 1988). Indeed, the majority of TCR variation is localized in the third 

complementarity-determining region (CDR3) as a result of the recombination of variable 

(V), diversity (D) and joining (J) segments and the incorporation of multiple nucleotide 

insertions and deletions. Thus, the study of CDR3 sequences provides information about the 

fraction of the TCR repertoire relevant for antigen recognition. However, the complexity 

and dynamics of the TCR repertoire remain unknown because of the limited power of the 

tools used for its investigation.

Previous studies estimated CDR3 diversity based on the analysis of a relatively small 

number of T cells. These studies are based on a solution for the “unseen species problem” 

developed to estimate the total number of species in a given population based on random 
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samples of species (Efron and Thisted, 1976; Fisher et al., 1943). This method assumes that 

the number of TCR clones follows a Poisson distribution, however recent studies found a 

power law distribution instead (Weinstein et al., 2009). Indeed, studies based on the 

sequencing of small T-cell samples produced estimates of TCR diversity that were directly 

proportional to the number of sequences analyzed, suggesting that these methods do not 

capture the complete TCR repertoire diversity (Freeman et al., 2009). Even when advanced 

methods are used to study the TCR repertoire, these methods are still limited by their lack of 

consideration of tissue resident T cells (Burzyn et al., 2013; Park and Kupper, 2015). 

Because of these limitations, it is still unclear what fraction of the potential T-cell repertoire 

is expressed, and how similar are the repertories of different individuals in the quiescent 

state and during the course of an immune response. In addition, TCR sequences shared by 

different individuals (termed public TCR sequences) are detected in all vertebrates in 

multiple biological contexts, a surprising finding when the number of potential unique 

CDR3 sequences generated by VDJ recombination is considered (McBerry et al., 2012; 

Venturi et al., 2008). However, the significance of public TCRs on the repertoire, as well as 

their response to stimulation is unknown.

Zebrafish (Danio rerio) is an ideal immunological model system to study the TCR repertoire 

because its adaptive immune system shares important features with its mammalian 

counterpart. Examples of these shared elements are the presence of a recombination 

activating gene (RAG), a combinatorial rearrangement of V, D and J gene segments, 

junctional diversity during recombination and somatic hypermutation (Lieschke and Trede, 

2009; Trede et al., 2004). In addition, the number of T-cells in the zebrafish has been 

approximated to about 2×10 5 cells, a 106 fold lower number compared to the T-cell 

numbers found in mice. Therefore, in contrast to TCR sequencing studies performed in 

mammals using isolated T-cell populations, the zebrafish offers the possibility to perform far 

more complete immune repertoire studies. In this work we combine the experimental 

advantages offered by the zebrafish with high-coverage sequencing and computational 

approaches to investigate the full diversity of the TCR repertoire under homeostatic 

conditions and its response to challenge with self and non-self antigens.

Results

The TCR β-chain repertoire provides an accurate representation of TCR diversity (Miles et 

al., 2011). Moreover, although two C-region TCR β-chain genes have been identified in the 

zebrafish, Cβ1 and Cβ2, transcripts of the Cβ2 segment are very rare (Meeker et al., 2010). 

Thus, we focused our efforts on the analysis of the zebrafish TCRβ1 repertoire. To analyze 

the TCR repertoire in zebrafish we developed a method for TCR library generation from 

whole zebrafish mRNA based on 5′RACE amplification from a single primer annealing to 

the constant TCR region (Douek et al., 2002) (Fig. 1A). This method uses a single constant 

region (C-region) and a 5′-anchor primer rather than multiple J or V region primers to avoid 

differential PCR amplification efficiencies and subsequent library bias (Boyd et al., 2009; 

Robins et al., 2009; Wang et al., 2010). To confirm the specificity of the method, we cloned 

and sequenced the amplification products. We found that 100% of the amplification 

products correspond to TCRβ1 sequences, demonstrating that this amplification method 

utilizing a single C-region primer is specific (Fig. 1B).
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To analyze the number of sequences required to provide a comprehensive coverage of the 

TCRβ1 repertoire with our sequencing strategy we performed rarefaction studies using 

partial samples of the full TCRβ1 sequencing data. We found that the total number of V(D)J 

combinations detected was asymptotic towards saturation, with all of the expressed V(D)J 

species predicted to be detected by sampling 35,000 sequences or more (Fig. 1C).

Small TCRβ1 repertoire in adult zebrafish

The number of potential TCR combinatorial possibilities exceeds the total number of 

peripheral T cells in an individual (Davis and Bjorkman, 1988), suggesting that only a 

fraction of the potential TCR repertoire is actually expressed. Indeed, the repertoire of 

unique αβ TCRs has been estimated at ∼107 clones in the human (Arstila et al., 1999) and 

∼106 in the mouse (Casrouge et al., 2000), a small fraction of the 1015-1020 unique αβ 

TCRs repertoire that could be potentially generated by these mammalian immune systems. 

To determine the fraction of the potential TCRβ1 repertoire expressed by zebrafish, we first 

constructed a computational model of TCR recombination in the zebrafish based on 

available sequences and our own data on V(D)J recombination, deletions, insertions and 

substitutions in TCRβ1 sequences (Fig. S1). This simulation, which considers the 

biophysical properties of recombination, asymptotically estimates an upper limit of 400,000 

unique sequences. Because of the limitations imposed by the biophysical features of the 

recombination process, this estimate is smaller than the 108-1020 sequences that could result 

from all the potential V(D)J combinations (Benichou et al., 2012).

We then used our computational model to simulate the TCRβ1 repertoire for 10 individual 

fish, considering not only the number of unique sequences detected, but also, the frequency 

of these sequences in the total TCRβ1 repertoire. Surprisingly, the model predicted a TCRβ1 

repertoire consisting of only 40 unique TCRβ1 clones per fish. This low predicted number is 

comparable to the zebrafish TCR repertoire detected in our sequencing efforts, in which we 

detected 49 - 599 unique TCRβ1 CDR3 sequences per individual fish (Fig. 1D). This small 

number of unique T-cell clones is in agreement with previous studies of the zebrafish B cell 

repertoire, which has been estimated to harbor 9-200 unique V(D)J sequences generated by 

recombination, expanded to 1200-6000 antibody clones by somatic hypermutation 

(Weinstein et al., 2009). Taken together, these data suggest that only a small fraction of the 

potential TCRβ1 repertoire is actually expressed in adult zebrafish, a fraction significantly 

lower than the one estimated for the murine and human immune system.

Biased TCRβ1 repertoire in naïve zebrafish

The V(D)J recombination system generates a diverse TCRβ1 repertoire based on the 

stochastic use of V, D and J gene segments and the deletion and insertion of nucleotides 

(Davis and Bjorkman, 1988; Fujimoto and Yamagishi, 1987; Malissen et al., 1986; Okazaki 

et al., 1987; Tonegawa, 1983). Although each V, D, J segment has a theoretically equal 

chance of being incorporated into a mature TCR, the murine and human TCR repertoires are 

not evenly distributed and specific V,D,J genes are used more often (Argaet et al., 1994; 

Cibotti et al., 1994; Moss et al., 1991). Thus, we studied the TCRβ1 repertoire in 10 naïve 

zebrafish for V,D,J usage bias. We analyzed between 97,503 and 232,193 sequences per 

fish, a number significantly higher than the 35,000 sequences required to cover the whole 
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TCRβ1 repertoire. Each sequence was aligned with reference sequences (Howe et al., 2013; 

Kettleborough et al., 2013) to identify specific V, D and J genes, and then the frequency of 

each V,J combination, including or not the D segment, was estimated (Turner et al., 2006). 

We found that almost all possible V, J pairs were used in the zebrafish TCRβ1 repertoire 

when sequences containing the D segment were analyzed (Fig. 1E). However, only a subset 

of pairs was utilized when the D segment was not included, suggesting that only a limited 

set of available VJ combinations overcomes the limitations imposed by the 12/23 rule (Akira 

et al., 1987; Yancopoulos et al., 1986). These data suggest that biases in gene segment usage 

characterize the zebrafish TCRβ1 repertoire. In addition, the analysis of the total repertoire, 

that is the collection of TCRβ1 unique sequences adjusted for their frequency, revealed the 

over-representation of specific V, J pairs (Fig. 1E) suggesting that their expansion results 

from antigenic stimulation.

Convergent recombination drives the generation of zebrafish public TCR clones

Public T-cell clones express TCR sequence motifs shared by different individuals, and are 

often expanded by immunization, infection, or autoimmunity (McBerry et al., 2012; Venturi 

et al., 2008). To study the role of public repertoires in zebrafish, we defined a public 

sequence as one appearing in at least two different individuals, as previously defined in 

other studies (Li et al., 2012). We found that public clones represent 36% of the total TCRβ1 

CDR3 nucleotide sequences and 40% of the amino acid sequences (Fig. 2A). Conversely, 

our computational model predicted no sharing of TCR sequences between individual fish 

(p<10−9). Thus, the zebrafish TCRβ1 repertoire contains a relatively low number of unique 

sequences, many of which are shared between different individuals.

To study the genetic mechanisms involved in the generation of public T-cell clones we 

analyzed the frequency of recombination events in public and private TCRβ1 sequences. We 

found significantly fewer recombination events in public TCRβ1 sequences (Figs. 2B and 

C), in agreement with previous reports of public TCRs being closer to germline 

configurations (Ishizuka et al., 2008; Miles et al., 2010; Vermijlen et al., 2010). Of note, 

public and private clones do not differ in their CDR3 length (Fig. 2D), suggesting that the 

reduction in recombination events in public clones is not a byproduct of shorter CDR3 

sequences.

Convergent recombination, the process by which multiple recombination events produce the 

same nucleotide sequence and multiple nucleotide sequences encode the same amino-acid 

sequence, is considered an important driving force in the generation of public T-cell 

responses (Quigley et al., 2010; Venturi et al., 2006). To study the contribution of 

convergent recombination in zebrafish public T-cell responses we searched for identical 

TCRβ1 amino acid sequences originating from different nucleotide sequences in naïve 

zebrafish. We found a significant contribution of convergent recombination to the public 

TCR repertoire of naive fish. Four percent of the amino acid sequences in the unique TCRβ1 

repertoire are produced by convergent recombination (Fig. 2E, left panel). Strikingly, 65% 

of TCRβ1 sequences generated by convergent recombination are public (Fig. 2E, left panel), 

suggesting that convergent recombination plays a significant role during the generation of 

public TCRβ1 sequences. Indeed, 17% of the public TCRβ1 sequences in the unique 
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repertoire were generated by convergent recombination, as opposed to 2% in private 

sequences (Fig. 2E right panel). Taken together, these data show that convergent 

recombination drives the generation of the public repertoire in naïve zebrafish.

Antigenic stimulation expands public TCRβ1 clones

The frequency of a specific TCR in the total repertoire reflects the number of T cells bearing 

that specific TCR and the amount of mRNA produced by each T cell, both of which are 

controlled by the stimulation of T cells by their cognate antigen. The size of public clones in 

the naïve total TCRβ1 repertoire was directly correlated with their usage by different 

individuals (Fig. 3A), suggesting that the same clones are expanded in different individuals 

in response to antigenic stimulation. Thus, to study the effect of antigenic stimulation on 

private and public T-cell responses we analyzed the TCRβ1 repertoire 21 days after 

immunization of naïve zebrafish with the self-antigen calmodulin (CALM, Fig. S2A), the 

non-self antigen keyhole limpet hemocyanin (KLH) or administration of the common 

polyclonal stimulus lectin from Phaseolus vulgaris (PHA). Only 16% of the TCRβ1 clones 

expanded by PHA administration were expanded by immunization with KLH or CALM, 

suggesting that PHA activates a larger number of TCRβ1 bearing T cells than protein 

antigens (not shown).

We then investigated the effect of immunization on the public TCRβ1 repertoire. 

Immunization with KLH or CALM, or polyclonal activation with PHA expanded public 

clones in the unique and the total TCRβ1 repertoire (Figs. 3B and C). Indeed, our analyses 

identified two groups within the public clones: general public clones, consisting of TCRβ1 

sequences shared by all immunization groups, and special public clones, consisting of 

TCRβ1 sequences shared only by fish that received the same antigenic stimulation. Special 

public clones were detected in the unique and total TCRβ1 repertoire following KLH and 

CALM immunization and also PHA treatment (Figs. 3B and C). However, immunization 

with the self-antigen CALM resulted in higher special public responses, suggesting that 

public TCRβ1 clones are enriched for self reactive elements. Immunization did not affect 

TCR diversity as indicated by the analysis of the Gini coefficient (Fig. S3A). Thus, 

immunization with self and non-self antigens stimulates public T-cell responses, which are 

partially cross-reactive because 41% of the public TCRβ1 expanded by CALM were also 

expanded by KLH immunization.

The expansion of the public repertoire in response to immunization resulted in part from the 

expansion of TCRβ1 T-cell clones identified as public in naïve zebrafish, and also from the 

sharing of TCRβ1 sequences previously identified as private in naïve zebrafish (Figs. 3D 

and E). Interestingly, most of the public T-cell clones in the unique and the total TCRβ1 

repertoire, both general and specific, were generated by convergent recombination (Figs. 3F, 

G and S3B). Taken together these data identify convergent recombination as an important 

mechanism for the generation of public clones responsive to self and foreign antigens.

We then investigated the origin of public clones. We found that public clones in 

KLHimmunized fish or those treated with PHA originated mostly from low frequency 

clones in naïve zebrafish (Figs. 4A and B). However, public clones in CALM-immunized 

fish originated from both high and low frequency clones in naïve zebrafish, suggesting that 
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self-reactive public T clones are major components of the adult T-cell repertoire in naïve 

fish.

Time course analysis of the TCRβ1 repertoire in response to immunization

To further elucidate the effect of antigenic stimulation on the T-cell response, we analyzed 

the TCRβ1 repertoire 14, 21 and 28 days after immunization of naïve zebrafish with PHA, 

KLH and CALM. In these experiments the zebrafish were boosted by immunization at day 

14. Special public TCRβ1 clones were identified at all time points after immunization or 

PHA administration (Fig. 5). In agreement with our previous findings, the T-cell response to 

PHA stimulation or immunization with KLH or CALM was dominated by public TCRβ1 

clones generated by convergent recombination (Figs. S3C-F). However, the clonal responses 

induced by the different stimuli showed differences in their kinetics. In KLH-immunized 

and PHA-treated fish, the frequency of special public TCRβ1 clones peaked 14 days after 

treatment. Immunization with CALM resulted in higher frequencies of both general and 

special public clones (Fig. 5). However, the peak in the number of special public clones 

expanded by CALM immunization was delayed and was only observed 1 week after 

boosting probably reflecting the need for additional antigenic stimulation needed to break 

self-tolerance (Fig. 5). Of note, immunizations over time had no effect on TCRβ1 diversity, 

as measured by the Gini coefficient (Fig. S3G).

Antigen stimulation expands public clones in the TCRα repertoire

A diverse repertoire has also been described for the zebrafish TCRα (Haire et al., 2000). 

Thus, we analyzed the TCRα repertoire using a primer specific for the C-region of the 

TCRα-chain as described in Fig. 1A. This method was specific because 100% of the 

amplification products corresponded to TCRα sequences (Fig. 6A). Similarly to our 

observations on the TCRβ1 repertoire, we found that the size of public clones in the naïve 

total TCRα repertoire was directly correlated with their usage by different individuals (Fig. 

6B).

We then investigated the response of the TCRα repertoire to immunization with KLH or 

CALM, or to PHA administration. Immunization with CALM or KLH or PHA 

administration did not affect the number of TCRα unique sequences (Fig. S4). Sequence 

sharing in the TCRα repertoire, however, is at least as strong as that detected in TCRβ1 

repertoire, with most TCRα clones being general public sequences (Figs. 6C and D). We 

also identified special public TCRα clones following immunization, which were more 

prevalent in the KLH-immunized fish (Fig. 6D). Taken together, these observations suggest 

that public TCRα sequences in the naive repertoire are expanded in response to antigenic 

stimulation.

We detected a large percentage of clones generated by convergent recombination in the 

unique TCRα repertoire across all the immunization and treatment groups (Fig. 6E), while 

in the total repertoire the percentages were even higher, suggesting that T-cell clones 

bearing TCRα public sequences are larger (Fig. 6F). Similar to our previous observations 

with TCRβ public clones, TCRα public clones were mostly generated by CR (Figs. 6G-J). 

Collectively, these observations suggest that the TCRα repertoire follows the same rules that 
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we described for the TCRβ, being dominated by public clones some of which are expanded 

by antigenic stimulation.

Finally, based on the frequency of each TCRα and TCRβ zebrafish clone detected in our 

sequencing efforts we constructed a probabilistic model of all potential TCRαβ 

combinations (Fig. 7); a list of the most frequent TCRα and TCRβ sequences used in the 

construction of the model is provided in Table S2. Based on this model, we estimate that the 

2×10 5 T cells present in an adult zebrafish contain at least unique 1.5×10 4 TCRαβ pairs, 

present in low frequency in the zebrafish TCRαβ repertoire. It should be noted that this is a 

lower estimate and TCRαβ diversity may be higher, for example as a result of the expression 

of more than one a chain by T cells described in humans and other vertebrates (Padovan et 

al., 1993).

Discussion

In this work we analyzed the zebrafish TCRβ1 and TCRα repertoire and its response to 

immunization with self and non-self antigens. We found that the zebrafish TCR repertoire is 

small and biased towards the use of certain V-J combinations, in a similar manner to what is 

known from partial repertoire analyses in other vertebrates (Miles et al., 2011). Moreover, 

the analysis of the TCR repertoire revealed the over-representation of specific V-J pairs, 

suggestive of clonal expansion in response to antigenic stimulation. These observations 

suggest that the zebrafish TCR repertoire is shaped by the balance between T-cell expansion 

in response to self and non-self antigens and T-cell competition for limited growth and 

survival factors. In addition, since decreased repertoire diversity is linked to impaired T-cell 

immunity (Yager et al., 2008), these data suggest that compensatory mechanisms operate in 

zebrafish to provide protective immunity against pathogens.

Public T-cell clones encoded with minimal alteration to germline gene sequences 

characterize the TCR repertoire of vertebrates (McBerry et al., 2012; Venturi et al., 2008). 

We detected high frequencies of public TCRαβ sequences in the zebrafish. High frequency 

sharing of antibody sequences has also been reported in the zebrafish antibody repertoire, 

which is also characterized by its small size in agreement with our observations on the 

TCRαβ repertoire (Jiang et al., 2011; Weinstein et al., 2009). Public T-cell clones have been 

shown to contribute to anti-viral immune responses (Miles et al., 2011). We identified public 

T-cell clones as major components of the zebrafish response to immunization. Moreover, we 

detected a significant overlap in the public TCRαβ sequences expanded in response to self 

and foreign antigens that share no sequence homology, suggesting that public T-cell clones 

are highly cross-reactive. Cross-reactivity with self antigens plays an important role in the 

development of the TCR repertoire and T-cell responses to foreign antigens (Birnbaum et 

al., 2014; Fulton et al., 2015; Krogsgaard et al., 2005; Mandl et al., 2013; Stefanova et al., 

2002). Collectively, these observations suggest that public T-cell responses allow a 

relatively small TCR repertoire to cope with the diverse range of antigens presented by 

pathogens.

The dominant role of public T-cell responses in zebrafish might represent an early step 

during the evolution of adaptive immunity (Boehm et al., 2012; Cooper and Herrin, 2010; 
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Flajnik and Kasahara, 2010; Guo et al., 2009). However, while the cross-reactivity of public 

T-cell clones could potentially compensate for the small size of the TCR repertoire, it might 

also increase the risk for the development of pathogenic autoimmunity. Interestingly, a 

FoxP3 homologue is detectable in zebrafish (Quintana et al., 2010), suggesting that the 

potential for the development of autoimmunity was co-selected with mechanisms of immune 

regulation.

Public T-cell clones do not constitute a dominant fraction of the TCR repertoire of mice, 

humans and other mammals (Miles et al., 2011). However, polyfunctional and cross-reactive 

public T-cell clones are detected in HIV-1 controllers (Chen et al., 2012; Kosmrlj et al., 

2010), and similar observations have been made in the context of infection with herpes virus 

(Zhu et al., 2013), as well as shared self-peptide MHC-specific clones in healthy individuals 

(Yu et al., 2015). Although it is still unknown whether public TCRs directly control the 

polyfunctionality and polyreactivity of public T cells (Tubo et al., 2013), these observations 

suggest that cross-reactive public T-cell clones contribute to pathogen control in organisms 

with larger TCR repertoires. Their restricted diversity and sharing by different individuals, 

together with their ability to respond to diverse self and non-self molecules, are features of 

vertebrate public TCRs that might provide a mechanism for the rapid generation of 

protective T-cell immunity allowing a short temporal window for the development of more 

specific private T-cell responses.

Experimental Procedures

Fish maintenance

1 year old male zebrafish (AB strain) were maintained in a 28-30°C system with a 14/10 hrs 

light/dark cycle in accordance with guidelines by the Institutional Animal Care and Use 

Committee of Harvard Medical School.

Immunization

Fish were anaesthetized using 0.02% Tricaine methanesulfonate (Sigma-Aldrich) and 

immunized intra-peritoneally (i.p.) with a 10μl emulsion containing 1:1 Incomplete Freund's 

Adjuvant (IFA, Difco Laboratories) and 90% PBS (Invitrogen), 0.25μg lipopolysaccharide 

(ultrapure LPS, Invivogen), 0.7μg CpG Oligonucleotide ODN 1826 (Invivogen) and 2 μg of 

either PHA (Sigma-Aldrich), KLH (Sigma-Aldrich) or CALM (Creative BioMart, NY, 

USA). Two weeks later the fish were boosted with PHA, KLH or CALM in 1:1 IFA: 90% 

PBS.

TCRαβ sequencing and annotation

Total RNA was extracted from whole fish homogenate and cDNA was generated. cDNA 

from each of fish was used for TCRβ/α chain library amplification using the 5′PCR primer 

IIA from the SMARTer™ Pico PCR cDNA Synthesis kit (Clontech) and the constant region 

primer (Table S1). The library was gel-purified and barcodes were added using the same 

reaction as for the library amplification and the primers listed in Table S1.
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TCRβ and TCRα annotation was performed by using NCBI BLAST+ to identify the V and J 

germline genes of a TCR read, and then the CDR3 was determined by finding the conserved 

cysteine at the 5′ end of the CDR3 and the conserved Phenylalanine at the 3′ end of the 

CDR3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We studied the response of the zebrafish TCRαβ repertoire to antigenic 

stimulation.

• The zebrafish TCRαβ repertoire is dominated by cross-reactive public clones.

• Public T-cells facilitate the rapid generation of protective T-cell immunity.

• The zebrafish provides a model to study the T cell response at a systems levels.
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Figure 1. Sequencing of the zebrafish TCR repertoire
(A) Flow diagram of the experimental protocols used to sequence the zebrafish TCRβ1 (and 

TCRα) repertoire. mRNA was purified from whole zebrafish, each fish separately. Reverse 

transcription was performed using an oligo dT primer and 5′RACE was obtained using 

oligonucleotide IIA (IIA Oligo). Library amplification was done using a primer specific for 

the Cβ1 or Cα region (Cβ1/α region primer) and a primer complementary to IIA Oligo (5′ 

PCR primer IIA). The library was gel purified and bar codes were added. The library was 

quantified and sequenced. (B) Verification of TCRβ1 sequences obtained after the library 

amplification step. Five clones were sequenced and the top hits of the blasted sequences are 

presented. (C) Rarefaction analysis of TCRβ1 diversity. Each curve gives the fraction of the 

observed repertoire as a function of the number of obtained sequences in each of 10 naïve 

(non-immunized) fish. The dotted line indicates the point at which all fish reach 99% 

coverage of the total unique sequences, corresponding to 35,000 sequences. (D) Number of 
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unique clones in 10 naïve fish and 10 simulated repertoires. The circle indicates the median. 

The small number of sequences in the simulated repertoire results form adherence to the 

distribution of clones within each fish. The abundance of specific clones (learned from the 

natural occurring repertoire in the naïve fish) dictates a distribution with a few highly 

represented clones. (E) Heat maps of V,J combination abundance in the total and the unique 

repertoire of naïve zebrafish. The data are segregated based on the usage of the D segment.
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Figure 2. Convergent recombination characterizes public TCR clones that dominate the 
zebrafish TCRβ1 repertoire
(A) Observed and predicted public and private TCRβ1 sequences in naïve fish. (B) 
Recombination events in the private and in the public TCRβ1 repertoires, and their 

association with their sharing. The height of the histogram bars represents the frequency of 

the clone in the pooled repertoire. Red, public; blue, private. (C) Statistical analysis of 

recombination events in public and private TCRβ1 clones. **** p<1E-12. (D) Distribution 

of CDR3 lengths in the private and public TCRβ1 clones. (E) Fraction of public and private 

TCRβ1 clones within the Unique TCRβ1 repertoire. The fraction of sequences generated by 

convergent recombination is shown. ** p<0.01.
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Figure 3. Public clones dominate the TCRβ1 repertoire
(A) Relationship between sequence sharing between different individuals and the number of 

copies of each TCRβ1 clone. (B, C) Contribution of private, general public and special 

public sequences to the unique (B) and total (C) TCRβ1 repertoire following immunization 

with KLH, CALM or polyclonal stimulation with PHA. (D, E) Sharing of TCRβ1 sequences 

between the different groups. In panel (D) each group occupies the same fraction of the 

circle, regardless of repertoire size, while in panel (E) each sequence occupies the same 

portion of the circle. The circle is colored based on whether the TCRβ1 clone is private 

(blue), special public (red) or general public (green). Edges represent sequences shared 

between each 2 groups. (F, G) Fraction of TCRβ1 clones generated by convergent 

recombination in the unique repertoire (F) and the total (G) TCRβ1 public repertoire.
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Figure 4. Origin of general public TCRβ1 clones
(A) TCRβ1 general public sequences in the naïve repertoire, ranked according to their 

frequency. The lower panels show general public sequences in the TCRβ1 repertoire of fish 

in the PHA, KLH and CALM groups. (B) To analyze the origin of general public sequences 

detected in the immunized repertoire, sequences were classified in the naïve TCRβ1 

repertoire into low-, mid- and high-abundant clones and then quantified for the fraction of 

these groups in the immunized repertoire.
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Figure 5. Time course analysis of the TCRβ1 repertoire
Changes in the private, general public and special public fractions of the TCRβ1 repertoire 

following treatment with PHA or immunization with KLH or CALM.
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Figure 6. The zebrafish TCRα repertoire
(A) Verificaton of TCRα sequences obtained after library amplification, five clones were 

sequenced and the top hits of the blasted sequences are presented in the table. (B) 
Relationship between sequence sharing and the number of copies of each TCRα clone. The 

orange dot for each sharing level gives the average frequency of clones at that specific 

sharing level. (C, D) Effect of PHA administration or immunization with KLH or CALM in 

the private, general public and special public fractions of the unique (C) and total (D) TCRα 

repertoire. (E, F) Frequency of clones generated by CR in the unique (E) and total (F) 
TCRα repertoire following PHA administration or immunization with KLH or CALM. (G, 
H) Fraction of CR and non-CR clones in the general public and special public unique(G) 
and total TCRα repertoire (H). (I, J) Fractions of private, general public and special public 

clones within CR and non-CR clones in the unique (I) and total (J) TCRα repertoire.
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Figure 7. A computational model of the TCRαβ repertoire
The horizontal axis represents TCRβ1 chains while the vertical axis represents TCRα chains. 

Each blue square in the figure represents a potential TCRαβ pair.
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