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Abstract We propose to assess the process of learning a

task using electroencephalographic (EEG) measurements.

In particular, we quantify changes in brain activity asso-

ciated to the progression of the learning experience through

the functional analysis-of-variances (FANOVA) estimators

of the EEG power spectral density (PSD). Such functional

estimators provide a sense of the effect of training in the

EEG dynamics. For that purpose, we implemented an

experiment to monitor the process of learning to type using

the Colemak keyboard layout during a twelve-lessons

training. Hence, our aim is to identify statistically signifi-

cant changes in PSD of various EEG rhythms at different

stages and difficulty levels of the learning process. Those

changes are taken into account only when a probabilistic

measure of the cognitive state ensures the high engagement

of the volunteer to the training. Based on this, a series of

statistical tests are performed in order to determine the

personalized frequencies and sensors at which changes in

PSD occur, then the FANOVA estimates are computed and

analyzed. Our experimental results showed a significant

decrease in the power of b and c rhythms for ten volunteers

during the learning process, and such decrease happens

regardless of the difficulty of the lesson. These results are

in agreement with previous reports of changes in PSD

being associated to feature binding and memory encoding.

Keywords Neurocognitive phenomics �
Electroencephalography � Brain rhythms � Power spectral

density � Functional ANOVA � Learning

Introduction

A great deal of research in the area of neurosciences is

being focused in developing physiological and/or behav-

ioral measurements to provide objective and accurate

quantification of the development of new abilities.

Recently, a new branch of science called neurocognitive

phenomics has been proposed by Duch (2013), which aims

to explain, at least qualitatively, the phenomena that link

cognitive psychology and learning with brain processes.

While some of the ideas behind this new science might

seem rather speculative, they serve as inspiration for our

proposal.

Changes in the electroencephalogram (EEG) occurring

during various mental activities in man have been the

subject of many investigations since the beginning of EEG

research. The use of spectral analysis for EEG has allowed

determination of neurophysiological relationships (Walter

1963), as well as examination of the correlation between

EEG and mental processing (Dolce and Waldeier 1974). In

terms of learning, there is also much interest in analyzing

the variables affecting its performance, and evidence

linking spectral parameters of EEG with a number of dif-

ferent factors have been already reported (Harmony et al.

1990). Nevertheless, those studies so far have been more

interested in the factors affecting the performance among

individuals, and not on how the learning process evolves.

An early attempt to explain the correlation between

EEG and learning is the one by Thompson and Obrist

(1964), where the link between the active phase of learning

and EEG desynchronization is first suggested. There, sig-

nificant EEG changes were obtained during verbal learning

as opposed to non-learning control conditions, while an

over-learning condition resulted in a slight return toward

control levels. However, the technical limitations of the

& David Gutiérrez

dgtz@ieee.org

1 Center for Research and Advanced Studies (Cinvestav),

Monterrey’s Unit, 66600 Apodaca, Nuevo León, Mexico

123

Cogn Neurodyn (2016) 10:175–183

DOI 10.1007/s11571-015-9368-7

http://orcid.org/0000-0003-0424-3053
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-015-9368-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-015-9368-7&amp;domain=pdf


time only allowed to observe such phenomena on slow

brain rhythms, specifically the alpha and beta bands.

More recently, the role of faster brain rhythms in

learning has been studied. In particular, the gamma band

has been linked with associative (Miltner et al. 1999) and

perceptual (Gruber et al. 2002) learning. In both cases,

differences on a metric related to the gamma activity (co-

herence and induced band response, respectively) were

found as probable representations of Hebbian cell assem-

bly, which is critical for learning, memory, information

processing, perception and the behavior of organisms. Still,

both studies work on the basis of a learning/non-learning

paradigm similar to the one by Thompson and Obrist

(1964), then it is difficult to conclude about the evolution

of the learning process.

Aside from that, the use of controlled elevation or

suppression of specific EEG frequency components and

slow potentials by means of EEG biofeedback (also

referred to as neurofeedback) has been employed in

research and clinical settings (Yucha and Montgomery

2008). The experimental application of neurofeedback

protocols to healthy subjects has been shown to be a useful

approach for elucidating protocol-specific effects on

behavioral and electrocortical performance measures, as

well as for establishing basic tenets regarding the learning

process underlying the neurofeedback training rationale

(Egner and Gruzelier 2001). However, while evidence

delineating the effects of frequency-band neurofeedback

has thus accumulated over recent years, the neurophysio-

logical workings underlying those effects are only poorly

understood. This further motivates the need of placing

more effort in cultivating the area of neurocognitive

phenomics.

In this paper (see also Gutiérrez et al. 2015), we propose

to study the brain activity measured through EEG during

the process of acquiring a new ability. Hence, we analyze

the power spectral densities (PSD) of various brain rhythms

as a first step to find the link between learning and brain

processes. In our case, we are interested in the evolution of

the learning process, then we analyze the influence that

different difficulty levels of the task to be learned have in

the PSD at different stages of the training process.

Since we are interested in the dynamics of the learning

process, we require additional tools of statistical analysis

that are a function of time. That is the case of functional

analysis-of-variances (FANOVA) through which the

effects of training on a repetition-to-repetition basis can be

accounted for. Hence, the main contribution of this work is

the use of the FANOVA estimators of the PSD to measure

the effect of training through the process of learning,

instead of the ‘‘before and after’’ account that the classical

analysis-of-variances (ANOVA) could provide.

Experimental setup

Ten volunteers were trained through a series of twelve

daily lessons to type in a computer using the Colemak

keyboard layout, which is an alternative to the QWERTY

and Dvorak layouts, and it is designed for efficient and

ergonomic touch typing in English. Six of our volunteers

were female, four male, all of them were right-handed, and

their mean age was 29.3 years old with an standard devi-

ation of 5.7 years. The lessons used during our experiment

are available on-line at colemak.com/Typing_lessons. In

our case, we asked the volunteers to repeat each of them

five times (with resting intervals of 2 min in between). We

chose Colemak touch typing as the ability to learn because

most people are unaware of its existence, then it is a good

candidate for a truly new ability to learn. The training

process always took place in a sound-proof cubicle in

which the volunteers were isolated from distractions.

Hence, the volunteers were sitting in front of the computer

and were engaged entirely in the typing lesson (see Fig. 1).

All the experiments were carried at the same hour of the

day, and all volunteers were asked to refrain of doing any

additional training anywhere else. Each of the volunteers’

repetitions were chronometred in order to assess the

improvement in their ability to type. Note that this included

the time used to correctly write all the words in the lesson,

as well as the time consumed in erasing and rewriting

words due to any mistakes.

Each of the volunteers were subjected to four sessions of

EEG recordings, all of which were acquired using the

B-Alert X10 wireless system from Advanced Brain Mon-

itoring, Inc., which includes a combination of nine EEG

sensors with fixed gain referenced to linked mastoids and

located at mid-line and lateral positions . Those sensors,

based on the international 10–20 reference system, are

positioned at F3, Fz, F4, C3, Cz, C4, P3, POz, and P4. All

data are acquired at a sampling frequency of 256 Hz and

filtered with a fifth-order Butterworth bandpass filter with

Fig. 1 Experimental setup
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cutoff frequencies at 0.1 and 100 Hz. Our measurements

were acquired as follows:

• An initial EEG measurement is performed before

starting the training sessions in order to define a

baseline state through B-Alert’s Alertness & Memory

Profiler (AMP), which corresponds to a comprehensive

neurocognitive test battery that synchronizes B-Alert

EEG data to evaluate and compare metrics across

populations and interventions (Berka et al. 2010).

• EEG measurements were acquired during the repeti-

tions of the typing task at the fourth, eighth, and

eleventh lessons, in which one-, two-, and three-full

horizontal lines of keys in the keyboard were used,

respectively. Hence, those three lessons are assumed as

representative of low-, medium-, and high-level diffi-

culty in performing the task. During the experiment, the

volunteer typed while seated in front of the computer

and the corresponding lesson was displayed in the

monitor.

The B-Alert software provides a second-to-second esti-

mate of the EEG’s mean PSD for the brain rhythms in the

following ranges: 1–2 Hz for d, 3–7 Hz for h, 8–12 Hz for

a, 13–29 Hz for b, and 30–40 Hz for c. The PSD is com-

puted by performing fast Fourier transform (FFT) on a

segment of data that is of interest, and calculating the

amplitudes of the sinusoidal components for the frequency

bins defined previously. The second-to-second estimates of

the PSD are the result of applying a 50 % overlapping

window which averages the PSD across three overlays to

smooth the data. Each overlay contains 256 data points

with 128 being shared for each overlay. A Kaiser window

is applied to each overlay in order to accentuate the con-

tribution of power from the signal in the middle third of the

overlay and minimize the impact of signal near the edge of

the overlay. Prior to computing the PSD, the raw signals

are processed to eliminate spikes, excursions and amplifier

saturation, as well as excessive electromiographic (EMG)

contribution. In particular, a combination of high frequency

(based off 70–128 Hz for each overlay) and low frequency

(based off 35–40 Hz) detectors are used to identify periods

with excessive EMG. If only one overlay has EMG, then

the PSD for the current epoch is based on the average of the

remaining two overlays. If excessive EMG is found in two

overlays, the epoch is excluded from the analysis.

Furthermore, the B-Alert software also provides a

probabilistic measure of the cognitive state based on the

results of the AMP. Hence, in addition to the PSD values,

each one-second epoch is assigned one of the following

states: sleep onset, distraction, low engagement, and high

engagement. More information about the validity of this

metric can be found in the paper by Johnson et al. (2011).

Proposed analysis

We propose to perform different statistical tests in order to

establish a relationship between changes in PSD during the

learning task and (1) frequency of the brain rhythm, (2)

EEG sensors, and (3) repetitions of a lesson. Hence, our

proposed analysis consists in two-sample t tests, two-way

ANOVA, and the calculation of the FANOVA estimators,

respectively.

Two-sample t tests

We perform two-sample t tests to check if the PSD estimates

from the measurements at the last repetition are significantly

different in comparison to those from the first. The statistical

tests are performed for all nine measuring channels at the

three measured lessons, but only the PSD epochs where the

B-Alert software classified the volunteer’s cognitive state as

high engagement are considered. Under those conditions, the

test statistic under the null hypothesis has a student’s t dis-

tribution with N1 þ N5 � 2 degrees of freedom, where N1

and N5 are the number of epochs classified as high engage-

ment during the first and last repetition, respectively. The

t tests are performed for each subject and for a specific brain

rhythm in order to determine the frequency band in which

changes in PSD are linked to the learning task. Only those

frequencies for which a majority of sensors show significant

change in PSD would be considered for the next statistical

test through ANOVA.

Two-way ANOVA

In order to get a better understanding of the relationship

between changes in PSD as result of the learning task, we

propose to find if the I ¼ 5 repetitions and the D ¼ 3 diffi-

culty levels of the tasks have a mixed interaction with

changes in the PSD. Hence, for each subject, we perform nine

(one for the data acquired at each sensor) two-way ANOVA

tests. Those sensors in which a significant mixed effect of the

factors (repetitions and difficulty) is found will be selected as

a personalized set to be used in the following functional test.

Based on those conditions, the test statistic under the null

hypothesis has a F distribution with ðI � 1ÞðD� 1Þ;
IDðNi;j � 1Þ degrees of freedom, where Ni;j corresponds to

the number of epochs classified as high engagement in the ith

repetition and jth difficulty level. Given that Ni;j is not a

constant value, the two-way ANOVA tests here proposed are

unbalanced (Fujikoshi 1993). At the end, the personalized

sets will be formed with those K ¼ 6 sensors for which the

probability of the test statistic is much more smaller than the

significance level assumed (for details behind this reasoning,

see Salazar-Varas and Gutiérrez 2015).
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FANOVA estimators

With the selected frequencies and sensors in which sig-

nificant changes in PSD are observed, the final step in the

analysis is to assess the evolution of those changes as a

function of the repetitions. In this way, we will be able to

get some insight about the evolution of the brain rhythms

as the process of learning happens. In order to achieve that,

we propose to analyze the FANOVA estimators obtained

from the data at each lesson.

FANOVA is a ‘‘functionalized’’ version of the standard

ANOVA test, in which the observations yi;k, for i ¼
1; 2; . . .; I repetitions, and k ¼ 1; 2; . . .;K sensors, are

modeled by a fixed-effect ANOVA model (Ramsay 2006):

yi;kðnÞ ¼ a0ðnÞ þ aiðnÞ þ ei;kðnÞ; ð1Þ

for n ¼ 1; 2; . . .;N, where aoðnÞ is the main-effect function,

aiðnÞ are the treatment functions, and ei;k are independent

zero-mean Gaussian errors. In order for the treatment

functions to be uniquely identifiable, they have to satisfy

the constraint
P

i aiðnÞ ¼ 0 for all n.

In our case, the idea behind using (1) is to represent the

PSD as having a common component, as well as an ele-

ment of extra variation due to the effect of the ith repeti-

tion. Under those conditions, the functions a0ðnÞ and aiðnÞ
are estimated as follows:

ba0ðnÞ ¼
1

IK

X

i;k

yi;kðnÞ; ð2Þ

i.e., the average PSD across all repetitions and sensors, and

baiðnÞ ¼ �yiðnÞ � ba0ðnÞ; ð3Þ

with �yiðnÞ ¼ 1
Ni

P
k yi;kðnÞ. The FANOVA estimators in (2)

and (3) are those that minimize the residual sum of squares:

min
a0;ai

X

n

X

i;k

½yi;kðnÞ � ða0ðnÞ þ aiðnÞÞ�2;

subject to
X

i

niaiðnÞ ¼ 0:
ð4Þ

The problem in (4) corresponds to minimize the discrete

version of the least-mean-squared sum of errors (LMSSE).

More details on the solution and some computational caveats

involved in (4) are discussed in Ramsay’s (2006) book.

Results

Before proceeding with the statistical tests proposed in

‘‘Proposed analysis’’ section, we looked at the time it took

our volunteers to complete each repetition. We denote this

time at the ith repetition as ti, for i ¼ 1; . . .; 5. The mean �
standard deviation for the first repetition in the fourth,

eighth, and eleventh lessons were 454:2 � 103:62,

461:9 � 114:22, and 465:5 � 129:01 s, respectively. By the

fifth repetition, those times got reduced to 306:8 � 48:20,

348:9 � 77:62, and 380:5 � 120:54 s, respectively. Hence,

as a measure of the percentage improvement, we compared

t1 and t5 for all lessons through the following formula:

Improvement ¼ 100 1 � t5

t1

� �

: ð5Þ

Therefore, a faster last repetition in comparison to the first

one is considered as an improvement. In our case, such

improvement is assumed to be a reflection of the volun-

teer’s learning process, and the results can be seen in

Fig. 2. There, we note that the improvement gets reduced

as the difficulty in the lessons increase. However, there was

always an improvement on average for our subjects at all

lessons.

Next, the t tests proposed in ‘‘Two-sample t tests’’

section were applied to the data of each sensor in order to

check if the PSD at the first and last repetition of a lesson

were significantly different. Note that the percentage of

PSD epochs classified as high engagement was always

between 52 and 72 % and, for each volunteer, the standard

deviation of that value was never above 5 % between

repetitions of the same lesson, then we can guarantee the

commitment of the subjects to the experiment and discard

tiredness effects. An example of the data used for this

analysis is shown in Fig. 3. A total of ð10 subjects Þ �
ð9 sensors Þ� ð3 levels of difficulty Þ ¼ 270 two-sam-

ple t tests were performed for each of the brain rhythms of

interest. In all cases, the tests were implemented with the

Statistics and Machine Learning ToolboxTM of Matlab

(www.mathworks.com), and a significance level of 0.01

was used. As result, the number of those tests (in per-

centage) that rejected the null hypothesis

H0: PSD1 ¼ PSD5; ð6Þ
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Fig. 2 Average improvement in the lesson’s execution time for our

ten subjects. Error bars indicate the mean � standard deviation
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where PSDf�g indicates the mean PSD at a given repetition,

turned out to be: 18.89 % for d, 27.41 % for h, 31.11 % for

a, 54.44 % for b, and 71.11 % for c. Based on those results,

our following analysis focused in the b and c bands, for

which the change was such that PSD5\PSD1 in most of

the t tests (for more details, see Gutiérrez et al. 2015).

Two-way ANOVA tests were performed on the PSD of the

selected brain rhythms. The aim of these tests was to select

those EEG sensors in which interaction between repetitions

and difficulty level was observed. Again, the tests were

implemented with Matlab, and a significance level of 0.01

was used. Overall, ð9 sensors Þ � ð2 frequency bands Þ ¼
18 two-way ANOVA tests were evaluated for each subject’s

data. As result, p � 0:01 in most tests, then the K ¼ 6 sen-

sors with the lowest p-values were selected for the following

analysis. However, some cases were above the significance

level and the corresponding sensors had to be excluded from

the following tests (we even had a couple of cases where

K\6). A list of such cases is shown next, in which the pair of

[F, p] values of the corresponding two-way ANOVA test are

included as well:

• Cz [1.60, 0.119], C4 [1.94, 0.050], POz [2.28, 0.019],

and P4 [2.10, 0.032] in the b band were excluded for

Subject 1;

• Fz [1.94, 0.051] and F4 [4.06, 0.043] in the b band

were excluded for Subject 6;

• C3 [1.55, 0.137] and Cz [2.36, 0.016] in the b band,

and C4 [2.08, 0.034], P3 [1.03, 0.412], and P4

[2.39, 0.015] in the c band were excluded for Subject 8;

• F3 [1.35, 0.215], Fz [1.42, 0.183], C3 [2.29, 0.019], Cz

[2.09, 0.034], P3 [2.38, 0.015], and POz [2.48, 0.011]

in the b band were excluded for Subject 9.

It is worth mentioning that Subject 8, who was the only one

that had sensors excluded in both bands, had experience in

formal typing using the QWERTY layout.

Once the personalized sets of sensors had been chosen,

we proceeded to compute the FANOVA estimators as

described in ‘‘FANOVA estimators’’ section, but with two

additional processing steps that were applied to the PSD:

1. In (1), it is assumed that the samples are equally

spaced, but that is not our case due to the constraint of

only using PSD values that corresponded to a cognitive

state of high engagement. Therefore, we applied a

spline interpolation to the PSD in order to have

uniformly spaced samples.

2. In our case, N1 6¼ N2 6¼ � � � 6¼ N5, then an unbalanced

FANOVA test would have been required. Instead of

that, we decided to ‘‘balance’’ the data by obtaining
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Fig. 3 PSD estimates of the c rhythm while Subject 5 performed the eleventh Colemak lesson. Points marked with circle correspond to the first

attempt of that lesson, while those indicated as square correspond to the fifth
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new time series corresponding to autoregressive (AR)

processes fitted from the original PSD values through

the method proposed by Schneider and Neumaier

(2001). Hence, our data were both fitted and re-

synthesized with third-order AR models and the new

time series had a number of samples N ¼
maxfN1;N2; . . .;N5g.

Under those conditions, we obtained the FANOVA esti-

mators for each subject, at each difficulty level, and for the

selected frequency bands. An example of the result of this

process is shown in Fig. 4. There, we can notice that the

main difference between treatment functions is on the

mean, which is computed as �ai ¼ 1
N

PN
n¼1 âiðnÞ.

A comparison of all the values of �ai for our group of

subjects is shown in Fig. 5. Note that each of the values there

actually correspond to the grand average of �ai over 100

independent realizations of the synthesized data in order to

minimize the effects of the variability introduced by the AR
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Fig. 4 Example of FANOVA estimators for one subject at a given difficulty level. The dashed lines represent the mean value �ai of the

corresponding treatment function
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(a) Low difficulty. m = −22.3 nV 2. (b) Medium difficulty. m = −16 nV 2. (c) High difficulty. m = −18.6 nV 2.

(d) Low difficulty. m = −31.6 nV 2. (e) Medium difficulty. m = −28.6 nV 2. High difficulty. m = −29.5 nV 2.

Fig. 5 Mean effect of training for our ten subjects according to the

proposed analysis of the FANOVA estimators. The top row (a–

c) corresponds to b band, while the lower row (d–f) corresponds to c
band. The asterisks indicate those repetitions at which the mean PSD

of the subjects is significantly different than the one obtained at the

first repetition (p\0:05). The dotted lines correspond to the linear

regressions of the data, for which the corresponding slope (m) is

indicated below each graph
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modeling process in our results. Furthermore, we performed

one-way ANOVA and multiple-comparison tests in order to

asses the effect in our subjects of repeating the lesson. As

result, we found a significant decrease (p\0:05) in the b and

c rhythms from the beginning to the end of a lesson, and this

result was independent of the level of difficulty. The speed of

such decay in power was approximated by the slope (m) of

the linear regression of the data.

Finally, in order to highlight the fact that the decrease in the

power of b and c rhythms is indeed related to an improvement

in the ability to type, we observed the relationship between the

values of �ai and the time ti required by all subjects to complete

the tasks for the case of the first and last repetition (i.e.,

i ¼ 1; 5), as those were the repetitions for which all the dif-

ficulty levels turned out with significant decrease in b and c,

and those were the times we considered for our measure of

improvement shown in Fig. 2. Therefore, we computed the

Pearson’s correlation of the pairs ð �ai; tiÞ, and the results shown

in Fig. 6 indicate that there exists a moderately strong to

strong correlation between FANOVA estimators and time

required in the first and last repetitions, such that positive

values of �ai correspond to larger times to execute the task,

while negative values correspond to shorter times.

Discussion

The main purpose of introducing a functional analysis of

the PSD was motivated by the desire of having a tool

capable of describing the time-changing dynamics of the

learning process, then the FANOVA estimators were pro-

posed for such task. Perhaps our case of study was not the

best example to show the full potential of this type of

analysis, given that the observed changes turned out to be

only on the mean of the PSD. Nevertheless, we believe that

our analysis can be seen as a proof-of-the-concept on how

to proceed in the case of more elaborated learning tasks and

with longer training periods in which non-stationarity of

the processes to be analyzed could be expected.

Now, in terms of the decrease we found in the b and c
rhythms, we strongly believe they can be the result of two

phenomena previously observed in the context of (1) motor

learning and reduced preparatory or attentional demands,

and (2) memory encoding, respectively.

In the first phenomenon, Niemann et al. (1991) reported

a decrease of the EEG negativity which was correlated with

the increase of motor skill (in their case, of a complex

finger motor task). More recently, Erbil and Ungan (2007)

showed the correlation between the decrease in b ampli-

tude as result of long-duration repetitive hand movements

similar to those studied by Niemann et al. (1991). It might

seem, therefore, possible to explain the b suppression

observed in our typing task as the result of the sustained

motor activity having the habituation effect of the cortical

mechanisms stimulated by the somatosensory stimuli

related to the learning task.

In addition to the b decrease, multiple studies in humans

suggest a role of induced c oscillations in coupling per-

ception and learning. That is the case of memory encoding

that, in its simplest form, has been shown to appear as a
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ā
i

(µ
V

2
)

200 400 600
−0.2

−0.1

0

0.1

0.2

ti (s)

ā
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ā
i

(µ
V

2
)

200 400 600

−0.2

0

0.2

ti (s)

ā
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ā
i

(µ
V

2
)

(a) Low difficulty. r = 0.6789. (b) Medium difficulty. r = 0.7654. (c) High difficulty. r = 0.7572.

(d) Low difficulty. r = 0.7429. (e) Medium difficulty. r = 0.6415. (f)  High difficulty. r = 0.6357.

Fig. 6 Values of ( �ai, ti) for all subjects and for i ¼ 1; 5. The top row

(a–c) corresponds to b band, while the lower row (d–f) corresponds to

c band. The Pearson’s correlation coefficient r is given for each band

and difficulty level (with p\0:01 for all cases). Data point considered

as outliers are indicated by asterisk
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decrease of neural activity upon repeated presentations of

the same stimulus. This phenomenon, known as repetition

suppression, can be specifically observed in the c rhythm

(Gruber and Mller 2005). Upon repeated presentation of a

stimulus, the synaptic plasticity fostered by c oscillations

would help selecting the most relevant processes and lead

to the creation of a sparse and faster neural route, resulting

in a sharpened representation of the learned stimulus.

Although repetition suppression might explain the reduc-

tion in c we observed, further analysis is necessary, as

different components of the c rhythm (in frequency and

space) have been related to either the perceptual or the

overall attentional allocation of the stimuli in memory

(Chaumon et al. 2009).

Conclusions

We proposed an analysis framework based on multiple

statistical tests for EEG data acquired during the process of

learning a task, in this case typing in Colemak. However, it

is through the use of the FANOVA estimators of the PSD

that we propose to get an insight on the effects of different

factors (amount of training and difficulty) that the process

of learning has in the brain dynamics. We showed the

feasibility of examining sustained EEG activity and rein-

forced the hypothesis that some of its rhythms correlate to

the process of learning. Our results were in agreement with

previous evidence of the involvement of b and c rhythms in

the process of acquiring a new ability.

In this paper we focused our attention in the decreasing

trend of the b and c rhythms given that such trend was

more obvious in those bands through our preliminary

analysis (Gutiérrez et al. 2015). However, a less evident

increase in the a band could be observed in some subjects

and in some sensors. Then, we believe it is important also

to study this band and its possible interaction with b and c
as others have previously suggested (Canolty and Knight

2010). We strongly believe that the analysis framework

here presented has the potential to help to understand the

nature of such coupling at different stages of the learning

process. Furthermore, the balance between increasing a
and decreasing b and c could be studied as the learning task

progresses through a combination of the methods here

proposed and time-varying AR analysis as the one pro-

posed by Gutiérrez (2013).

Finally, it is also important to study the spatial distri-

bution of the different rhythm’s power in order to better

understand the underlying brain processes (Miltner et al.

1999). Therefore, for our future work, we plan to acquire a

greater number of EEG sensors, as well as to introduce an

analysis of EEG coherence similar to the one proposed by

Salazar-Varas and Gutiérrez (2015), but for the case of

studying a learning task.
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