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Abstract

Individual biomarkers of renal injury are only modestly predictive of acute kidney injury (AKI).
Using multiple biomarkers has the potential to improve predictive capacity. In this systematic
review, statistical methods of articles developing biomarker combinations to predict acute kidney
injury were assessed. We identified and described three potential sources of bias (resubstitution
bias, model selection bias and bias due to center differences) that may compromise the
development of biomarker combinations. Fifteen studies reported developing kidney injury
biomarker combinations for the prediction of AKI after cardiac surgery (8 articles), in the
intensive care unit (4 articles) or other settings (3 articles). All studies were susceptible to at least
one source of bias and did not account for or acknowledge the bias. Inadequate reporting often
hindered our assessment of the articles. We then evaluated, when possible (7 articles), the
performance of published biomarker combinations in the TRIBE-AKI cardiac surgery cohort.
Predictive performance was markedly attenuated in six out of seven cases. Thus, deficiencies in
analysis and reporting are avoidable and care should be taken to provide accurate estimates of risk
prediction model performance. Hence, rigorous design, analysis and reporting of biomarker
combination studies are essential to realizing the promise of biomarkers in clinical practice.
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Introduction

Acute kidney injury (AKI) is a frequent complication of hospitalized patients, particularly
following cardiac surgery and critical illness (1). AKI is associated with increased morbidity
and mortality (2, 3). There is great interest in using biomarkers to predict risk of AKI, for
several reasons. AKI is typically diagnosed based on changes in serum creatinine, a marker
of renal function rather than injury (4, 5), which contributes to frequent delayed diagnosis or
misdiagnosis (5). It may be possible to use biomarkers to diagnose AKI earlier and/or more
accurately than is possible with serum creatinine (6). Biomarkers may also play an important
role within the context of creatinine-defined AKI. When serum creatinine is used to
diagnose AKI, the diagnosis is generally not made until several days after the injury,
potentially too late to intervene (7). It may be possible to use biomarkers to predict AKI
prior to changes in serum creatinine, opening a therapeutic window. If biomarkers can be
shown to accurately predict AKI, they could be used as inclusion criteria to enrich clinical
trials or serve as intermediate outcomes (7, 8). Biomarkers that can accurately predict AKI
and related complications could also potentially advance clinical care (8, 9).

Much work has been done to study associations between individual biomarkers and AKI (8,
10, 11). Although many associations are strong and well-established, the predictive
performance of these markers has been modest. AKI is a complex disease, and many
possible modes of injury exist even in the relatively homogeneous setting of cardiac surgery
(1). Consequently, interest now centers on identifying combinations of injury markers that
can predict AKI; such a strategy has been recommended in several reviews (9, 12—15).

The goals of this article are to provide an overview of current statistical practice in
developing biomarker combinations for AKI and to discuss common issues surrounding the
conduct of these analyses. In particular, we will consider the role of three potential sources
of bias frequently encountered in the statistical evaluation of biomarker combinations:
resubstitution bias, model selection bias and bias due to center differences.

Resubstitution bias and model selection bias have previously been discussed at length (16,
17). Briefly, resubstitution bias arises when a dataset is used to fit a predictive model, and
then the model’s performance is assessed by its apparent performance on the same dataset;
that is, the data are “resubstituted” into the model. Model selection bias results when several
models are evaluated and the model with the best performance is chosen. Both resubstitution
and model selection optimistically bias estimates of model performance unless methods are
used to account for them. Note that resubstitution bias and model selection bias are widely
known (18, 19) but without standard terminology. These biases are commonly referred to
jointly as “optimistic bias,” but it is useful to distinguish the two sources of bias with
separate labels (17). Bias due to center differences can arise in studies involving multiple
centers. In particular, differences by center can confound the estimate of model performance,
biasing the results in either direction (20). A challenge here is that not all differences among
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centers represent bias. For example, if one center tends to get sicker patients, and those
patients tend to have both worse outcomes and correspondingly higher levels of an injury
marker, this in itself does not present bias. However, suppose the center that tends to get
sicker patients also uses different protocols for fluid administration that tends to either
increase or decrease the measurement of a biomarker. Then the association of the biomarker
with the outcome will either be over- or under-estimated if data are simply pooled across
centers.

Model selection bias and resubstitution bias are of particular concern in the development of
biomarker combinations: when many marker measurements are available, both the size of
the combination (number of marker measurements included in the combination) and the
number of combinations considered may be quite large. Resubstitution bias is generally
larger when the number of predictors in the model is large relative to the amount of data.
Model selection bias is most worrisome when many models are considered.

The prevalence of these biases will be assessed through a literature review, and their
potential impact will be explored by assessing the performance of published combinations in
a large, independent study of AKI in cardiac surgery patients.

Literature Search and Study Selection

Figure 1 summarizes our literature search. Briefly, 428 articles were screened, yielding 15
articles (10, 21—34) after the exclusion criteria were applied.

Data Extraction

Table 1 summarizes the 15 selected articles, with additional details provided in
Supplementary Table 1. Eight of 15 articles (53.3%) were in the setting of cardiac surgery.
All 15 articles relied on serum creatinine to define AKI. Table 2 presents the data related to
potential sources of bias. None of the 15 papers explicitly stated the number of models
considered; the numbers in Table 2 are likely to be a lower bound. It was often challenging
to determine how the combination(s) presented was chosen and/or how the combination(s)
was estimated.

Evaluation of Biases

As indicated in Table 2, all papers were likely affected by at least one source of bias.
Importantly, the reported performance of the combinations was generally good: in most
cases the area under the receiver operating characteristic (ROC) curve (AUC) was above 0.8,
and in a third of papers it exceeded 0.9.

In nearly all articles, the same data were used to fit and evaluate the models. In other words,
most articles did not account for resubstitution bias. Furthermore, four papers had fewer than
10 events per marker in the final combination; in three papers, there were fewer than 15
events in total. In Parikh et al. (10) and Parikh et al. (32), three-fold cross-validation was
used to address resubstitution bias. Cross-validation is a reasonable approach, although
variants other than 3-fold cross-validation have been shown to perform better (35). However,
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the purpose of this article is not to critique every methodological choice of authors, but
rather to examine whether “big picture” issues and common sources of biases were
addressed.

A third of papers considered 10 models or more to arrive at the final combination(s),
increasing the likelihood of model selection bias in the estimate of the performance of that
combination. As noted above, the number of models reported in Table 2 is likely to be a
conservative estimate. Thus, the performance results provided by some of the other papers
may also be affected by model selection bias.

Three articles involved multi-center cohorts; none addressed the possibility of bias due to
center differences, either in the analysis or in the discussion of limitations. Certainly, if
center differences do not exist (perhaps due to careful design and/or conduct of the study)
then there will be no bias; however, it is important in a multi-center study to consider
whether results might be affected by center differences.

Importantly, while most articles acknowledged that the reported study had low power/sample
size, no study explicitly acknowledged resubstitution bias or model selection bias as a
possible limitation.

Replication in TRIBE-AKI Data

We were able to assess the performance of biomarker combinations from seven papers (25,
27 28 30 31 33 34) in the Translational Research Investigating Biomarker Endpoints in
AKI (TRIBE-AKI) study data (10). TRIBE-AKI involves 1219 adults undergoing cardiac
surgery at six centers. Table 3 gives the seven articles and the performances of the published
marker combinations when applied to TRIBE-AKI. The performance in TRIBE-AKI was
typically more modest than the published estimate of performance. This difference was not
due to a low number of events in TRIBE-AKI: for each article’s definition of AKI, there
were at least 56 “AKI cases” in TRIBE-AKI (Supplementary Table 1). We note the
important limitation that for 4 of these 7 articles, the study included general intensive care
unit (ICU) patients, which represent a more heterogeneous population than the population of
patients undergoing cardiac surgery who comprise the TRIBE-AKI study (25, 27 28 33).
We report the assays used to measure the biomarkers in TRIBE-AKI and in each study in
Supplementary Table 2.

We present details on the designs of the included studies, and the extent of replication in
TRIBE-AKI, in Supplementary Table 1. Our goal was to match the exclusion criteria in each
study when applying published marker combinations to the TRIBE-AKI data. However we
were sometimes limited by a lack of detail regarding the exclusion criteria in the published
articles. Furthermore, some exclusion criteria were built into the study design of TRIBE-
AKI, precluding a perfect match. In some cases, we were further limited by the data
collected by TRIBE-AKI. We note also that incomplete reporting often made it difficult to
determine whether urine markers had been normalized to urine creatinine or whether
markers were transformed. Three articles reported the estimated combination (27, 30, 34),
while we had to re-estimate the combination in the remaining four articles.
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We note that in Luo et al. (31), cases were matched on age, sex, and admission time.
Furthermore, in Siew et al. (33), cases and controls were frequency-matched on categories of
eGFR. Such restricted sampling may have played a role in the difference between the
reported AUC and the AUC in TRIBE-AKI for these papers. Neither paper addressed this
aspect of study design in evaluating the performance of the combination(s), despite the
complications that matching introduces when the goal is prediction (20, 36).

Discussion

We have provided an overview of the current state of biomarker combinations research in the
setting of AKI risk prediction, highlighting the potential role of three common sources of
bias in 15 published studies. Each of the 15 papers was susceptible to at least one source of
bias, and 8 were potentially affected by two sources of bias. Three of the 15 articles involved
a multi-center study, and none of these three discussed the possibility of bias due to center
differences. In several cases, inadequate reporting made assessment of the articles
challenging and could be remedied by following recently proposed guidelines (Reporting
Guidelines for Risk Models, RiGoR (17) and Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis, TRIPOD (37)).

In two-thirds of papers, the reported AUC was quite good (above 0.8). When possible, we
applied published models to TRIBE-AKI data, yielding an estimate of model performance
which we could compare to the published model performance. The performance in TRIBE-
AKI was more modest than the published results in 6 out of 7 cases. This in itself is not
evidence of bias; differences between the TRIBE-AKI study and the published study could
also explain some differences. Publication bias (38), a concept related to model selection
bias, may also play a role. However, most studies did not account for resubstitution bias, and
studies that considered many candidate models did not report addressing model selection
bias. Therefore, we posit that these biases likely explain at least part of the reported
estimates of good model performances. In addition, bias due to center differences may have
affected the published estimates for the three studies involving multiple centers. Notably, the
single study in which model performance was higher in TRIBE-AKI was the study with the
lowest reported AUC by a wide margin.

We chose to focus on biases commonly encountered in the evaluation of combinations of
biomarkers for risk prediction. However, we provide more extensive guidance on the design
and analysis of biomarker combination studies in Table 4 (16, 17 37 39—68) and an

expanded discussion of sources of bias that can affect these studies in Supplementary Table
3 (16’ 17 37 3950 52 54_58 60 61 63 66).

We have not addressed issues with commonly used definitions in AKI, including the use of
creatinine-defined AKI and the dichotomization of continuous changes in creatinine.
Important work on these topics has been done (69—71) and future research should focus on
clinically meaningful outcomes that utilize all available information. However, since the
most widely-used definitions of AKI are based on dichotomizations of changes in creatining,
our survey of current practice does not address these issues.
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The Food and Drug Administration (FDA) has recently approved the use of urine [tissue
inhibitor of metalloproteinases-2 (TIMP-2)]*[insulin-like growth factor-binding protein 7
(IGFBP7)] to estimate risk of developing AKI (72). This biomarker panel was developed in
stages (73). In the first stage, investigators screened 340 individual biomarkers and
biomarker combinations formed by multiplying concentrations of 2, 3, or 4 markers. By pre-
specifying how biomarkers were to be combined, this approach had the advantage of
avoiding resubstitution bias, with the possible disadvantage of a potentially large loss in
predictive capacity by not allowing the data to inform the combination. In the second stage,
the selected biomarker panel was evaluated in independent data, providing an estimate of
model performance unaffected by model selection bias. Both the development and validation
studies involved multiple centers, so the potential for bias due to center differences remains.
The panel, urine [TIMP-2]*[IGFBP7], has been subsequently evaluated in cardiac surgery
patients (74), and future investigations may further expand its application. The papers
reporting the development and evaluation of this panel were excluded from the present
review because the approach of selecting biomarkers and creating “supermarkers” by
multiplying biomarker values is distinct from the methods typically used to develop
biomarker combinations.

It is essential to thoroughly evaluate a risk model prior to adoption in clinical practice, and
an important component of model evaluation is an accurate estimate of model performance.
External validation — using independent data to assess model performance — is desirable but
often not feasible in early stages of model development. Internal validation, i.e. using the
data at hand to assess the performance of a model, is a more practical alternative. In
particular, internal validation can be used to avoid or correct for resubstitution bias (60).
Model selection bias can be more challenging to account for, although some methodology
has been developed (75—79). Both sources of bias are potentially large and, at the very least,
should be acknowledged. Finally, in the case of multicenter studies, it is possible to account
for differences by center and obtain an unbiased estimate of model performance (80).

External validation results are frequently disappointing (81); the gap between apparent and
externally validated performance may be due in part to optimistic bias resulting from
resubstitution or model selection. Without careful design and rigorous statistical analysis,
studies of biomarker combinations will continue to be published with (often optimistically)
biased estimates of model performance, leading to disappointment after considerable time
and resources have been invested in external validation.

Literature Search and Study Selection

We searched PubMed for all articles published before June 19, 2014 with both “AKI” and
“biomarkers” in the title or abstract. Abstracts were reviewed, followed by consideration of
the full text of potentially relevant articles. Articles were excluded if they satisfied any of the
following conditions: (1) study of animals or children only; (2) review paper, commentary or
conference statement; (3) outcome of interest was not AKI; (4) abstracts only reported
results related to association, not prediction; (5) description of a future study; (6) ‘omics

Kidney Int. Author manuscript; available in PMC 2016 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Meisner et al.

Page 7

study; (7) only one injury marker measured a single time; (8) not published in English; (9)
did not consider combinations of injury markers for prediction of AKI.

Because the focus of this review is combinations of biomarkers, we considered only studies
with at least two injury biomarker measurements. Murray et al. discussed AKI biomarkers at
length, including distinguishing between functional markers and known injury markers (7).
We used the list of injury markers provided in Murray et al. as the basis for exercising
condition [7] above.

Data Extraction

For each of the articles satisfying the inclusion criteria, we collected the following
information: markers studied, method used to combine biomarkers, setting giving rise to
AKI cases, definition of AKI used, number of models fit, number of AKI cases, number of
markers/measurements considered in each combination (“size of the combination”), whether
the study included multiple centers, whether resubstitution bias was addressed, reported
model performance, and estimated biomarker combination score(s) (if reported). We allowed
for combinations that included functional markers in addition to injury markers. We define
“many models” as 10 or more, and “few events” as less than 10 events per biomarker in the
combination. These thresholds are somewhat arbitrary, so we report the actual numbers to
aid interpretation. When more than one combination and/or outcome was reported, we
considered the “primary” combination and/or outcome based on the presentation of the
results in the abstract, if such a determination was possible.

In the context of predictive models, discrimination refers to the ability of a model to
distinguish individuals with and without the outcome of interest. The most common measure
of discrimination is the area under the receiver operating characteristic (ROC) curve, also
known as AUC. In particular, AUC was reported in all the articles in our review. We
therefore focus on AUC as the primary measure of model performance, while also

acknowledging that there are important aspects of model performance not captured by AUC
(46).

Evaluation of Biases

For each article in our review, we evaluated the evidence of whether the report was likely to
be affected by the three types of bias discussed: resubstitution bias, model selection bias, and
bias due to confounding by center. Our evaluation was based on the number of models fit,
number of AKI cases, size of the combination(s), whether the study included multiple
centers, and whether resubstitution bias was considered. The number of models fit gives an
indication of whether model selection bias is likely to be present, while a small number of
cases and/or large combinations can exacerbate resubstitution bias. Bias due to center
differences is only a concern when multiple centers are involved.

Replication in TRIBE-AKI Data

When possible, we applied the published models to data from the Translational Research
Investigating Biomarker Endpoints in AKI (TRIBE-AKI) study (10). Briefly, TRIBE-AKI
involves adults undergoing cardiac surgery at six academic medical centers. Urine and
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plasma were collected preoperatively and daily for up to six post-operative days. On the first
post-operative day, urine was collected every six hours. Patients with evidence of AKI prior
to surgery, pre-operative serum creatinine above 4.5 mg/dL or end-stage renal disease
(ESRD) were excluded, leaving 1219 subjects. Biomarkers measured in TRIBE-AKI include
serum neutrophil gelatinase-associated lipocalin (pNGAL), urine interleukin 18 (ulL18),
urine neutrophil gelatinase-associated lipocalin (UNGAL), urine albumin, urine kidney
injury molecule-1 (UKIM1), urine liver-type fatty acid binding protein (ULFABP), urine
cystatin C and urine creatinine. Participants at each TRIBE-AKI study site provided
informed consent and the protocols were approved by the respective institutional review
boards.

Applying published models to the TRIBE-AKI cohort provides an unbiased assessment of
model performance that can be compared to the published performance. We could only
apply published models to TRIBE-AKI if the markers in the model were measured in
TRIBE-AKI at similar time point(s) relative to the episode of AKI. When it was not possible
to precisely match the timing of urine collection, we chose the next closest option(s). If the
estimated combination was provided in the article, we applied that combination to the
TRIBE-AKI data; if this was not given, we re-estimated the combination in our data based
on how it was estimated in the original article. If the article did not specify how the
combination was estimated, we used logistic regression. We replicated the exclusion criteria,
outcome definition, timing of biomarker measurement, and form of the biomarkers (i.e.,
transformation or normalization for urine creatinine) as much as possible. For papers
providing the estimated combination, we calculated the apparent and center-adjusted AUCs
(80) of the combination in TRIBE-AKI data. When the combination had to be re-estimated
in TRIBE-AKI, the AUC estimate was center-adjusted (80) and corrected for resubstitution
bias (“optimism-corrected”) using a bootstrapping procedure with 1000 replications (60).
We estimated 95% confidence intervals by bootstrapping.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 4

Recommendations Regarding the Design and Analysis of Biomarker Combination Studies.

Study Design

Sample size

For binary outcomes, the effective sample size is the minimum of the number of events and the number of

non-events (39—42 .
Consider events per variable (EPV), where the number of variables includes transformations and

interactions (42, 43).

Enroliment and follow-up

Data from a carefully designed and conducted study are preferable to convenience samples (37, 39 44

45).

Can recruit from multiple sites (17); special considerations may be needed (37).

Lr%clz;ion/exclusion criteria and referral pattern can affect generalizability and interpretation (37, 39 42,
47y,

Treatment may modify risk (37, 43) and/or predictive accuracy (37, 43 48) and should be addressed in

analysis/interpretation (42, 49).

Prospective cohort studies are preferable: full control over the sample and data collection (37, 43 50, 51).

Avoid loss to follow-up and follow for an adequate length of time (39, 41).

Can use case-cohort or nested case-control studies (37, 43 48). Specialized study designs exist (45, 52).

Case-control studies cannot be used to estimate risks (37, 43, 48) without external data.

Matched designs require additional analytic considerations (17, 52).

Measuring biomarkers

Clearly define (including blood/urine and methods of preservation/storage) and measure biomarkers in a
uniform, standardized way (16, 41, 48—50).

Use assays intended for general use (52) and beware of batch effects (17), and the effect of storage and
handling of specimens (53). Assays should be standardized, valid and reproducible (41, 48, 54).

Blind measurement of biomarkers to other variables (including the outcome) as appropriate (17, 37, 42,
43’ 45 50, 55)

Measuring outcomes

Outcome should be relevant to patients and decision-making (37, 43, 48).
Measure outcome blinded to other variables as appropriate (17, 37 43 48 55). Measure outcome

carefully (17, 39 41 56) and uniformly (43) using a well-established method for establishing presence or
absence (37,48, 50 52y

Timing of measurements

Timing must be carefully defined (17, 43, 47, 48) and relevant to patients and clinical decision-making
(37)'

Patients may receive treatment in the interval between measurement of biomarkers and outcome, which
may modify risk (37)

Other design issues

Determine minimally acceptable values of performance measures at the design stage (52).
Develop a rigorous study protocol with a sound analysis plan (43, 51, 57, 58),
Study objectives and research question should be clear (41, 42 50, 59)

Model Development

Choosing candidate biomarkers

A candidate biomarker is any biomarker associated with the outcome; the association need not be causal
(16Y 48).
The number of candidate biomarkers increases with transformations and interactions (16, 17, 60).

Use subject-matter knowledge to choose candidate biomarkers (40, 48, 56).
Interaction terms rarely add predictive ability; should restrict to a small number of interactions with prior

rationale (37, 60y,

Handling continuous predictors

Categorizing continuous biomarkers results in a loss of information (16, 42, 44, 46 48 49 51 60
Can model biomarkers linearly as a starting point, and consider systematically testing simple

transformations (40, 46, 48),

Missing data

Complete case analysis can lead to bias and increased variance (44, 48 60 61) depending upon the extent
and mechanism of missingness (17, 48, 60, 61).
Multiple imputation is recommended (41, 43, 46, 61)

Predictor selection

Smaller and simpler models may have practical advantages (16, 51, 56, 62).
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Study Design

Stepwise methods (16, 42, 43, 46, 60) and univariate screening can be problematic (37, 48).

Predictive role in isolation no guarantee of performance in combination (16, 48).
Use clinical knowledge, previous studies and practical considerations to reduce the number of candidate

biomarkers (37, 43, 46).
No consensus on model selection (48).

Methods for combination

Multiple methods can be used (17, 37, 50) though regression methods are common (37).
Logistic regression is common for binary outcomes with no loss to follow-up (37, 40, 43).
Usually use multivariable techniques (51, 63).

No method can be shown to perform best on every real dataset (50).

Consider model assumptions (51).

Evaluation

Performance metrics

Predictive accuracy, not measures of association or p-values, is what matters (42—44, 64). How a model
was derived is of little importance if it performs well (40, 51, 61) in terms of validity (accuracy of risk
estimates) (46, 65). Duration of follow-up is critical in interpreting performance (37).

Calibration (16, 37, 43, 48, 61) and discrimination (37, 43, 48, 61) are commonly assessed and presented
with bootstrap-based confidence intervals (17, 42, 66). Discrimination is particularly important for model

development; both are important for model validation (37).
Can evaluate discrimination by assessing AUC, mean risk difference, true/false positive rates, ROC curves

and histograms of predicted risks (16, 43 46). AUC is not affected by miscalibration (46). Multi-center
studies require specialized techniques (17).

Assess calibration graphically; can use Cox’s method to estimate the calibration intercept and slope (37,
43 46 61)

Internal validation

A necessary step in model development (37, 4 46, 51 64). Can help to avoid external validation failure
by uncovering problems that may make models misleading or invalid (€0).

The apparent performance of many prediction models tends to be optimistic (37) due to resubstitution bias
((é%pecially with low EPV) and model selection bias (37, 43), and must be interpreted with extreme caution
).

Bootstrapping is preferred as it uses all of the available data (43, 46, 48). If model-building can be fully
specified in advance, it can (and should) be incorporated into the bootstrap (37, 48 52, 65). If model

selection cannot be automated, test data are needed (60).
Bootstrapping gives an honest estimate of internal validity, penalized for optimism due to resubstitution

bias and model selection bias (43, 48, 60).

External validation

Strongly recommended (37, 41, 43, 51, 52, 55, 58, 60, 61, 64, 67, 68) for promising prediction tools (those
with a rigorous derivation process) (55). Internal validation is not a sufficient substitute (64), though it is
generally an advisable step (65).

Consider the prospective broad clinical application of the model (64, 67).

The completely specified model should be applied (64, 68) to assess the generalizability and applicability
of the model (47, 62,

May fail for many reasons: different measurement methods and/or definitions, selection bias, inclusion/
exclusion criteria, subject source, settings/location (may affect case mix), recruitment, and clinical and
demographic characteristics of the population (17, 37, 54, 61).

Performance is often worse in new samples (37, 44), though this does not necessarily imply a validation
failure: diminished accuracy is not the same as inaccuracy.

Existing models

Newly developed models should be quantitatively compared to existing models (37).

Developing a different prediction model per setting makes research localized (37); instead, if models
already exist in the same or a related setting, investigators should consider evaluating or comparing, and

perhaps updating or recalibrating, existing models (43, 44 51 61) as part of an ongoing validation process
(46)'

Recalibration can be used to improve calibration without needing more data (43, 60).

Discrimination cannot be improved in this way, and will not be affected by recalibration (60).

Reporting

Adhere to existing guidelines (17, 63).
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