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Default network connectivity decodes brain states with simulated
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Abstract With great progress of space navigation tech-

nology, it becomes possible to travel beyond Earth’s

gravity. So far, it remains unclear whether the human brain

can function normally within an environment of micro-

gravity and confinement. Particularly, it is a challenge to

figure out some neuroimaging-based markers for rapid

screening diagnosis of disrupted brain function in micro-

gravity environment. In this study, a 7-day -6� head down

tilt bed rest experiment was used to simulate the micro-

gravity, and twenty healthy male participants underwent

resting-state functional magnetic resonance imaging scans

at baseline and after the simulated microgravity experi-

ment. We used a multivariate pattern analysis approach to

distinguish the brain states with simulated microgravity

from normal gravity based on the functional connectivity

within the default network, resulting in an accuracy of no

less than 85 % via cross-validation. Moreover, most dis-

criminative functional connections were mainly located

between the limbic system and cortical areas and were

enhanced after simulated microgravity, implying a self-

adaption or compensatory enhancement to fulfill the need

of complex demand in spatial navigation and motor control

functions in microgravity environment. Overall, the find-

ings suggest that the brain states in microgravity are likely

different from those in normal gravity and that brain con-

nectome could act as a biomarker to indicate the brain state

in microgravity.

Keywords Microgravity � Functional magnetic resonance

imaging � Connectome � Multivariate pattern analysis �
Default network

Introduction

With great progress of space navigation technology, it

becomes possible to travel beyond Earth’s gravity. Main-

taining astronauts’ performance at a good level is a hot

topic among space medical and psychological researchers.

It is known that astronauts’ performance would be

impaired due to potential harmful factors in the outer space

such as radiation, noise, changed circadian rhythm,

weightlessness and so on (Eddy et al. 1998). Among these

factors, weightlessness exhibits the most significant dif-

ference between space environment and earth environment,

thus the astronauts’ performance degradation caused by

weightlessness has become a common focus.

A number of previous studies reported various perfor-

mance degradations happened to astronauts in weightless-

ness and attempted to seek the mechanism (Mallis and De

Roshia 2005; Manzey et al. 2000; Moore et al. 2010; Pavy-

Le Traon et al. 2007; Vaitl et al. 1996; Zhao et al. 2011).

Some researchers lay their sight on the common known

redistribution of body fluid effect induced by gravity

change (Grigoriev and Egorov 1992; Liao et al. 2012;
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Messerotti Benvenuti et al. 2011; Vaitl et al. 1996).

Especially, the cephalad fluid shift may alter the hemody-

namics of the brain, including increase in cerebral blood

flow (CBF), intracranial pressure, and oxygenated hemo-

globin (Kawai et al. 2003), all of which may influence the

function of the human brain. Liao et al. (2013) tentatively

used resting-state functional magnetic resonance imaging

(fMRI) to investigate brain activity change after 3-day head

down tilt (HDT) bed rest and observed decreased local

activity in thalamus and declined regional homogeneity in

left inferior parietal lobule which may attribute to reduced

motor control abilities and declined abilities of mental

transformation. Recently, Zhou et al. (2014) carried out a

groundbreaking research to discuss the effects of long-term

microgravity on the functional architecture of the brain. In

this 45-day HDT bed rest study, a functional network

anchored in the anterior insula and middle cingulate cortex

was found to be influenced by simulated microgravity. The

authors suggested that these functional anomalies may

reflect variation in cognitive function, autonomic neural

function and central neural activity (Zhou et al. 2014). In a

recent study, Liao et al. (2015) figured out the time trend of

brain activity change in a 7-day HDT period. These

imaging studies further our insight in performance decline

happened to astronauts under microgravity, describing the

cumulative effects of microgravity in different time span.

The aforementioned studies came out to a single truth that

the brain activity is changing with microgravity and could

be quantifiably measured by resting-state fMRI. Then a

new challenge is coming, could we figure out some suit-

able neuroimaging-based markers to effectively distinguish

the brain states in microgravity and normal gravity? This

may contribute to the rapid screening diagnosis of dis-

rupted brain function in microgravity environment.

The default network (DN) is demonstrated to support

autobiographical memory retrieval, prospection, monitor-

ing, and other internal mentation (Buckner et al. 2008). The

alterations associated with DN play promising biomarkers

in neuropsychiatric disorders (Garrity et al. 2007; Zeng

et al. 2012), so we speculate that the default connectivity

can be used as an indicator of brain states with simulated

microgravity. In the current study, twenty healthy male

subjects underwent a 7-day-6� HDT bed rest experiment,

which is generally accepted to simulate the microgravity

effect of body fluid redistribution toward the head (Baisch

et al. 1992). So we can study the effects of microgravity on

brain function on the Earth. The participants underwent

resting-state fMRI scanning at baseline and after 7-day

HDT simulated microgravity experiment. We tested whe-

ther the default functional connectivity could distinguish

brain states with simulated microgravity from baseline

(normal gravity).

Materials and methods

Participants

Twenty healthy male participants were recruited for the

present study. Their mean age was 24 years with a range

from 20 to 32 years and their mean weight was 62.5 kg

with a range from 51 to 82 kg. All participants were right-

handed Chinese speakers, as measured by the Handedness

Questionnaire (Annett 1970). The participants reported no

history of neurological injury, genetic mental disorders or

substance abuse. With a high-resolution T1- and T2-

weighted MRI examination, no participant was observed to

have significant pathological changes in their brains. The

study was approved by the Ethical Committee of the Fourth

Military Medical University and all participants provided

their written informed consent before the experiment.

Design

The whole experiment was divided into three periods: prior

bed rest period (HDT0, baseline), bed rest period (HDT1–

HDT7) and post bed rest period (7 days after bed rest,

HDT14). Resting-state fMRI scans were taken at 19:00

every experiment day, which means that every participant

received MRI scans for 9 times in total. During the HDT

bed rest, adequate water and food were supplied, but the

participants’ heads were prevented from moving from the

bed to keep the redistribution of the individual’s body fluid

toward the head. The experimental room was air-condi-

tioned, and the temperature was maintained around 22 �C.

All of the testers are well educated with medical knowl-

edge and skills, thus they could provide nursing care to the

participants. Additionally, the participants were pared and

they were allowed to communicate with each other or take

some recreational activities (such as reading, watching TV

or movies, surfing on the internet and so on) in their leisure

time. In this study, only the data of the HDT0 and HDT7

were used.

Image acquisition and preprocessing

All data were collected by an experienced radiologist on a

3.0-T Philips Achieva MRI scanner with an 8-channel

phased-array head coil in the Radiology Department of the

P.L.A. 303 Hospital. Images were acquired using a gradient-

echo echo-planar pulse sequence sensitive to blood oxy-

genation level-dependent (BOLD) contrast [repetition time

(TR)/echo time (TE) = 2000/35 ms, flip angle (FA) = 90�,
matrix = 96 9 93, field of view (FOV) = 230, thick-

ness = 4 mm, slices = 36 with no gap]. The resting-state

fMRI runs lasted 6 min and 40 s, resulting in 200 fMRI time
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points. Each session had two resting-state fMRI runs.

Structural data used a high-resolution multi-echo T1-

weighted magnetization-prepared gradient-echo image (TR/

TE = 7.6/3.5 ms, flip angle = 8�, FOV = 250,

matrix = 512 9 512, slice thickness = 0.6 mm with no

gap, and 301 slices). Subjects were instructed to stay awake,

keep their eyes closed, and minimize head movement; no

other task instruction was provided.

Data were preprocessed using previously described

procedures (Zeng et al. 2014) with the statistical parametric

mapping software package (SPM8, Welcome Department

of Cognitive Neurology, Institute of Neurology, London,

UK, http://www.fil.ion.ucl.ac.uk/spm). The first five vol-

umes of each run were discarded to allow for T1-equili-

bration effects, Then the slicing timing, motion correction,

normalization with an EPI template in the Montreal Neu-

rological Institute (MNI) atlas space (3-mm isotropic

voxels), spatial smoothing using a 6-mm full-width half-

maximum (FWHM) Gaussian kernel, linear detrend and

band-pass temporal filtering (0.01–0.08 Hz) were per-

formed. Finally, the nuisance variables including the six

parameters obtained by rigid body head motion correction,

global signal, ventricular and white matter signals, and the

first temporal derivatives of all the above were regressed

out.

Default functional connectivity measure

A collection of 19 functional regions of interest (ROIs) was

used as default seed regions to define default connectivity

(Shirer et al. 2012), including 9 dorsal and 10 ventral

default regions (Table 1). Regional time courses were

obtained for each session by averaging the BOLD time

courses over all voxels in each of the 19 default ROIs.

Connectivity has been widely used in the analysis of

temporal interactions between cortical regions (Dimitriadis

et al. 2015; Seth 2008; Wilmer et al. 2010). We evaluated

functional connectivity between each pair of ROIs using

Pearson correlation coefficient, and all correlations were

then translated to z-values by applying Fisher r-to-z trans-

formation. Thus, we obtained a default connectivity matrix

captured by a 19 9 19 symmetric correlation matrix for

each session. Finally, the default connectivity matrix for

each session was converted to a feature vector containing

171 unique region-to-region connections (19 9 18/2).

Multivariate pattern classification

First, two-tailed paired t tests were used during training to

identify the features that are most distinct between baseline

and simulated microgravity. Considering the feature num-

ber as a parameter, the optimal number of features with the

lowest p values would be obtained when the classifier

achieved peak accuracy. Then support vector machines

(SVMs) with linear and polynomial (nonlinear) kernel

functions combined with locally linear embedding (LLE)

were trained and tested based on the features defined as

region-to-region connections (Roweis and Saul 2000;

Vapnik 1995), respectively. All classification analyses

were implemented in MATLAB using the SVM toolbox

developed by S. Gunn (http://www.isis.ecs.soton.ac.uk/

resources/svminfo/), and the slack parameter C in the

SVMs was set as the default value (C = 1). The algorithms

were reported with the best parameter settings (The man-

ifold dimensionality in LLE was 32, and the number of

nearest neighbors in LLE for linear and polynomial SVMs

were 4 and 5, respectively).

Due to the limited number of samples, we used a leave-

one-subject-out cross-validation strategy to estimate the

generalization ability of the classification algorithms, i.e.,

the connectivity feature vectors at baseline and with sim-

ulated microgravity of a given subject were used as testing

data (one subject, two sessions) and the remainder were

used as training data (18 subjects, 36 sessions). The per-

formance of a classifier can be quantified using the gen-

eralization rate (GR), sensitivity (SS), and specificity (SC)

based on the results of cross-validation (Fawcett 2006).

Note that the SS represents the proportion of samples

correctly predicted with simulated microgravity, while the

SC represents the proportion of samples correctly predicted

at baseline. The overall proportion of samples correctly

predicted is evaluated by the GR. In addition, a receiver

operating characteristic (ROC) curve was generated to

evaluate the classification performance (Fawcett 2006). A

classifier better than random should yield an area under the

curve (AUC) greater than 0.5. The flowchart of the clas-

sification can be seen in Fig. 1.

To illuminate which default connections most con-

tributed to the classification, consensus connections were

defined as the connectivity features appearing in the final

feature set of each cross-validation iteration (Dosenbach

et al. 2010). To enhance the reliability of the discriminative

default connections, we defined the most discriminative

default connections as the consensus connections with

p value less than 0.05 in paired t tests.

Results

Classification results

The classification results via leave-one-subject-out cross-

validation can be seen in Table 2 and Fig. 2. The polyno-

mial SVM classifiers with LLE achieved a peak accuracy

of 87.5 % (SS = 90 %, SC = 85 %, AUC = 0.883). Even

using linear kernel function, the SVM classifiers could
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Table 1 Functional regions of

interest (ROIs) within the

default network

ROI name Side Brodmann area MNI coordinates

(x, y, z)

Subsystem

Medial prefrontal cortex 9, 10, 24, 32, 11 -3, 49, 14 Dorsal default

Inferior parietal lobule L 39 -48, -68, 35 Dorsal default

Superior frontal gyrus R 9 19, 38, 47 Dorsal default

Posterior cingulate cortex 23, 30 1, -53, 28 Dorsal default

Midcingulate cortex 23 2, -15, 36 Dorsal default

Right angular cortex R 39 50, -64, 32 Dorsal default

Thalamus -1, -8, 4 Dorsal default

Hippocampus L 20, 36, 30 -24, -29, -13 Dorsal default

Hippocampus R 20, 36, 30 27, -23, -17 Dorsal default

Retrosplenial cortex L 29, 30, 23 -12, -58, 15 Ventral default

Middle frontal gyrus L 8, 6 -24, 12, 55 Ventral default

Parahippocampal gyrus L 37, 20 -28, -37, -15 Ventral default

Middle occipital gyrus L 19, 39 -36, -81, 32 Ventral default

Retrosplenial cortex R 30, 23 13, -53, 14 Ventral default

Precuneus 7, 5 1, -57, 54 Ventral default

Superior frontal gyrus R 9, 8 26, 26, 45 Ventral default

Parahippocampal gyrus R 37, 30 28, -33, -19 Ventral default

Inferior parietal lobule R 39, 19 43, -74, 32 Ventral default

Cerebellar lobule 9 R 15, -46, -53 Ventral default

Fig. 1 The flowchart of the

classification with a leave-one-

subject-out cross-validation

strategy. ROI Region of interest,

SMG Simulated microgravity
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differentiate the brain connectivity states after simulated

microgravity from baseline with an accuracy of 85 %

(SS = 75 %, SC = 90 %, AUC = 0.820). However, both

of the two SVMs (linear and polynomial) achieved accu-

racies of 70 % without nonlinear dimensionality reduction

(LLE).

To exclude potential confounding effect of scanning

interval, we leaved two subjects out in the cross validation,

and the one’s HDT0 scanning date is later than the other’s

HDT7 scanning date. Then we used the remaining subjects’

data as training data and these two sessions as testing data,

discarding two other sessions of the two subjects. In this

regard, the date of HDT0 is latter than that of HDT7 in the

testing sample, eliminating the scanning interval (in the

original analyses, the date of HDT0 is earlier than that of

HDT7 in the testing sample). The classification results

revealed that both the linear and polynomial SVM classi-

fiers with LLE achieved a peak accuracy of 83.3 %

(SS = 88.9 %, SC = 78.8 %, AUC = 0.787), suggesting

the confounding effect of scanning interval is limited in the

current study.

Most discriminative functional connectivity

The most discriminative default connections were mainly

located between the limbic system and cortical areas, as

shown in Fig. 3. The left retrosplenial cortex (RSC)

exhibited enhanced functional connectivity with the left

inferior parietal lobule (IPL, p = 0.023), midcingulate

cortex (p = 0.017) and left hippocampus (p = 0.012), and

the thalamus showed increased connectivity with the left

IPL (p = 0.016) and medial prefrontal cortex (mPFC,

p = 0.042) but decreased connectivity with the right IPL

(p = 0.039), and the right superior frontal gyrus exhibited

increased connectivity with the left IPL (p = 0.026) and

middle occipital gyrus (p = 0.044). In addition, the left

middle frontal gyrus exhibited enhanced connectivity with

the left parahippocampal gyrus (p = 0.028) and midcin-

gulate cortex (p = 0.015).

Discussion

In this study, we used a multivariate pattern analysis

approach combining SVM with LLE to distinguish the

brain states with simulated microgravity from baseline

based on the functional connectivity within the default

network, resulting in an accuracy of no less than 85 % via

leave-one-subject-out cross-validation. The results suggest

that the brain states with simulated microgravity are likely

different from that at baseline and that brain connectome

could act as a biomarker to indicate the brain state with

microgravity.

In this study, it was observed that the SVM classifiers

with both linear and polynomial kernel functions could

differentiate the brain connectivity states after simulated

microgravity from baseline with an accuracy of no less

than 85 %, implying the independence of classification

performance from the SVM kernel functions to some

extent. However, both of the two SVMs (linear and poly-

nomial) achieved accuracies of 70 % without nonlinear

dimensionality reduction such as the LLE, suggesting that

as a nonlinear manifold learning technique, the LLE is

capable of obtaining a low dimensional embedding of the

data while preserving the intrinsic data structures and helps

Table 2 Classification results

with different algorithms
Algorithm Training dataset (%) SS (%) SC (%) GR (%) AUC

SVM (linear) 99.5 70 70 70 0.600

SVM (polynomial) 99.9 70 70 70 0.625

LLE ? SVM (linear) 99.9 75 95 85 0.820

LLE ? SVM (polynomial) 100 90 85 87.5 0.883

AUC Area under the receiver operating characteristic (ROC) curve, GR Generalization rate, LLE Local

linear embedding, SC Specificity, SS Sensitivity, SVM Support vector machine

Fig. 2 The ROC curves of the classifications. It is noted that the

polynomial SVM classifiers with LLE achieved a peak accuracy of

87.5 % (Red line, SS = 90 %, SC = 85 %, AUC = 0.883). AUC,

area under the receiver operating characteristic (ROC) curve; LLE

Local linear embedding; SVM1/2, support vector machine with

linear/polynomial kernel functions. (Color figure online)
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to enhance the classification performance. Whatsoever,

these results suggest that the brain states after simulated

microgravity are indeed likely to be different from baseline

and that the default functional connectivity could provide

potential evidence for the brain state evaluation within an

environment of microgravity.

The DN is believed to support internal mentation

(Buckner et al. 2008), and the default-associated abnor-

malities have been demonstrated in many neuropsychiatric

disorders (Garrity et al. 2007; Zeng et al. 2012). In the

current study, the default functional connectivity could

separate the brain states with simulated microgravity from

baseline, suggesting that the microgravity could induce

brain connectivity changes within the DN and that the

default functional connectivity could be used as an indi-

cator of brain states with microgravity.

In the present study, RSC showed enhanced connectivity

with IPL, midcingulate cortex, and hippocampus in HDT

period. Recent human functional imaging studies suggest

that RSC is one of brain areas underlying spatial navigation

(Bar 2004; Epstein 2008; Epstein et al. 2007; Henderson

et al. 2007, 2008; Spiers and Maguire 2006; Spreng et al.

2009). Particularly, cooperating with hippocampus, RSC

plays an important role in representing the shape of the

environment and detecting the geometric relationships,

which make it possible to use landmarks to navigate or

orient in both novel and familiar environments (Aggleton

et al. 2009; Aguirre and D’Esposito 1999; Kosaki et al.

2014; Maguire 2001; Pearce et al. 2004). Additionally,

lesion studies have indicated that RSC is engaged in

translating and changing spatial frames of reference from

translating egocentric intraparietal into allocentric hip-

pocampal multisensory representations of self-location

(Burgess et al. 2001; Byrne et al. 2007; Vann and Aggleton

2002, 2004; Vann et al. 2009). In microgravity environ-

ment, human’s body is always in inversion or tilted posi-

tion, egocentric reference frame used on earth is no longer

suitable for spatial navigation, an allocentric reference

frame is in need. Actually, astronauts do use equipment in

the cab as land markers during spaceflight. In this regard,

the enhanced connectivity between RSC and hippocampus

during HDT period in the present study may reflect a self-

adaption process in spatial navigation function corre-

sponding to environment change in microgravity. The

thalamus was found to alter functional connectivity with

mPFC and IPL in simulated microgravity. As a consensus,

thalamus serves as an important center of information

integration in brain. The thalamus has extensive connec-

tions with frontal regions and basal ganglia structure in

anatomy and it modulate behaviors via several different

pathways in function (Haber and Calzavara 2009). Addi-

tionally, both mPFC and IPL have been proved to engaged

in motor control in previous structural and functional

imaging studies (Alexander and Brown 2011; Andersen

2011; Borra et al. 2012; Desmurget and Sirigu 2012). Thus

the altered connectivity between thalamus and the other

two brain areas after HDT may partly account for motor

function degeneration happened to astronauts during

spaceflight, consistent with our previous studies (Liao et al.

2012).

Superior frontal gyrus and IPL have been testified to

work together as part of parietal-frontal pathway which

subserve spatial awareness in humans, participating the

integration of auditory and visual inputs of spatial infor-

mation (Bushara et al. 1999; de Schotten et al. 2005). In

contrast, Middle occipital gyrus was only found to be

sensitive to nonvisual inputs of spatial information (Renier

et al. 2010). As visuospatial processing is more complex in

Fig. 3 The most discriminative default functional connectivity in

decoding brain states with simulated microgravity. It is noted that

most connections were located between the limbic system and cortical

areas and were enhanced after simulated microgravity relative to the

baseline. HIPP Hippocampus, IPL Inferior parietal lobule, MCC

Midcingulate cortex, MFG Middle frontal gyrus, MOG Middle

occipital gyrus, PHIPP Parahippocampal gyrus, RSC Retrosplenial

cortex, SFG Superior frontal gyrus, THA thalamus, mPFC Medial

prefrontal cortex, dDN/vDN dorsal/ventral default network, l/r Left/

right
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microgravity than on earth, the proper processing of non-

visual inputs of spatial information may ease the dilemma

in some extent. Comprehensively, the hyperactivity

between superior frontal gyrus and those parietal and

occipital areas after HDT may reflect the enhancement of

auditory-spatial processing, which may serve as a supple-

ment of visual orientation in microgravity environment.

Due to the lack of data of auditory-spatial task in the

present study, this assumption is still need to be clarified.

Middle frontal gyrus has been proved to be activated when

humans represent spatial locations in short-term memory

(Leung et al. 2002; Lockhart et al. 2015). Parahippocampal

gyrus also plays an important role in spatial information

progress, such as processing of the spatial location of objects,

processing environmental landmarks and scene and spatial

navigation (Aguirre et al. 1996; Owen et al. 1996). The

enhanced functional connectivity between middle frontal

gyrus and parahippocampal gyrus during HDT period may

also reflect a self-adaption or compensatory enhancement

process to fulfill the need of complex demand in spatial

navigation function during spaceflight. Recent neuroimag-

ing studies suggest that midcingulate cortex has a key role for

cognitive aspects of movement generation, i.e., intentional

motor control (Hoffstaedter et al. 2014). Increased connec-

tivity between midcingulate cortex and middle frontal gyrus

were found during HDT period, perhaps serving as a com-

pensatory process to remission the problem of sensorimotor

coordination in microgravity.

There are several limitations in the study. First, a control

study should be done to exclude the potential confounding

effect of the scanning interval, though we did a control

analysis in the current study. Second, some specific neu-

ropsychological tests should be designed and done to test

whether there are relevant fine cognitive impairments after

simulated microgravity experiment. Finally, the link

between the default connectivity changes and cognitive

behavioral performance needs to be explored in the future.
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