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Abstract In this article, the high codimension bifurca-
tions of a six-neuron BAM neural network system with
multiple delays are addressed. We first deduce the exis-
tence conditions under which the origin of the system is a
Bogdanov-Takens singularity with multiplicities two or
three. By choosing the connection coefficients as bifurca-
tion parameters and using the formula derived from the
normal form theory and the center manifold, the normal
forms of Bogdanov-Takens and triple zero bifurcations are
presented. Some numerical examples are shown to support
our main results.

Keywords Neural networks - Bogdanov—Takens
bifurcation - Triple zero bifurcation

Introduction

It is believed that the successful applications of neural
network in many fields such as optimization solvers, pat-
tern recognition, automatic control and encryption of
image (Cochoki and Unbehauen 1993; Ripley 1996; He
et al. 2013; Kadone and Nakamutra 2005; Hoppensteadt
and Izhikevich 1997) heavily depend on the theoretical
studies about the neuron systems, especially the
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investigation of the dynamical behaviors of neural network
models has became focus over the past decade years.
Following currently available literatures, the interest in
studying the dynamics of the neural network has focused
on two main aspects. One topic is aimed at the study of the
local and global stability of the equilibrium, the existence
and stability of periodic solutions yielded from Hopf
bifurcation, as reported in (Xu and Li 2012; Yang and Ye
2009; Xu et al. 2011; Cao 2003; Sun et al. 2007; Zheng
et al. 2008; Liu and Cao 2011; Yang et al. 2014), and
another topic is aimed at the study of more complex
dynamics mainly involving some degenerate bifurcations
existing in the neighborhood of the codimensional singu-
larity. Such issues have been addressed by several articles
(Ding et al. 2012; He et al. 2012a, b, 2013, 2014; Li and
Wei 2005; Dong and Liao 2013; Song and Xu 2012;
Campbell and Yuan 2008; Guo et al. 2008; Yang 2008; Liu
2014; Garliauskas 1998; Kepler et al. 1990). For instance,
Ding et al. (2012) have considered the zero—Hopf bifur-
cation of a generalized Gopalsamy neural network model,
the normal forms of near a zero—Hopf critical point were
deduced by using multiple time scales and center manifold
reduction methods respectively. The similar work has been
carried out by He et al. (2014), but contraposing a different
neural network. The authors in (Dong and Liao 2013; He
et al. 2012a; Li and Wei 2005; Song and Xu 2012, 2013;
Campbell and Yuan 2008; Guo et al. 2008; Yang 2008)
have devoted to the analysis of the Bogdanov-Takens
(B-T) bifurcation with codimension two. Guo et al. have
deduced the existence of the double Hopf (Guo et al.
2008). Campbell and Yuan (2008) and Liu (2014) have
investigated triple zero bifurcation induced by the delays
and the connection topologies existing among the neurons.
For the cases of Hopf—Pitchfork bifurcation and chaos see
(Yang 2008; Garliauskas 1998; Kepler et al. 1990).
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In application of neural networks, some dynamical phe-
nomena of neural networks have been explained and shown by
simulations and applied to memory systems and algorithmic
designs (Kadone and Nakamutra 2005; Hoppensteadt and
Izhikevich 1997; Heet al. 2013; Chen and Aihara 1999; Wang
and Shi 2006). For example, attractors, homoclinic and hete-
roclinic orbits can be interpreted as a single storage or memory
pattern, or an optimal object, and various complex patterns in
the application and design of neural networks. Chaotic
behavior of neural networks also has been confirmed to be
benefit to design the efficient searching algorithm for solving
optimization problems due to its bidirectional structure (Chen
and Aihara 1999; Wang and Shi 2006). Undoubtedly, the
deeper investigations to dynamic of neural networks facili-
tates the extensive applications and optimum design of some
searching algorithms. This also motivate us to study the more
complicated bifurcation behaviors of delayed multi-neuron
memory systems, especially, the codimension-2 and codi-
mension-3 bifurcations.

Due to the complexity of the problem, more attentions on
the investigations of multiple-delay neural network focus on
small sized networks or on some special architecture (Sun
et al. 2007; Zheng et al. 2008; Dong and Liao 2013; He
et al. 2012a). Although, it is convinced that the dynamics
investigation to neural networks with a few neurons con-
tributes to understanding large-scale networks, there are
inevitably some complicated and pivotal problems that may
be neglected if large-scale networks is simplified. On the
other hand, from the practical point of the view, improving
the designs of the neural networks and extending its appli-
cation in more fields also need consider the more complex
and larger-scale associative models because the real neural
networks are complex and large-scale nonlinear dynamical
systems, and commonly involve interactions among multiple
neurons. For example, the exact control to the roughness of
categorization by the proportion between excitatory signal
and inhibitory signal depends on the complex layered design
(Carpenter and Grossberg 1987). Meanwhile it also is an
important mathematical subject to investigate the dynamics
of the larger scale neuron systems (Xu and Li 2012; Xu
et al. 2011; Yang and Ye 2009; Cao 2003; Liu 2014). As Xu
and Li (2012) have studied a bidirectional associative
memory (BAM) six-neuron networks, which is described by

xi(t) = —px (1) + échfl(xj(t - 1)),
X (t) = —pxa(t) + cafa(xi (t — 1)), (1)

;c'6(t) = —piexs(t) + c1afs(x1(t — 71)),

where x;(¢t)(i = 1,2,...,6) denotes the state of the neuron
at time #; y; characterizes the attenuation rate of internal
neurons processing on the [-layer and the J-layer and
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u; > 0; the real constants ¢;;(j = 2,3,...,6) and c|; show
the connected weights between the neurons in two layers:
the I-layer and the J-layer.

Xu and Li (2012) have considered the stability of the
nondegenerate origin and the existence of Hopf bifurcation
of (1) induced by the delays. Compared with (Xu and Li
2012), the contributions of this work are to address Bog-
danov-Takens and triple zero bifurcation computations of
the BAM six-neuron network, and show the curves of
different bifurcation occurrences.

The Hopf bifurcation is corresponding the characteristic
equation has a pair of purely imaginary roots. While the B-T
or triple zero bifurcation is corresponding the characteristic
equation has a double-zero or triple zero root. We choose
two or three parameters as the bifurcation parameters, by
using the center manifold reduction and the normal form
method, one can compute the normal form which is equiv-
alent to (1). Finally, different kinds of bifurcation curves
used to explain the dynamical behaviors of (1) can be drawn.

Note that the authors in (Xiao et al. 2013; Liu and Yang
2014) have considered the stability and Hopf bifurcation of
some delayed neural network models with n + 1 or n neu-
rons, especially model (1) as a special case of the model in
(Xiao et al. 2013) has been studied detailedly by Xu and Li
(2012), nevertheless, the degenerated dynamics of system
(1) at the neighborhood of the origin has never been
addressed. Thus, in this article, we devote to investigate the
high codimension properties of model (1). The study to the
high codimension properties of the model in (Xiao et al.
2013) will be left as our future work.

The organization of this paper is: in “Existence of B-T
bifurcation” section, the existence conditions under which the
origin is B-T singularity are given. In “B-T bifurcation” sec-
tion, by applying the center manifold reduction and normal
form computation, we obtain the normal form and bifurcation
curves near the origin of the neural network. In “Triple zero
bifurcation” section, triple zero bifurcation is also investigated.
In “Numerical examples and simulations” section, some
numerical examples and simulations are shown to verify our
main results. Finally, a conclusion is given to sum up our works.

Existence of B-T bifurcation

Let ui(t) =xi(t — 1), u;(t) = x;(r) j = 2,...,6) and 7 =
71 +72, then system (1) is equivalent to the following system

1) = —sin () + 35 e (o — )
(1) = — o (1) + crofa(w (1)), 2)

ﬁg(r) = —pgute (1) + crafe(ur (2)).
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To obtain our main results, we make the following w
assumptions 4 =53 3 : (107 1 3 1y
P 2pags (3 — pa) (o — Hy)C14
HD)  fi(0)=0, f(0)=1, i=12,...6. + 283 g (Hatty + Bolts + patty)T @

From (H1), we know that the origin is always the equi-
librium of system (2).

Linearizing system (2) at the zero equilibrium, then it
becomes

1) = —pn 1)+ S o = ),
(1) = —ppua (1) + crouy (1), (3)

ug (1) = —gute(t) + croui ().
The characteristic equation of system (3) is
F(2) = — e ""(by2* 4+ by2> + b32* + by + bs)
+ 8¢ a2 4 it 4 a3l + agd? (4)
+asi+ag =0,

where

a= Y

1<ii<b<iz<-—-<iy<6

By My M- -1y, k=1,...6,

by = c13¢31 + c14c41 + €15¢51 + Ci6Ce1 + 12021,
6 [ 6
by = Z C1iCj1 Z Hi |
=2 L 01=2,i1#j
6 r
by = Z C1jCj1 Z Hiy My |
=2 L 2 <iy <ip < 6,1, A
i
by = Z Clici1 Z Hi, Miz#i}] )
J=2 L 2 <y <ip <i3 < 6,iy,ip,i3%]
g
bs= > |cijcp ﬂilﬂizﬂi3#i4]'
=2 L 2< iy <iy<iy<iy < 6,1 ,ini3,is A
Let
0 #% 2.2
= — teraca s pg (s — Hy)
I e PR e 5)
g (1 + s + T )
+ cisesi g (s — Bs) + Cr6Ce1 MG 13 (15 — Hg)],
0 N% 2.2 2
3 = Ha s s (1 + o + Ty 1)
3 cmﬂéﬂgﬂi(ﬂa —,Uz)[ st 6)

+ craca 15 g (s — 1y)
+eisesi g ( — fs) + cioCor 1545 (1 — 1))

—2crses1 g (s — ts) (1 — iis)
—2c166113 (13 — ) (12 — Hg)
+ 20305y + i3 + )]
5(5)1 = T3 15
61gers (g — ps) (13 — is)(fy — is)
X (O s g + 3 (ot + oty
+ U o fly + 1 i3 )T+ 6¢16¢61 (thy — ) (8)
X (13 — t6) (12 — tg) + 641 (11 + g +
+ 113) + Ot (3 ptg + py iy + oty
+ o + s+ )T

(H2)
(H3)

Ho F s F Has
csi # €5,

0

ciy F C415
_ 0

C41 = Cyy,

_ 0 _ 0
C21 = Cyyy €31 = C3q,

] = C(z)la 31 = C(3)17
o 7 H3 7 Wy 7 Us.

Then we can get the following result.

Lemma 1  The characteristic Eq. (4) has the double
zero eigenvalues if (H1) and (H2) hold, and has the triple
zero eigenvalues if (H1) and (H3) hold.

Proof By (4), we have

F(0) = a¢ — bs,
F'(0) = as + ths — by,
F"(0) = 2ay4 — t*bs + 2thy — 2b3,
F"(0) = 6as + t°bs — 31°by + 61b3 — 6b.

©)

It follows from (H1) and (H2) that F(0) = F'(0) =0
and

F"(0) = papisps [T mapispty + 2(uy + 1y + p13)
+ 2ty + o5 + papy )7

2 33
— 5 [HerEciacs (us — pg) (1o — 1 10
ui#%ué“ sciacar(ts — pa)(ty — 1a) — (10)
+ pgrgersest (s — is) (1o — is)
+ 12zc16¢61 (13 — te) (1 — p16)] # 0.
Thus, 4 = 0 is a double root of Eq. (4).
Similarly, that (H1) and (H3) hold can lead to F(0) =
F'(0) = F’(0) =0 and
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F"(0) = pspig |t isia™ +3 Yy T

1§i1<i2<i3 §4

4
+6 Z #i,#izf+62ﬂi

I<ii<ip<4 i=1
6
+ —— [Heersesi (g — ps) (15 — 1) (12 — pis)
H5 s
+M§Cm€61(ﬂ4 — tte) (M3 — Hg)(—ptg + ,Uz)] # 0.

This completes the proof.

Next, under the conditions (H1)—-(H2) or (H1)-(H3), we
will find the conditions under which the other eigenvalues
of Eq. (4) have negative real parts except for zero roots.

Let 4 =iw be a root of Eq. (4) and substitute it into
Eq. (4), then separating the real and imaginary parts, we
have

w® — ayw* + agw?® — ag = (—byw* + bsw* — bs) cos(wr)
+ (baw® — byw) sin(wr),
asw’ —ayw® —asw = + (byw* — bsw® + bs) sin(wr)
+ (byw? — byw) cos(wt).
(11)
Let (H1) and (H2) hold, then one can obtain
w? [wlo + (a% — 2a2)w8 + (2a4 —2ajaz — b% + a%)w6
+ (2b1b3 — 2bs +2asa; — b; — 2azas + a3)w'
+ (b3 — 2b1bs + 2a2bs + 2bsas + 2byths + aj — 2azas)w?
+ (2b3bs — 2asbs — 2asths — 1°b3) | =0.
(12)
Without loss of generality, we assume that Eq. (12) has at

most five positive roots, denoting them as w; (i=1,2,3,
4,5). By (11) we have

-D
T; = —arccos 3 35
Wi (blw;‘ — b3Wi2 + b5) + (bzw? — b4w,-)
(13)
where
D = (Wl6 — azw? + a4w[2 — bs) (blw? - 173W2 + b5)

— wi2 (bgwf - b4) (a3w? - ale-1 — as),

define 79 = min;eqy . sy{t:}. If Eq. (12) has no positive
root, we take 19 = +0o0.
Let (H1) and (H3) hold, it follows from (11) that

@ Springer

wt [wg + (a% — Zaz)w6 + (—b% —2aya3 — t*bs — 21as
+2b3 + @3)w* + (axt’bs + 2artas + 2b1by — b3
—2ab3 — 2bs + 2a1a5 + a%)wz + (‘53]95615 — 2tasbs

— ©bsby + 2azbs — 2azas + 2byths + 2ashy + td’
b2
—2bybs +TS)] =0. (14)
Similarly, if Eq. (14) has no positive root, we take
7o = 400, or else, Eq. (14) has at most four positive roots,
denote them by w; (i = 1,2,3,4). Following (11) we have

-D
T; = —arccos 3 3
Wi (ble‘ — baw? + b5) + (b2W3 — b4W)

)

(15)

where

D= (W? — LZQW? + CZ4W[2 — b5)(b1W? - b3W2 + b5)
— W[z(bzwiz — b4)(a3wi2 — al\@? — Cl5),

define 7y = i€{111"12171"1ﬂ4}{r,-}.
Lemma 2 [See Ruan and Wei (2003)] Consider the expo-

nential polynomial P(,e "%, .. e ") = )"+ P(lo)i"71+
ok PO PO P P g P e
o [P P PV e where 1, > 0
(i=1,2,...,m) and P]@(j =1,2,...,m) are constants. As
(T1,72, -+, Tm) vary, the sum of the order of the zeros of
P(A,e™*. .. e~*™) on the open right half plane can change
only if a zero appears on or crosses the imaginary axis.

Lemma 3 Let (H1) and (H3) hold. All the roots of
Eq. (4), except for the double zero or triple zero roots, have
negative real parts if one set of the following conditions
holds

(H4) 0<t<19, AjAy — A3 >0, Al(A2A3 —A1A4) —A%
>0, A4 > 0;
(H5) O<t<7%y, A; >0, AjAs — A3 >0, A3 > 0,

with Ay = a1, A, = a, — by, A3 = a3 — by, Ay = a4 — bs.
Proof Let (H1)-(H2). For T = 0, Eq. (4) becomes

PN+ AP + AP+ A0+ Ay =0, (16)
By Routh-Hurwiz criterion, we have if

A1A; — Az >0,

A1(A2As — A1Ag) — A3 >0, Ay >0,

(17)
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then the rest of roots of Eq. (16) have negative real parts
except A1, = 0.
Let (H1)-(H2). For T = 0, Eq. (4) becomes

P+ AP+ A+ A =0, (18)
By Routh-Hurwize criterion, we know if
A >0, AjA) —A3 >0, A;>0, (19)

then the rest roots of Eq. (18) have negative real parts
except the triple zero root. We complete the proof.

From Lemmas 1-3 we have the following Theorem.

Theorem 1  Assume (H1) holds. Then system (2) at the
origin undergoes B-T or triple zero bifurcation if (H2) and
(H4) or (H3) and (H5) hold.

B-T bifurcation

In this section, we will give the normal form of B-T
bifurcation by using the methods introduced in Hale and
Verduyn (1993), Xu and Huang (2006). Rescaling the time
by t — % to normalize the delay, and rewriting ¢;; and c3;

as ¢ =9, + oy and ¢33 = ¢ + o where (o, 0,) near
(0, 0), then system (2) is translated to

) () = t[—pqui (1) + (3 + ou )fi (ua(r — 1))
6
+(cY + ) fi(us(t = 1)) + ;lefl (ui(t — 1)),

1 (1) = t[—pyta (1) + c19fs (1 (1)), (20)

U (1) = t[—peus(t) + crafo(u1 (1))].
Taking the Taylor expansion of fi(x), i=1,2,...,6,
then system (20) takes the form

y (1) = t—pgur (1) + (5 + o Jua(t — 1) + (¢§) +on)us (1 1)

+C41u4(l— 1) +6’51M5(Z— 1) +C61M6(l— 1) + H, +h.0.l‘.],
s (1) =1[— otz (1) + crous (t) + Hay + h.o0.1.],
ug(t) = t[—pgtte (1) + crou1 (t) + He + h.o.1.],
(21)

where

C21 + o1

H, = (3 (03 (1 — 1) + f" (0)u3(r — 1))

“””%y()@—w+ﬂ<wu—m

+
+C4l (3f (0)u ( )+f///( ) 431(1_]))
+%(3f1 ()2t — 1) +£"(0)ud(t — 1))

+ 2 (3Ol — D)+ Oy (1 = 1),
Hy= Ly (3100 +£0(0).

Then following (Xu and Huang 2006), the second term of
the Taylor expansion of system (21) also can be expressed
in the form

1 ~
EFz(Xt,O!) :Alu(t)ocl +A2M([)O€2 +Blu(t — 1)0(1
6
+Bou(t — Do + > Euy(1)u(t — 1)
i=1
6
+ > Fui(t)u +ZGut—1 (t—1),
i=1
where
A=Ay = O¢xs, Ei=O¢xs,i=1,2,...,6,
G =F, =F3 =F4=Fs5 = Fg = O¢xe,
01 00 : 0
B =1 00 0 0 : 0 :
0 0 0 0 0 0/
0 01 0 0 O
000 0 0 O
BZZ‘C . s
0 0 0 0 0 0/
0 0 0
1
52/(0)612 0 0
1
53//(0)6‘13 0 0
F, = 1
1= SO 0 ol|
1
55/(0)615 0 0
1
—f(0)c 0 0
2f6( ) 0 6x6
II(O)
12 Cgl 0
G, =1 0 0 0 0 ,
0 0 0 0 /s
0 0
0 0 1(2)C31 0 0 0
G3=‘L’ 0 0 0 ,
0 0 0 0 0 0 / 6xs
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0 0 L(OZ)C‘“ 0 0
Go—z| 0 0 0 00|
000 0 0 0/,
1!
0
0 0 f#Cy 0
e 0 0 o
0 - 0 0 0/ e
/4
0 ... 0 @Cm
G6:’( 0 0 0
0 O O 66

To obtain the normal form of system (21) on its center
manifold, we need the following lemma.

Lemmad4 [See Xu and Huang (2006)] The bases of P and
its dual space P* have the following representations

P = spand, ®(0) = (¢,(0), 9,(0)). —1 <0<0,

P* = span'?, Y(s) = col(Y,(s), ¥,(s)), 0<s<1,
w1 € R"\{0}, ¢,(0) =
)=

where (p1(0) (Pz + @10, 93 € R"

and Y, (s) =y, € R"™\{0}, (s — sy, ) € R™
which satisfy

(1) (A+B)g! =0, (2)(A+B)g3=(B+1)¢,
(3)W3(A+B) =0, (4)yJ(A+B)=y3B+I),

(5) W33 — tﬂ‘z)Bq)? +YSBp) =1,

1
(6) lP1(/’2 - —WOB% + WOB% += ‘sz(P? - Ew(z)B(P(z) =0.

For system (21), we have

—u 0 0 0 0 0
C12 ) 0 0 0 0
C13 0 — I3 0 0 0
A=t 0 0 0 - O o |’
C15 0 0 0 — Us 0
C16 0 0 0 0 — Ug

0 & & cu s ocel

0 0 0 0 0 0
B=rt]| . . . . . .
00 0 0 0 0/,

By Lemma 4, we have
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1 0

i Cu<91)

Hy TH
o(0) = ;

c16 Cg(@_i)

He He The

ny npy  ny o ny ns ng
Y(0)= c c c c ,

(0) H3 no (2)1M3n0 1o Hg 41n0 ﬂg 51nO Hg 61n0

€31 C31M2 C31 My C3Hs  C31Hs

where

—2T#2ﬂ3#4,u5#6 2.2 2
= o+
el — o) (s (i + 1o + T o)

+ 014C4IH5H6(H2 )

+ c1sesi i He(ty — Hs) + C1oCo1 MG 13 (1 — He)],
with
= U3tk Ty + 2( oy + 3ty + Hatts)T

+ 200 + o + p3)] — 2c1aca1 13 g (s — 1) (2 — 1)
— 2er5es1 g (13 — ias) (o — pis)
— 2c16¢61 1343 (13 — 1) (12 — Hg),

and

_ matpy + (14 7u3)mo
! 9, ’
1y — <9, (tonatus ‘L‘ E).“z — H3)no) 7
T3
ny— 218mymy LG (3t + (1 — p3)no)
3ciymi T t,u]zcgl ’

j=4,5,6,

my = e (I + o + T ) + Cracan GG (1 — pg)
+ ciscsi e (o — ts) + C1eCo1 M3 H3 (Hy — He),
my = ppd g (15T 1y + 305 (1 + 13)7 +6(p3 — pspy )T
— 64y + 13)] + 6¢racar 3 (12 — 1) (12 + )
X (1 — ty) + 6c1ses pig g (12 — 5) (i + p1s) (13 — )
+ 6¢16¢61 115 (1o — te) (1o + H6) (3 — He),
m3 = G (o s T iy + 2(ia 4 i3ty + ois)T

+2(uy + o+ 113)] — 2c1aca1 13 (15 — 114) (11 — 14g)
= 2c1ses1 g (1 — ps) (Hy — Hs)
- 2616%1#2#?(#3 — e) (1o — W)

Following the formulas in (Xu and Huang 2006), we have
the following Lemma.
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Lemma 5 Ler (H1) (H2) and (H4) hold. Then the system
(21) can be reduced to the following system on the center
manifold at (u,, o) = (0,0)

Z = 7121 + 22 + Mz} + maiz2 + hot.,
where
noTU3C12 nptc)3
"="0pH 1 0 %25
C31t €31
c n3TU; 4+ Uy — a7 C13N37T
_ 12(1om3 M32 (l)iz 0— U3 O)aH— 1303 o0,
H3C31 C31
_ mnotf'(0) (C%chl 13681 Clacar | Ciscsi C%6C61>
=
2¢, R - A T
nofi3T (C(Z)le//(O)Clz_,’_ 7 (0)ersed, +C4Lfi'(0)014
265, Ho M M4
csif2(0)e coif!(0)c
n s1fs (0) w+,mR() m),
HUs He
_1'(0) (C%zc(z)l(/13112”3T—/13”0+#2”0)
=0 3
€31 1
0%4041(,“3.“4”3'5_M3n0+ﬂ4n0)
3
Hy
cTss1 (s fisnst — pzno + psno)
3
Hs
_’_0%6661(#3”2”3'5_ﬂ3nO+H2n0))
1%
681(ﬂ3ﬂ2”3‘5—H3n0+.u2”0)fz"(0)012
/13621
C41(/13#4”3T—ll3"0+/14”0)ﬁ/(0)514_~_”3TC%3021
1G53, H3
cs1 (3 sn3T — pano + psno)fs (0)cys
M%Cgl
co1 (H31613T — a0 + g0 fy (0)c16
+ 70 .
HeC31

V2

_|_

_|_

+

+n3‘cf3"(0)cl3

+

+

Since

'@("/17“/2) n§tencis(ty — ) 20
0(ar, 02) (cgl)z,u%

then the map (o, 02) — (y;,7,) is regular. Hence we can
get the following theorem.

)

Theorem 2 Ler (H1) (H2) and (H4) hold. If f/'(0) # 0,
i=1,...,6, on the center manifold, system (20) is equiv-
alent to system (22).

Referring Dong and Liao (2013), system (22) has two
equilibrium E; = (0,0) and E; = (—;’7'—‘1, ), the bifurcation
curves near (0, 0) in the «; and o, parameter space are the
following

(1) system (22) undergoes a transcritical bifurcation
on the curve
S={(o1,2) : 9, = 0,7, € R},

(2) at E; system (22) undergoes an unstable Hopf
bifurcation in the half line
H= {(&1,062) 172 =0,7 <O}’

(3) at E,, system (22) undergoes a stable Hopf
bifurcation in the half line

T= {(ocl,ocz) th =R > 0}~

In “Numerical examples and simulations” section, a
numerical example is given.

Remark From the point of the view of application, the
results of Theorem 2 under the conditions (H1), (H2), (H4)
and f(0)#0, (i=1,...,6) can be explained as the
exchanges of various stored patterns or memory patterns
occurring in perturbed system (20) when the parameters o
and oy vary in the small neighborhood of the (0, 0). Notice
that a stable equilibrium is corresponding to a single storage
pattern, thus, when parameters (o, o) pass the transcritical
bifurcation curve determined by y, (o, o) = 0, system (20)
transforms its stored patten from one to other. Similarly,
system (20) can exhibit more complex memory pattern (a
periodic pattern) when o, o approach the Hopf bifurcation
curve defined by y, — 1,7, /1m; =0, (y,(a1,02) > 0).

Furthermore, if f'(0) =0, i=1,...,6, to discuss the
properties of the origin of system (21), we need to compute
the third order normal form of the B-T bifurcation.

Let u, = ®(0)z(r) + y, then (21) can be decomposed as

{z‘ — Bz + P(0)F(z + y,4),

y=Agy+ (I — n)XoF(Pz +y, ), (23)

where z = (Z1,Zz)T, y= (yl,yz)T and

()01(0) =21 + 0Z27 (P](H) = %Zl _t'_& (0 _ _>Z27

j H; TH;
j=2,3,...,6. (24)

It follows from (Faria and Magalhaes 1995; Jiang and
Yuan 2007) that

gé (Za 0, O‘) = (I - PII,S)-]%I (Za 0, O!) = PrOjIm(M;)rf"jl (Za 0, OC),
(25)

where

f;l(z’ 0, OC) :f;(z’o’ O() +% [(DZfZI)(Zvov O()UZI(Z, OC)
+(Dyfy ) (2,0, ) U3 (z, )
—(D.U;)(z,2)85(z,0,0)].

By (21) and (24), one can get
where
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fi(2,0,2)
6 6
[’llhl (C(z)l(/’%(—l) +Sie3(—1) + _X%qwf(—U) + Z;n,-hjcw?(o)] 26)
- nolt ¢ ’

T3 hy Cgl‘/’g(_l) +C%1(P% )+ le(/’j +do

€3 j=4
by =1 (0), p. peIm(My),

A hacy Y hsc o cineiih
tm—wﬂm<2w2”+3l3”+§jfl“1.
2

2%} j=4 :u]

To obtain the third-order normal form, it needs the

decomposition

V3(R) = 1, (M3) @ 1, (M)

Then the canonical basis in V3§ (R?) has forty elements:

((z,2)*,0)7, (0, (z,2)*)", the bases of I,,(M}) and I,,(M})‘

one can see in (Jiang and Yuan 2007).
Together with the definition of M31, one can obtain that
the space of I,,(M}) can be spanned by the following

elements

3 2
122 2125 2 212214; oyih
(%) C3) (G C9n) (37
(™

ZZ:ul)
_leul >
2Z1Z2Iul

(
(=)
() (3)

—2 My
LU

i=1,2,
and the complementary space 1,,(M})
the elements

(4) (5) (a) Gaw) (o)
4)" \gdz/)" \z#dw) \azaw/) \aw)’
) 0 0 O
2i5)" \ampw) i) \ww) \ws )’

i=1,2.

¢ can be spanned by

From (25), (27) and

@ Springer

) i\ 0
PrOJ,m(M;)f 0 ooz )’
2
. 70\ 0
PrOJIm(Mé)C< 0 ) B (2Z1sz>ti>7

we obtain the third order normal form of system (21) as
follows

7 = 22,
22 = 7121

where the higher terms of o are omitted and

27
+ 9222 + 4333 + bsiiz + hooit, (27)

1 1
as = 8f320a by = —(fzz1 +3f310)>
i1C
o= (35254 S e )
Jj=2
6 .3 0
n cicy, 9 hye 3 hae
3202 0;13 h]z]311+ 21212+ 31/13C13
€31 j=2 :uj Ho H3
cq1C cs51C ce1C
n 41 14+ 51 15+ 61 16)7
My Hs He
3 1
> 3]’11#31’10 6 leclj(]+f_llj)
f=— 0 Z 3 :
31 =2 1

After time rescaling and coordinate transformation given

byr=— las lt wy = ﬁ 21, W

is equivalent to the followmg system

_“7%1 , system (27
/] <2 System (27)

Wy = viwy + vawyp + sw? — w%wz + h.o.t.,
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2
where v; = (E) Vi, V2 = Iaz\ 72, 8 = sgn(az). From (He
et al. 2012a; Dong and Liao 2013) we know the bifurca-
tions of system (28) is related to the sign of 5. If s = 1, we
have

(1) system (28) undergoes a Pitchfork bifurcation on the
curve
S = {(oq,ocz) Vv = O,Vz S R},

(2) system (28) undergoes a Hopf bifurcation H at the
trivial equilibrium on the curve
H= {(061,062) 1V = 0,\11 <0},

(3) system (28) undergoes a heteroclinic bifurcation on
the curve

1
T = {(061,062) V) = —=Vv + O(V%),Vl <0},

5

If s = —1, we have

(1) system (28) undergoes a Pitchfork bifurcation on the
curve
S = {(0617062) Vv = O,Vz c R},

(2) system (28) undergoes a Hopf bifurcation at the
trivial equilibrium on the curve
Hy = {(061,062) 1V = O,Vl <O},

(3) system (28) undergoes a Hopf bifurcation at the
nontrivial equilibrium on the curve
H, = {(oq,ocz) V] = V2,V > 0},

(4) system (28) undergoes a homoclinic bifurcation on
the curve

4
=—v + O(V%),vl > 0},

T:{(le,ocz) V2 3

(5) system (28) undergoes a double cycle bifurcation on
the curve

Hd = {(O([,OQ) LV
d~0.752}.

=dv; +0(}),v; >0,

To verify above results, two numerical examples and
some simulations are shown in “Numerical examples and
simulations” section.

Remark One can see if the condition f”(0) #0, (i =
l,...,6) in the Theorem (2) does not holds, then with
(oty, o) varying in the small neighborhood of (0, 0), sys-
tem (20) can exhibit the more complicated stored patterns
or memory patterns, including the transition of stored
pattern from one to two through a Pitchfork bifurcation.
The two stored patterns also may lead to three kinds
periodic memory patterns. In fact, a stable limit cycle (a

periodic memory pattern) is yielded when (o, o) cross
the Hopf bifurcation curve Hy. With (o, ap) moving
continuously and passing the Pitchfork bifurcation curve
St to the side of (v; > 0), two unstable nontrivial equilibria
are bifurcated from the trivial equilibrium. Further, the two
unstable nontrivial equilibria become locally stable stored
pattern when (o, o) cross the Hopf bifurcation curve H,
which also gives rise to two unstable small limit cycles
located inside the surrounding big limit cycle.

Triple zero bifurcation

To discuss the triple zero bifurcation of system (20), we
rewrite coq, c3; and ¢4 as ¢y = 031 + B, c31 = cgl + B,
and ¢4y = ¢, + B3, where (B, By, B3) vary near (0, 0, 0),
taking the Taylor expansion then system (20) becomes
i (1) = tl=pyur (1) + (3 + By Juz(t = 1) + (3 + Bo)us(r = 1)
—0—(62, —|—[)’3)u4(t— 1) +csius(t—1) +crue(t— 1)+ Ty + hoo.t],
(1) = t[—pouz (t) + crou (t) + Ha + hoo.t],

ug(1) = t[—pgus(t) +croui (1) + Hs + h.o.t.],

(29)
where
1= S 01— 1)+ 000 — 1)
LS i 1)

o= 1) + 4B o - )

”@WM4D

%%m’ — 1) £ (00— 1))

C6l (

A CHOTA RN OIS
w=éw@ﬁ@ﬁm+ﬁ®M@)

Then following Qiao et al. (2010), the second term of the
Taylor expansion of system (29) also can be expressed in
the form

1

El?z(xz, B) = Au(t) By 4 Aru(t) By + Asu(t)fs

+ Bu(t — 1), + Bou(t — 1),

6
+Bsu(t — 1)Bs + Y Ei(t)u(t — 1)

i=1
6
+2Fiui +ZGu t—1)u
i=1

(t—1),
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the other coefficient matrices are the same as them in
(22).

To obtain the normal form it also needs to compute the
corresponding expressions of ®(0) and ¥(s) of system (29)
by using the following Lemma.

Lemma 6 [See (Qiao et al. 2010)] The bases of P and its
dual space P* have the following representations

P = span®,  ®(0) = (¢(0), 92(0), ¢3(0)),
P" = span¥,  ¥(s) = col(,(s), ¥(s), ¥5(5)),

—-1<6<0,
0<s<1

where @,(0) = ¢} € R"\{0}, 0,(0) = @3 + 970, 3(0) =
S+ @30 +3000%, @) @R and Yi(s) =3 €
R™N\{0}, Yo(s) =3 — sy, i(s) = i — sy + 1578,

W) € R™, which satisfy

(1) (A+B)p} =0, (2) (A+B)¢) = (B+1)0¢],
1
(3) (A+B)gs = (B+1)g; —3Bo),
4) Y3A+B)=0, (5) Y3(A+B)=y3(B+I),
1
(6) WA+ B) = VA(B+1) ~ 1 U3B,
1 1
() WS(B+1)g8 —5Y5BeS + 5Bl =1,
1 1
(8) Wa(B+ )¢5 —SY5BeS + Y3Bo]
1 1 1
- 5¢§B<p§ + E‘Png’g - Q%’Bwﬁ’ =0,
1 1 1
(9) VI(B+ D)5 — SY1BeS + ViBo) — S Y3Bos
1 1
+ 61#33903 — g VaBo)

1

Lo L o 0
+ 6‘#3&”2 - ﬁ‘/&B(ﬂg + 120 ‘/’3390(1) =0.

The expressions of coefficient matrices A and B see
(30), but it needs change c4; as cgl, then together with

Lemma 6, we can obtain the expressions of @(0) and
¥(0) as follows:

@ Springer

1
1 —0?
0 2

1 1 0 1
i 12(0__> 12<ﬁ__+_02)
() = Hy [ Ty) Mo \T°H; Ty 2

1 1 0 1
c16 Cﬂ(g__> ﬂ(ﬁ__+_92)
He  He THe) Mo \T'Hg THs 2
€] €ép €3 €4 €5 ¢q

'P(O): ry rp r3
L L L

rqy s Te |,

I Is s

where

_ 6ty 13T o g 113
131G (Mo Ty sty + 0172 + 92T+ 03) + 04

01 = (ko g + K3ty g + Bt 13 + Hafiz ),

02 = 6(u3py + iy + Hopis + otz + 6o 1ty + 6y 3),

03 = 6(1y + 63 + 614y + 6414),

84 = 6c150s1 g (1t — 115) (13 — p15) (12 — pis)
+6c16¢61 13 (1 — 16) (13 — t6) (12 — ),

and

0 1 1
12:m7 l3 ) l4 ’ 15 ] 16:%#7
1) U3 Hy Us He

6 | N 55055
h3 i {‘utﬂ 20 5h <y iy <ia <6 1, My b 1, D1

0 0
_C3111 _C4111 _C5|l|

r = X . ;
6 N i1,i2,03,i4 7] 4,4 .4 4
AT s o sy P Zj:Z [C 1j€j1 Zzgil i iy <iy <6 Miy MG 1 15, D2

cj(-)1 (rle — Lty — ll)

3 J=2,3,4,
ri= T‘uj
Ci1 hTﬂ-—hTﬂ-—ll .
] ( J 5 J )7 _]:576,
T

6 U S URCRARTS) 6,6 6 6.
-2 [Cl,cﬂ D2 iy iy <6 M M 1 K

€)= . - )
22,222 056 | Ninhizi# 44 4 4
20ps5 g s s AT Zj:2 [C 1j€Cj1 E2§i1 <iy <iy <iy <6 Miy Mizﬂi3/4i4D2]

c/(-)l (—2e1‘52u/2 —2I +2r1‘52,uj2 +2r1‘cyj — ZIlr,uj — llrzyf)

20245} ’
J=2,3,4,

cji <—2(3112,uj2 —2I +2r1t2,uj2 +2r1wj — ZIlr,uj — llrz,ujz)

)

21'2;1]3
Jj=5,6,
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with 6(81782783)
D, = 7:4/1;-t +4rzuf(wj +3) +24(1 + ), o(B1; bas Bs) =0
6,12,,12
D, = 1-2#]2(1% +3) +6(1 + 1), _ 2161t us" s cizciaps — ) (o — py) (12 — 13) 20,

g =8 (L = 5r)0 + 5 (I — 4r)7* + 2018 (I — 3r)7
+ 60 (I — 2r)7 + 1201;(l — r)t + 1204,

such that <¥, & > =1, &= DJ, Y= —JY¥, where

010
J=10 0 1
0 0 O

The normal form of system (29) on its center takes the form

71 = 22,

N G

B =g121 + &2 + 83253 + A7 + Dk + Dz
+Quz123 + h.o.t.,

where

cioliter  cizhit cualit
_ el l+13lﬁz+ 14117 B3

81 )
Hy H3 Hy
ety (n—h)—h cis(tus(n—h)—h
g = ( 2( > ) )ﬁ1+ ( 3( R ) )ﬁz
1253 13
+Cl4(fﬂ4(712—l1)—11)ﬁ3,
Hy

4 Clj[,“,z(ll +2e; *21’1)12+2uj(11 —r)t+20]

3 i1
= Zruj
6 11
teyjcily [ cyfi' (0) L,
le +f (0) )
,; 21y ( yoo
S, [cticnt{(0)  f(0)cijcn
o Yadina| j J=] 2 2
0= 3 (VO TN 112y 2
j= J J

+2,uj(11 — rl)r +211]>

3l O) 1+ 5) 6 254m)
— 2 Tud
j= J

)

6
C1iCj1 [r,w(rl —ll)—ll]
Q=3 ——H r 1 (0)cy +1(0)w),
Jj=2 J

2 2
el [M~(11+281—2r1)‘6
5 2

+2,uj(ll — }’1)‘[ +211])
A (06 e

+Z : 2t

=2 J

6 (A0 "(0)cyici
Q4zz<1jjlf1() _’_];()1111

j=2

(147 (I = 2r) T + 2(1s — )T+ 20 ]

One can see that

53
where

& = g™ s + 3(papty iy + 3t g
1y + ot i)T
+ 6(t 3 + ity + po iy + O 1ty + po iz + Oz 11y)T
+6(pt3 + 641y + 61y + 641)] + 6¢sicrsig (1 — ps)
X (3 — us)(ka — ps)
+6c61C16H5 (14— Ho) (13 — Ho) (Ha — g)-

Theorem 3 Ler (H1), (H3) and (H5) hold. If f'(0) # 0,
i=1,...,6, then on the center manifold, system (29) is
equivalent to the normal form (31).

Following Campbell and Yuan (2008) the bifurcation
diagrams of system (31) at the origin are as follows:

(1) system (31) undergoes a transcritical bifurcation
when

T ={(B, B2 B3) : 61 =0},

(2) system (31) undergoes a Hopf bifurcation when
i 81
Hl = {(ﬂlaﬂ%ﬁS) 83 = __7g2<0}7
82
(3) system (31) undergoes a Hopf bifurcation at the non-
trivial equilibrium point (—#,0,0) when

Q Q,

H, = {(ﬁ17ﬁ27ﬁ3) C 83 = (Q_I_M)gh

@ > 0}
Qg1 — Q18 ’

(4) system (31) undergoes a B-T bifurcation when
é = {(ﬁ17ﬁ27ﬁ3) 81 = 07g2 = O}a
(5) system (31) undergoes a zero—Hopf bifurcation when

1:13 = {(ﬁlvﬁ2vﬁ3) :81=0,83 = Oag2<0}'

Numerical examples and simulations

In this section, first several numerical examples and
bifurcation curves corresponding to our results are given.
Second, some numerical simulations of an example is
given to verify our results.
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Example 1 Take u; =0.2, 4, =0.6, u3 =02, yu, =04,
Hs = 05, He = 08, Cq1 = 05, C51 = 06, Col = 08,
cn=c3=ci5=1, c14 =3, ci6 =2, ﬁ(x) = tanh(x)+
0.2x*(i =1,2,...,6), 1 =2, then f1(0)=1, f/(0) =04,
by (5)-(8), we can obtain ¢, = —3.2535, ¢, = —0.2655
ca1 # ¢4, = —0.7344. Eq. (13) has only one positive root
wy =~ 0.2957156781, then 1o~ 5.341141624 which
implies 0 <t <1(), one can obtain that (17) is satisfied.
Hence, the conditions Theorem 2 are all satisfied. The
bifurcation curves of Theorem 2 were shown in Fig. 1.

Example 2 For the case of f/(0)=0, i=1,...,6, we
take f;(x) = tanh(x) +2x*/3, i =1,...,6. Other parame-
ters share the same values as in Example 1. It is easy to
verify that f/(0)=1, f'(0)=0, f"(0)=2, a3~
6.228127027, b3 ~ 37.84176265, thus s = 1. The corre-
sponding bifurcation curves are shown in Fig. 2.

Example 3 To get the case of s = —1 when f;(0) =0,

fl0)=1, f'(0)=0 and f"(0)#0, we choose
filx) =tanh(x), (i=1,2,...,6), p, =02, u, =0.6,
=02, pu, =04, pus;=0.5 p=038, cq =05,

C51 = 06, Col — 08, Clp = 1, C13 = 1, Clg = 3, Cl5 = 0.1,
ci6 =2 and 7 = 1.5. To satisfy the conditions (H1) and
(H2), we take ¢, = —2.6883 and 3, = —0.2379. Some
simple computations show s = —1, f;(0) =0, f/(0) =1,
f(0) =0 and f"(0) = =2, (i =1,...,6), thus, by using
the results obtained in “B-T bifurcation” section, we get a
full picture of bifurcation diagram of system (20) in the
parameter space (a1, o) which is shown in Fig. 3.

Example 4 Take p; =0.2, u, =0.6, u3 =0.2, uy = 0.4,

us =0.5, pg=0.8, c51=0.6, c61 =08, cp=c;3=
0.010]
o
)
S 0.005 |
o
1
20015 0010  -0.005 0 Q5 0010 0015
T
~0.0051
H
~0.0101

Fig. 1 The bifurcation curves of Theorem 2 corresponding to the
Example 1
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cis=1, cu=3, ci6=2, ﬁ(x) = tanh(x) + O.2x2(i =
1,2,...,6), T =2, then f/(0) = 1, f”(0) = 0.4. By (5)—(8),
one can obtain 3, =0.9126, ¢}, =0.1974, o, =
—0.7344, c¢5 # cgl ~ —59.52708333. Eq. (13) has only
one positive rtoot w; =~ (0.8509803928, then
2.040926698 which implies 0 <1 <7, one can obtain that
(17) is satisfied. Hence, the conditions of Theorem 3 are all
satisfied.

T0 ~

Next, for the Example 3 we carry out some numerical
simulations to demonstrate the corresponding dynamical
behaviors when parameters (o, o) are chosen in appro-
priate regions in Fig. 3.

First we take parameters (o, op)=(—0.003, —0.003),
then under initial conditions (0.02, 0.000004, 0.0002,
0.0004, 0.0002, 0.0004) and (—0.02, —0.000004, —0.0002,
—0.0004, —0.0002, 0.0004), a time evolutions of system
(20) is shown in Fig. 4a. As expected, two trajectories
asymptotically reach the trivial equilibrium which, how-
ever, loses its stability, and bifurcates two asymptotically
stable nontrivial equilibrium when the parameters (o, ;)
cross the Pitchfork bifurcation curve S~ to the side of
vi > 0 (see Fig. 4b).

Within the region surrounded by the curves S~ and H),
system (20) has a stable trivial equilibrium which may
undergo a nondegenerate Hopf bifurcation on the curve Hy
as shown in Fig. 5. One can see that a stable limit cycle is
bifurcated when (o4, o) = (0.002, —0.002).

When parameters (o, o) cross the Pitchfork bifurca-
tion curve ST from the bottom up, two unstable nontrivial
equilibria are branched from the trivial equilibrium. If
choose (o4, o) = (0.006, —0.0014), then with different

0.006 1
0.004+

0.002 1

0.005 0.010

o

-0.002 S

~0.005 0

-0.004

H
-0.006

Fig. 2 The bifurcation curves for s =1 when f(0) =0, f/(0) =1,
£7/(0) =0 and /"(0) #0
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0.006 1
o,
0.004 1
=
0.002
(04
1
~0.008 -0.006 -0.004 -0.002 0 004 0.006 0.008 0.010
0.002 d T
sTd,
-0.004-
HO
~0.006-

Fig. 3 The bifurcation curves for s = —1 when f(0) =0, f/(0) = 1,
£7(0) =0 and f(0) = —2

(@ 03

0.02

0.01

= 0
—0.01

—0.02

—-0.03
4000

time t

0 2000

Fig. 4 System (20) undergoes a Pitchfork bifurcation when param-
eters (o, o) pass the curve S in Fig. 2. a The origin is locally
asymptotically stable when (o, ) = (—0.003, —0.003) under ini-
tial conditions (0.02, 0.000004, 0.0002, 0.0004, 0.0002, 0.0004)

(@) 003

6000

time t

Fig. 5 System (20) undergoes a Hopf bifurcation at the trivial
equilibrium when (o, o) = (0.002, —0.002) with initial conditions
(—0.02, —0.000004, —0.0002, —0.0004, —0.0002, 0.0004) (the blue
curve), (0.02, 0.000004, 0.0002, 0.0004, 0.0002, 0.0004) (the black

03 .
0 2000 4000 6000 8000 10000 12000

initial conditions, all trajectories approach the stable peri-
odic solution (see Fig. 6).

Moving parameters toward the Hopf bifurcation curve
H\, the big stable limit cycle is still present. Two nontrivial
eqilibria become stable, and two unstable small limit cycles
surrounding two nontrivial equilibria are yielded when
(o1, o) pass Hy. Moreover, the two cycles are located
inside the big limit cycle. From Fig. 7, we can see that if
the initial condition is chosen close the outer of one of
small cycle, then the solution asymptotically approaches
the small limit cycle. However, if the initial condition is far
away from two nontrivial equilibria, then the solution reach
the big cycle.

As parameters sequentially cross the homoclinic curve
T, two small limit cycles disappear via a homoclinic loop
bifurcation as shown in Fig. 8a where two nontrivial
equilibria are still asymptotically stable and surrounded by
the limit cycle. Finally, we choose (o, o) in the interior
made up by the cures H; and S~ where the big limit cycle
also disappears, only the nontrivial equilibria are stable.

(b) 04

0.02 NM
B 0
—0.02 V»V\
—0.04
0 1000 2000 3000 4000
time t
(the black curve) and (—0.02, —0.000004, —0.0002, —0.0004,

—0.0002, 0.0004) (the blue curve). b System (20) has two locally
asymptotically stable nontrivial equilibria when (o, o) = (—0.003,
0.003) with the same initial conditions as a. (Color figure online)

(b)

—0.05 |

—0.02 —0.01 0

curve) and (—0.001, 0.0, 0.0, 0.0, 0.0, 0.0) (the red curve), respec-
tively. a The time series in the plane (7, u;). b The phase portrait in
plane (uy, u3). (Color figure online)
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—0.01

—0.02

—0.03

2000 4000

time t

6000

Fig. 6 System (20) has two unstable nodes when (o, o) =
(0.006, —0.0014)  with initial conditions (0.00006, 0.0, 0.0,
0.0, 0.0, 0.0) (the blue curve), (—0.00006, 0.0, 0.0, 0.0, 0.0, 0.0)

@) 03

0.02

—0.01

—0.02

—0.03

4000 6000

time t

0 2000 8000

Fig. 7 The dynamics of system (20) when (o, o) are located
between the lines H; and H,. a System (20) has a unstable limit cycle
bifurcated from a nontrivial equilibrium when (o, o) =
(0.006, —0.00134) with initial conditions (—0.00003, 0.0, 0.0, 0.0,
0.0, 0.0) (the red curve) and (—0.02, 0.0, 0.0, 0.0, 0.0, 0.0) (the

5000
time t

Fig. 8 The dynamics of system (20) when (o, az) across the lines
H,; from the bottom up. a System (20) has two locally asymptotically
stable nontrivial equilibria and a stable limit cycle when (o, o) =
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0.0, 0.0, 0.0) (the black curve). (Color figure online)
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Thus, in the region, all trajectories are attracted to one of
the nontrivial equilibria (see Fig. 8b).

Discussion

In this work, we have devoted to derive the sufficient
conditions for the existence of B-T and triple zero bifur-
cations, and the normal forms in a delayed BAM network
with six neurons. Moreover, the bifurcation analysis near
the B-T and triple zero critical points are given respec-
tively, showing that the system may exhibit Pithfork
bifurcation, heteroclinic bifurcation, transcritical bifurca-
tion, Hopf bifurcation, zero—Hopf bifurcation in the
neighborhood of the degenerate equilibrium. These give an
important guiding significance in improving the design of
BAM and extending associated application in the more
fields. However, for (1), it is believed that there are still
interesting and complex dynamical behaviors to be com-
pletely exploited. In the future, we will focus on the B-T
and triple zero bifurcations analysis for neural networks
with multiple neurons and multiple delays.
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