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Abstract To investigate the electroencephalograph

(EEG) background activity in patients with Alzheimer’s

disease (AD), power spectrum density (PSD) and Lempel–

Ziv (LZ) complexity analysis are proposed to extract

multiple effective features of EEG signals from AD

patients and further applied to distinguish AD patients from

the normal controls. Spectral analysis based on autore-

gressive Burg method is first used to quantify the power

distribution of EEG series in the frequency domain.

Compared with the control group, the relative PSD of AD

group is significantly higher in the theta frequency band

while lower in the alpha frequency bands. In order to

explore the nonlinear information, Lempel–Ziv complexity

(LZC) and multi-scale LZC is further applied to all elec-

trodes for the four frequency bands. Analysis results

demonstrate that the group difference is significant in the

alpha frequency band by LZC and multi-scale LZC anal-

ysis. However, the group difference of multi-scale LZC is

much more remarkable, manifesting as more channels

undergo notable changes, particularly in electrodes O1 and

O2 in the occipital area. Moreover, the multi-scale LZC

value provided a better classification between the two

groups with an accuracy of 85.7 %. In addition, we com-

bine both features of the relative PSD and multi-scale LZC

to discriminate AD patients from the normal controls by

applying a support vector machine model in the alpha

frequency band. It is indicated that the two groups can be

clearly classified by the combined feature. Importantly, the

accuracy of the classification is higher than that of any one

feature, reaching 91.4 %. The obtained results show that

analysis of PSD and multi-scale LZC can be taken as a

potential comprehensive measure to distinguish AD

patients from the normal controls, which may benefit our

understanding of the disease.

Keywords Electroencephalogram � Alzheimer’s disease �
Power spectrum density � Lempel–Ziv complexity � Multi-

scale Lempel–Ziv complexity

Introduction

Alzheimer’s disease (AD) is a progressive, disabling

neuro-degenerative disorder that affects mainly older per-

sons beyond the age of 70. Experimental studies show that

it is may be caused by the degeneration of synapses and

death of neurons in the brain regions, such as hippocampus,

entorhinal cortex, neocortex. It usually results in a loss in

cognition, memory, judgment, even language and func-

tional skills (Dauwels et al. 2009, 2010a, 2011; Mattson

2004). It is asserted that a definite diagnosis is only pos-

sible by necropsy (Dauwels et al. 2010a). Because the

symptoms in early state are easily neglected as normal

consequences of aging, discriminating AD patients from

the normal is difficult.

Electroencephalogram (EEG) could record multi-chan-

nel neural electrical signals in different areas of the brain

simultaneously with high temporal resolution. Scalp

recordings are related to underlying processes, although

spatial information is lost due to the blurring effects of high

skull conductivity (Dauwels et al. 2010a; Koenig et al.
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2005; Claus et al. 1999; Schoenberg and Speckens 2015;

Yang and Lin 2013; Han et al. 2013). Due to the high

temporal resolution, non-invasiveness, simplicity, and rel-

atively low cost, EEG is still one irreplaceable brain

research technique although some structural and functional

imaging techniques developed quickly (Han et al. 2013;

Kowalski et al. 2001; Jonkman 1997; Babiloni et al. 2006).

Now it is widely used as auxiliary diagnosis method for

clinician to detect normal brain and brain with neurological

disorders, such as Alzheimer’s disease (AD; Dauwels et al.

2009, 2010a, b, 2011; Wang et al. 2014) According to the

rather widely held view, the development of AD is asso-

ciated with perturbations in EEG synchrony (Stam et al.

2003; Park et al. 2008), reduction of complexity in EEG

(Dauwels et al. 2010a; Stam 2005) and the slowing of EEG

(Dauwels et al. 2011; Moretti et al. 2009).

Among various EEG analysis methods, the spectral

analysis methods are especially important because the

frequencies and characteristics of brain waveform change

depending on the brain function affected from disorders

and physiological state (Akin and Kiymik 2000; Nunez

et al. 2001). By dividing the whole frequency spectrum into

a sum of pure frequency components via wavelet decom-

position, each EEG signal can be analyzed in terms of its

power spectral density (PSD) based on parametric autore-

gressive (AR) model, which provides information on the

signal power at each relatively narrow frequency band

(Dauwels et al. 2010a, 2011; Akin and Kiymik 2000).

Compared with traditional spectrum estimation methods,

AR-Burg algorithm could perform better with less spectral

losses and higher frequency resolution (Akin and Kiymik

2000; Yi et al. 2013). Nowadays, the most frequently

observed spectral change of AD is the ‘‘slowing’’ of the

EEG, which supposedly correlates with the degree of

cognitive decline (Bennys et al. 2001; Dringenberg 2000;

Jeong 2004; Schreiter-Gasser et al. 1994). Czigler et al.

(2008) have found a significant power increase of the theta

band and decrease of alpha band in AD EEG. Gianotti et al.

and Jeong et al. have further proved that power decrease

occurs in high frequency band (alpha and beta band) with a

simultaneous increase in low frequencies (delta and theta

band) in AD patients, which is closely related to the

development of the disease (Jeong 2004; Gianotti et al.

2007). On the whole, AD is associated with an increase of

power in low frequencies (delta and theta band, 0–8 Hz)

and a decrease of power in higher frequencies (alpha and

beta band 8–30 Hz).

PSD based on AR model could characterize the group

differences between AD patients and the normal controls in

frequency domain (Wang et al. 2015a, b). However, it

focuses on the linearity within EEG signals (Zhou et al.

2008). In fact, it has been extensively reported that the

EEG signals are naturally nonlinear due to the nonlinearity

of the brain at the neuronal level. Moreover, previous

works have shown that nonlinear analysis of EEG is useful

to characterize different pathological states like epilepsy

(Lehnertz et al. 2003), schizophrenia (Roschke et al. 1995)

and Parkinson’s diseases (Stam et al. 1995). This gives rise

to the possibility that the underlying mechanisms of the

brain function maybe explained by nonlinear dynamics.

Hence, non-linear analysis techniques may be a better

approach than traditional linear methods to obtain a better

understanding of abnormal electrophysiological behavior

of AD patients in EEG signals (Escudero et al. 2006). In

AD associated with neuropathological deficits, owing to

the decreased capability to process information the neural

complexity appears to be reduced by the analysis of

approximate entropy, sample entropy, Lempel–Ziv com-

plexity (LZC), chaos analysis and so on (Gu et al. 2003;

Hornero et al. 2009).

Correlation dimension (D2) and the largest Lyapunov

exponent (LLE) are the first nonlinear techniques applied

to EEG (Jeong et al. 2001). It has been shown that AD

patients have lower values of D2 and LLE than the normal

controls. However, the calculation of D2 and LLE requires

the data series to be stationary and long enough, which

cannot be achieved for physiological data (Jeong et al.

1998; Jelles et al. 1999; Grassberger and Procaccia 1983;

Eckmann and Ruelle 1992; van Cappellen et al. 2003).

Other nonlinear methods such as entropy index are mostly

parametric and need to choose appropriate parameters,

which may increase the calculation burden. Besides, LZC

is a non-parametric measure of complexity in a one-di-

mensional signal related to the number of distinct sub-

strings (equal to the number of different patterns in a

sequence) and the rate of their recurrence (Lempel and Ziv

1976). It is better suited for EEG analysis than D2 and

more precise than LLE for characterizing order or disorder

(Kaspar and Schuster 1987). The use of this quantitative

complexity measure can help us gain a better insight into

the system dynamics (Zhang et al. 2001). However, the

traditional LZC method cannot describe the relationship

between adjacent points during the coarse-graining which

transfers the original signal into a binary time series,

leading to a great loss of detailed information from the

original signal.

On the other hand, quantitative analysis of EEG based

on classification evaluation and ROC curves have also been

widely applied to distinguish AD group and the control

group. For instance, Besthorn et al. (1997) achieved an

accuracy of 69.5 % with D2 (using 50 AD patients and 42

controls). Abasolo et al. (2006a) achieved an accuracy of

77.3 % with sample entropy (using 11 patients with AD

and 11 controls). Moreover, Escudero et al. (2006) used

multi-scale entropy and obtained an accuracy of 90.4 %.

However, these methods were mainly based on single
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feature and could only reflect one aspect of the scalp-

recorded EEG signals.

In this work, we introduce the multi-scale LZC method

and demonstrate its advantages by comparing it with the

traditional LZC analysis. We aim to detect and assess the

abnormalities of EEG signals from ADs based on spectrum

and complexity analysis. Multiple efficient features: relative

PSD and multi-scale LZC values are extracted and applied to

discriminate AD from normal control by applying a support

vector machine model. We also seek to combine the two

classes of features to discriminate the spontaneous EEG

recordings of the two groups. Accordingly, the subsequent

parts of this paper are organized as follows: in ‘‘Experiment

and EEG recording’’ section, we give a description of the

experimental design and the EEG recording, including

information of the subjects, the EEG data recording and

preprocessing; in ‘‘Analysis methods’’ section, we formulate

the estimation of PSD, LZC and multi-scale LZC, extract the

EEG features, and explain the statistical analysis in detail; in

‘‘Results’’ section, analysis results of the two groups are

presented; which is followed by discussion in ‘‘Discussion’’

section and conclusion in ‘‘Conclusions’’ section.

Experiment and EEG recording

The subjects of experiment are separated into two groups:

AD group and the control group. The mean age of twenty-

four AD patients (ten females and fourteen males) was 78,

and the Mini-Mental-Status examination (MMSE) scores

were between 11.5 and 14.2. As for the control group, the

mean age of twenty-four controls (ten females and four

males) was 75, and the MMSE scores were ranged from

27.2 to 29.7. The MMSE test is a reliable 30-point ques-

tionnaire that is used extensively in clinical research to

measure cognitive impairment associated with the severity

of AD. Generally, any test scores greater than or equal to

27 points (out of 30) indicates a normal cognition. Below

this, the scores can also indicate mild (19–24 points),

moderate (10–18 points) or severe (B9 points) cognitive

impairment. All the subjects were right-handed and free

from other neurological or psychological disorders, neu-

rological active medication, or any other factor that may

affect EEG activity. During the experiment, the subjects

were seated upright in a relaxed state with eyes closed, and

they were told in advance that any movements should be

avoided during the experiment, such as body movements,

eye movements and blinks.

A 16-channel Symptom system was used to set on the

scalp according to the international widely used 10–20

system. The electrode impedances were kept under 30 kX,

and the sampling frequency was 1024 Hz. The linked ears

A1 and A2 were used as a reference, and the 16 Ag–AgCl

scalp electrodes were channels Fp1, Fp2, F3, F4, C3, C4,

P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, as shown in

Fig. 1a, and the real EEG signals recorded were shown in

Fig. 1b. The digitized EEG data were processed in a

MATLAB environment (version 7.12.0.635, R2011a).

Analysis methods

Wavelet decomposition

In order to achieve high confidence of the data, we inter-

cept five EEG epochs which last for 8 s from EEG data of

each subject so to investigate the effect of AD on the brain.

First all selected epochs are digitally filtered with cut-off

frequencies at 0.5–30 Hz by set the lower and upper limit

of the FIR filter which is band-passed to eliminate artifacts

induced by residual EMG and noise. Then, following Adeli

et al. and Ahmadlou et al. who decompose the whole fre-

quency band into different sub-bands, a three-level wavelet

decomposition is used to decompose the band-limited EEG

(0.5–30 Hz) into four sub-bands: delta (0.5–4 Hz), theta

(4–8 Hz), alpha (8–15 Hz), and beta (15–30 Hz; Adeli

et al. 2007; Ahmadlou et al. 2010).

Power spectral density estimation

In our study, the PSD for each epoch is estimated using AR

Burg method. There are two steps in the spectrum

Fig. 1 The distribution of

electrode loci in the modified

10–20 electrode configuration

for 16-channel EEGs marked in

a brain is represented in a, and

the real EEG recordings of

16-channels in b
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estimation procedure. Firstly, estimate the parameters of

the model-based method from a given data sequence x(n),

0 B n B N - 1. Secondly, compute the PSD estimated

from these estimations. The AR method, which is one of

the most frequently used parametric methods, is based on

modeling the data sequence x(n) as the output of a causal

and discrete filter whose input is white noise. Thus the AR

method of order p is expressed as follows

xðnÞ ¼ �
Xp

k¼1

aðkÞ � xðn� kÞ þ xðnÞ ð1Þ

where a(k) are the AR coefficients and x(n) is the white

noise of variance equal to r2. The AR method of order p

can be characterized by AR parameters {a[1], a[2],…, a[p],

r2}. Then PSD is defined as follows

PARðf Þ ¼
r2

Aðf Þj j2
ð2Þ

where Aðf Þ ¼ 1 þ a1e
�j2pf þ � � � ape�j2pfp:

In our work, AR coefficients are estimated by the

recursive Burg method, which is based on minimizing the

forward and backward prediction errors. From the esti-

mates of AR parameters by the Burg algorithm, PSD

estimation is formed as

P̂BURGðf Þ ¼
êp

1 þ
Pp

k¼1 âpðkÞe�j2pfk
�� �� ð3Þ

where êp is the total least squares error. The model order p

of the AR method is determined by using Akaike infor-

mation criterion (AIC). In our study, the model order is

taken as p = 10. Then the PSD results of each frequency

band are normalized to obtain the relative PSD of one band

to the whole frequency band.

Prelative ¼
Pf¼f2

f¼f1
Pðf Þ

Pf¼fH
f¼fL

Pðf Þ
ð4Þ

where [fL, fH] = [0.5, 40] and [f1, f2] is determined by the

frequency sub-band selected (Akin and Kiymik 2000;

Bennys et al. 2001; Dringenberg 2000).

Furthermore, in order to observe the topographical dis-

tribution of the power of different rhythms, 16-channel

EEG signals of all subjects are analyzed specifically in the

four bands.

Lempel–Ziv complexity

Lempel–Ziv complexity

The complexity of signal can be quantified by Lempel–Ziv

complexity (LZC; Lempel and Ziv 1976). As a nonlinear

complexity measure, LZC is well suited for characterizing

the development of spatio-temporal activity patterns in

high-dimensionality nonlinear systems, and it could reveal

the regularity and randomness in an epoch of time varying

EEG and gain the information regarding the dynamics of

the specific regional brain subsystem, such as brain func-

tion, movement prediction, anesthetized depth, and so on

(Czigler et al. 2008; Gianotti et al. 2007; Shaw et al. 1999).

LZC analysis is based on a coarse graining of the

measurements. First, the EEG signal with 8192 samples is

coded about the median by a binary sequence of zeros and

ones in the calculation of LZC. Then, the symbol sequence

is scanned from left to right and the complexity counter

c(n) is increased by one unit every time a new subsequence

of consecutive characters is encountered in the scanning

process, which is a useful measure describing the sequence

with length n and reflects the relative complexity of the

string x 2 0; 1½ �. c(n) tends to the value:

lim
n!1

cðnÞ ¼ bðnÞ ¼ n

log 2n
ð5Þ

where b(n) gives the asymptotic behavior of c(n) for a

random string. c(n) is normalized by b(n):

CðnÞ ¼ cðnÞ
bðnÞ ð6Þ

Obviously, 0 B C(n) B 1. After normalization, the com-

plexity measure reflects the rate of occurrences of new

pattern along with time increasing. The higher LZ com-

plexity value is, the higher complexity of the EEG signal is.

Multi-scale Lempel–Ziv complexity

In order to retain most of the detailed information during

the feature extraction, multi-scale Lempel–Ziv complexity

is introduced. Multi-scale LZC could overcome the dis-

advantage that the excessive coarse-graining leads to

detailed information lost too much in the traditional LZC.

The difference of the two LZC methods exists in the

approach of coarse-graining, and the steps of coarse-

graining in the multi-scale LZC can be described as

follows.

First, median value of EEG series is calculated as a

threshold T, which divides the series into two areas

according to the numerical relationship of each value of

EEG series and the median value. Moreover, each area is

divided into two areas in the same way. Thus, the EEG

series is divided into four areas.

Then, by comparison with the threshold T, the value of

the first point is converted into 0 or 1. If it is larger than the

median value, it is assigned 1, and vice versa.

s1 ¼ 0; x1\T

1 x1 � T

�
ð7Þ
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From the second point of the EEG series, the results of

encoding depend on the comparisons with the previous

point. If the value of EEG series is increased to another

area, then the value of this point is assigned to 1; if it is

decreased to another area, then the value of this point

assigned to 0; otherwise, if the two points are in the same

area, then the encoding value of the point equals to the

value of the previous point. Then the EEG series are

converted into a 0–1 sequence p ¼ s1; s2; . . .; snf g, with si
defined by

where 2� i� n: After extracting the features of EEG sig-

nals using multi-scale LZC analysis, it is possible to keep

more detailed information, and improve the accuracy of the

feature extraction. The steps of the multi-scale LZC anal-

ysis are depicted as a block diagram shown in Fig. 2.

Statistical analysis

One-way ANOVA test was used to assess significant

changes in the power spectral density and Lempel–Ziv

complexity for AD group and the control group. A smaller

P value and a larger F value indicate a higher group dif-

ference, and vice versa. Generally, P\ 0.01 was consid-

ered as the significance level in statistics.

The ability of the two methods to discriminate AD

patients from the normal controls where P\ 0.01 by

ANOVA was evaluated using receiver operating charac-

teristic (ROC) curves (Zweig and Campbell 1993), which

was based on the support vector machine (SVM) classifier.

SVM is a supervised classifier whose main objective is to

find an optimal separating hyperplane that can maximize

the distance between this hyperplane and the nearest data

point of each class (called the support vectors). In the case

of non-linear classification, kernel functions can be used to

map the nonlinear features to a higher dimensional space

where the features become linearly separable. In this work,

we used the radial basis function kernel. To improve the

performance of the classifier, a grid search approach was

used to find proper parameters for the SVM algorithm.

Results were showed in terms of sensitivity (i.e., pro-

portion of all AD patients who tests positive), specificity

(i.e., percentage of the normal controls correctly classified),

and accuracy (i.e., total fraction of AD and the normal

controls well classified) for all the available thresholds of

the SVM classifier [not the threshold T in Eq. (7)]. The

highest accuracy (minimal false negative and false positive

results) could be obtained at the optimum threshold which

was determined from the ROC curve as the closest value to

the left top point (100 % sensitivity, 100 % specificity).

Moreover, the area under the ROC curve (AUC) charac-

terized the performance of classification, for a perfect

classification the area is 1 while an AUC of 0.5 represented

a worthless test.

Results

Power spectrum density estimation

In this work, the relative power in each sub-band was

obtained by the ratio of the power in each sub-band and the

total power in the whole band. Figure 3 shows the relative

PSD values of AD group and the control group averaged

over 16 electrodes, the results of one way ANOVA is also

included in the figure. It can be observed that for both two

groups, the relative PSD decreased with the increase of the

frequency, except for the value of the control group in the

alpha frequency band. Moreover, the relative PSD in the

beta band was the lowest indicating that the energy dis-

tributed in this sub-band was lowest owing to that the beta

rhythm had something to do with less movement high

attention which was seldom occurred in eye-closed relax

state, neither AD patients nor normal subjects. Compared

with the control group, it was found that, the relative PSD

in the theta frequency band was increased, whereas

decreased in the remaining three frequency bands, such as

the delta, alpha, and beta frequency bands. Moreover, it

was shown that the group differences of the relative PSD

estimated by the AR Burg method were statistically sig-

nificant in the theta (P = 1.467 9 10-4\ 0.01) and alpha

frequency bands (P = 2.539 9 10-7\ 0.01).

To investigate the difference of energy distribution

between AD group and the control group in different brain

regions, the topographic maps of two groups in four sub-

bands are displayed in Fig. 4. In Fig. 4a, delta power was

activated at the frontal areas in AD group, but in control

group the power was almost distributed over the whole brain,

so the normalized differences between two groups were

si ¼
0; xi\xi�1 & xi and xi�1 are located at two different areas

1; xi � xi�1 & xi and xi�1 are located at two different areas

si�1; other

8
<

: ð8Þ
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distributed in the whole brain except the frontal regions. In

the Fig. 4b, the theta power was mainly activated in the

parietal and occipital regions in AD group and activated in

the frontal and parietal occipital regions in control group.

After normalization, the differences between two groups

were centered on parietal and occipital regions. The alpha

power (Fig. 4c) was widely distributed in the brain except

the frontal regions, whereas it was almost centered in the

occipital in control group and the normalized difference

group. The distribution of the beta power (Fig. 4d) was

mainly at the left frontal- temporal in AD group, while

located at right frontal- temporal in the other two groups. It

was a noteworthy contrast that when the frequency increased

from delta, theta, alpha, to beta rhythms, the activated areas

of both AD and control group were transferred from the

frontal regions of brain to the parietal regions, and then

transferred to the occipital regions, and finally traveled to the

frontal-temporal regions.

Lempel–Ziv complexity analysis

LZC and the multi-scale LZC were calculated for 16 chan-

nels: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,

T4, T5 and T6 to quantify the complexity in the EEG data of

Fig. 2 Multi-scale LZC block

diagram
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AD and control groups. The results have been averaged

based on all the artefact-free 8 s epochs (N = 8023 points)

within the 5-min period of EEG recordings. Figure 5 and

Table 1 showed the statistical results of LZC and multi-scale

LZC analysis in the delta, theta, alpha and beta frequency

bands for the two groups. It was noted that, the group dif-

ference was all significant in the alpha frequency band,

returning P = 0.0002, F = 16.72 with LZC analysis and

P = 0.0000169, F = 24.23 with multi-scale LZC analysis.

However, the group difference by multi-scale LZC method

was much more remarkable.

LZC and multi-scale LZC analysis were further applied to

all pair-wise EEG channels for AD group and the control

group in the alpha frequency band, where the relative PSD

and LZC mentioned above all had significant group differ-

ence. As shown in Fig. 6, for the both methods, the values of

AD group were much lower than that of the control group.

However, the group difference of the multi-scale LZC values

was higher than the LZC values. Moreover, the trends of the

multi-scale LZC values were similar the trends of the LZC

values for AD group, while slight different for the control

group, particularly in the channel F3 and C4. These results

suggest that EEG activity of AD patients is markedly less

complex in certain regions than in a normal brain, indicating

the number of different patterns in EEG signal of AD is

smaller than the EEG of normal controls.

The average LZC and multi-scale LZC values and

standard deviations for AD groups and the control group

for the 16 electrodes are summarized in Tables 2 and 3.

The AD group has significantly lower LZ complexity

values (P\ 0.01) at electrodes FP2, F4, P3, P4, O1, O2,

F8, T3, T5 and T6 for the traditional two-symbol sequence

conversion, particularly in O1 and O2, where the group

difference was much more significant with P\ 0.001.

While the group difference was significant in all channels

except F3 by the multi-scale LZC method. Especially, the

channel FP2, P3, P4, O1, O2, F8, T3, T5 and T6 obtained

the significance level P\ 0.001. Obviously, the multi-

scale LZC method was much more sensitive than the tra-

ditional LZC method to evaluate the group difference.

The effects of the traditional LZC and multi-scale LZC

analysis on O1 and O2 channel in the alpha frequency band

were exhibited in Fig. 7, on which significant groups dif-

ferences of both relative PSD and LZC analysis existed

(Tables 2, 3; Fig. 6). Seen from Fig. 6, both the LZC and

the multi-scale LZC value of the control group for O1 and

O2 was much higher than that of AD group. However, the

multi-scale LZC achieved a better result in the clustering

compared with the results of traditional LZC method,

manifested as smaller overlap area between AD group and

the control group. This may be due to the fact that the

multi-scale LZC conversion could keep more detailed

information of the EEG during the coarse-graining process.

In order to make a comparison of LZC and multi-scale

LZC methods, the classification of AD and the control group

by the two LZC methods was further executed. The corre-

sponding ROC curves which summarized the performance

of a two-class classifier were shown in Fig. 8. Each point of

the curves corresponds to a classification threshold. We

calculated the areas under the ROC curve (AUC) of the

features in the figure. Generally, the larger the AUC is, the

better the classification is. From Fig. 9, it was shown that the

AUC of the multi-scale LZC value in the alpha frequency

was larger than that of LZC value. In addition, the results of

the sensitivity, specificity, AUC and accuracy for the two

methods were shown in the first two lines of Table 4. It was

found that multi-scale LZC value provided a better classifi-

cation between the two groups with an accuracy of 85.7 %.

Moreover, the sensitivity, specificity and AUC reached were

86.8, 84.3 and 91.12 %, respectively.

Finally, the classification results of the two groups by

the multi-scale LZC, PSD and the combined feature were

displayed in Fig. 9 and Table 4. The best classification was

achieved using the combined feature with an accuracy of

91.4 %. Moreover, the highest sensitivity, specificity and

AUC were reached, which are 100, 82.9 and 98.86 %,

respectively. It could be concluded that the combined

feature provided a better classification between the two

groups than any other features.

Discussion

In this study, we analyzed the EEG background activity of

14 AD patients and 14 age-matched normal controls.

Relative PSD and Lempel–Ziv complexity were calculated

Fig. 3 The relative PSD values averaged over the 16 electrodes in the

four frequency bands for AD group and control group. Standard

errors are represented with error bars. P values returned by one way

ANOVA are also displayed
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to quantify the abnormalities of spectrum and complexity

in AD patients. PSD has been applied in order to investi-

gate the topographical differences in EEG power distribu-

tions and LZC due to its possible relation to non-linear

dynamics of the EEG signal.

Compared with the normal controls, the relative PSD

values of AD patients were significantly increased in the

theta frequency band while markedly decreased in the

alpha frequency band, particularly in the parietal and

occipital regions. Considering the fact that the relative

PSD is correlated with the energy, the results obtained

suggest that brains affected by AD show a slower

rhythmic behavior. These alterations could reflect two

different pathophysiological changes: the relative PSD

decrease of the higher frequencies (alpha frequency band)

could be related to alterations in cortico-cortical

Fig. 4 Topographic maps of PSD values for AD group (left), the control group (middle), and the normalized differences between two groups

(right) in a delta, b theta, c alpha and d beta sub-band, respectively
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connections, whereas the increase of the lower frequen-

cies (theta frequency band) could be related to the lack of

influence of subcortical cholinergic structures on cortical

electrical activity (Moretti et al. 2009; Jeong 2004). Our

findings are also in accordance with other studies showing

spectral ‘‘slowing’’ in AD. For instance, Jeong have

observed a higher power in the theta frequency band in

the resting EEG in AD patients (Jeong 2004). Dauwels

et al. have further demonstrated that AD patients showed

an increase of delta and theta spectrum and a decrease of

alpha and beta spectrum (Dauwels et al. 2010a).

In addition to the spectrum analysis, the LZC and multi-

scale LZC methods are employed to investigate the com-

plexity abnormalities in the EEG of AD patients. It was

observed that both LZC and multi-scale LZC values are

significantly decreased in the alpha band, indicating a loss

of EEG complexity in AD patients. This alteration might

be a result of neurotransmitter deficiency, neuronal death

and loss of connectivity (Gómez et al. 2007; Stam et al.

2007). In spite that both nonlinear methods could distin-

guish AD group from the control group, the multi-scale

LZC showed better discriminating ability, manifested as

greater group difference and higher classification accuracy.

This may be due to the fact that the LZC method ignores

the relationship between adjacent points during the coarse-

graining process, leading to a great loss of detailed infor-

mation, especially when the point is close to the threshold

(median value), and the converted 0–1 sequence could only

reflect the amplitude change characteristics based on the

median value.

The obtained results are consistent with the previous

studies that have revealed that the development of AD is

Fig. 5 The average traditional

LZC values (a) and the average

multi-scale LZC values

(b) averaged over the 16

electrodes in the four frequency

bands for AD group and control

group. Standard errors are

represented with error bars.

Asterisk represents significant

difference between two groups

with P\ 0.01 by ANOVA

analysis

Table 1 Results of ANOVA analysis for traditional LZC and multi-

scale LZC of the four frequency bands between AD and control group

Method Sub-band F value P value

LZC Delta 0.11 0.7367

Theta 1.47 0.2322

Alpha 16.72 0.0002

Beta 1.22 0.2756

Multi-scale LZC Delta 0.22 0.6466

Theta 6.63 0.0124

Alpha 24.23 1.69e205

Beta 0.63 0.4318

Significant group differences (P\ 0.01) are shown in boldface

Fig. 6 The average traditional LZC values (a) and the average multi-

scale LZC values (b) of the EEGs in AD group and control group for

all channels
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associated with the reduction of complexity in EEG. By

now, many non-linear methods have been applied to ana-

lyze the features of brain activity of AD and a significant

amount of interesting results are reported. For instance,

Besthorn et al. have found that D2 values are significantly

lower in the EEG of AD patients than in those of the

controls. Additionally, it has been suggested that the

decrease of D2 values was associated with the severity of

dementia (Besthorn et al. 1997). Jeong et al. (1998) also

have found lower D2 and L1 values in AD group compared

with the control group. Moreover, entropy, a key index to

measure the disorder degree of signal, is also widely

employed for studies of the cognitive mental states and

chaotic behavior of AD brain activity. Escudero et al.

(2006) have shown that AD patients usually have lower

sample entropy values than the normal by multi-scale

entropy analysis. Abasolo et al. further found significant

decrease of sample entropy values in the parietal and

occipital regions when compared with the normal controls

(Abasolo et al. 2006a), and a decrease of approximate

entropy values in the parietal region for AD patients also

was observed (Abasolo et al. 2005). Compared with these

Table 2 The average LZC

values of the EEGs in all

channels for AD group and the

control group

Electrode AD group (mean ± SD) Control group (mean ± SD) P value

Fp1 0.229 ± 0.026 0.238 ± 0.019 0.1944

Fp2* 0.223 ± 0.019 0.247 ± 0.026 0.0018

F3 0.232 ± 0.016 0.246 ± 0.017 0.0159

F4* 0.228 ± 0.015 0.247 ± 0.023 0.0041

C3 0.237 ± 0.013 0.246 ± 0.017 0.0651

C4 0.231 ± 0.017 0.244 ± 0.034 0.1506

P3* 0.230 ± 0.015 0.245 ± 0.014 0.0027

P4* 0.227 ± 0.019 0.247 ± 0.017 0.0015

O1** 0.225 ± 0.017 0.246 ± 0.014 0.0001

O2** 0.226 ± 0.016 0.247 ± 0.014 0.0001

F7 0.241 ± 0.020 0.243 ± 0.015 0.7967

F8* 0.235 ± 0.013 0.250 ± 0.020 0.0099

T3* 0.240 ± 0.019 0.265 ± 0.032 0.0051

T4 0.245 ± 0.017 0.258 ± 0.022 0.0603

T5* 0.232 ± 0.018 0.250 ± 0.015 0.0022

T6* 0.225 ± 0.019 0.247 ± 0.021 0.0013

* and ** represent significant difference between the two groups with P\ 0.01 and P\ 0.001 respectively

Table 3 The average multi-

scale LZC values of the EEGs in

all channels for AD group and

the control group

Electrode AD group (mean ± SD) Control group (mean ± SD) P value

Fp1* 0.213 ± 0.019 0.230 ± 0.019 0.0073

Fp2** 0.210 ± 0.021 0.240 ± 0.020 3.48e-05

F3 0.226 ± 0.016 0.236 ± 0.014 0.0350

F4* 0.220 ± 0.016 0.238 ± 0.020 0.0027

C3* 0.223 ± 0.015 0.238 ± 0.014 0.0023

C4 0.223 ± 0.017 0.238 ± 0.032 0.0681

P3** 0.220 ± 0.013 0.240 ± 0.011 6.14e-06

P4** 0.219 ± 0.019 0.241 ± 0.012 7.51e-05

O1** 0.215 ± 0.016 0.242 ± 0.011 3.23e-07

O2** 0.219 ± 0.016 0.242 ± 0.014 3.10e-05

F7 0.228 ± 0.019 0.233 ± 0.013 0.2861

F8** 0.221 ± 0.014 0.243 ± 0.019 2.32e-04

T3** 0.226 ± 0.017 0.257 ± 0.030 3.91e-04

T4* 0.234 ± 0.016 0.250 ± 0.021 0.0099

T5** 0.222 ± 0.016 0.241 ± 0.013 1.87e-04

T6** 0.217 ± 0.019 0.241 ± 0.015 1.62e-04

* and ** represent significant difference between the two groups with P\ 0.01 and P\ 0.001 respectively
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nonlinear methods, LZ complexity is non-parametric and

very easy to compute. Only the differences between

activity patterns that make a difference to the underlying

system itself are considered. Therefore, the LZ complexity

based method may be a convenient and fast technique in

the analysis of bioelectricity signals.

It has also been found that both the relative PSD and

LZC values of AD group are lower than that of control

group in the alpha frequency band, particularly in parieto-

occipital brain areas, which might represent the cognitive

dysfunction. Our findings are similar to the previous

studies which have shown a slowing and complexity

decrease of EEG. However, these studies only applied one

separate feature, either PSD or LZC, to classify AD

patients and the normal controls. Here, we attempted to

improve the accuracy of the classification of the two groups

by combining the relative PSD and multi-scale LZC fea-

tures. A ROC curve was used to assess the ability of the

combined feature in discriminating AD patients from the

normal controls. With the combined feature, an accuracy of

91.4 % (100 % sensitivity; 82.9 % specificity) was

achieved, which was higher than the accuracy with only

relative PSD or multi-scale LZC. This implies that a

combined feature could characterize the abnormalities of

EEG in AD patients in a more comprehensive way.

Fig. 7 Scatter plots of average

a LZC and b multi-scale LZC

values of the EEGs on O1 and

O2 channel for AD group and

the control group in the alpha

frequency band

Fig. 8 ROC curves which assesses the classification performance

between AD patients and the normal controls in the alpha band with

LZC and multi-scale LZC. In addition, the green dotted line is known

as the ‘‘no-discrimination line’’ and corresponds to a classifier which

returns random guesses. (Color figure online)

Fig. 9 ROC curves for discriminating AD patients and normal

controls with PSD, multi-scale LZC and their combined feature

Table 4 Results of the ROC analysis for the PSD, LZC, multi-scale

LZC and the combined features of PSD and multi-scale LZC,

including sensitivity, specificity, area under the ROC curve (AUC)

and accuracy

Method Sensitivity

(%)

Specificity

(%)

AUC Accuracy

(%)

LZC 80.0 78.1 0.8921 78.5

Multi-scale LZC 86.8 84.3 0.9112 85.7

PSD 97.1 80.0 0.8955 88.5

Multi-scale

LZC ? PSD

100.0 82.9 0.9886 91.4
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Classification evaluation has been widely used to dis-

tinguish AD group and the control group in previous

works. For instance, Besthorn et al. (1997) achieved an

accuracy of 69.5 % using D2, which is actually not suit-

able for the non-stationary signals such as EEG. Abasolo

et al. further obtained an accuracy of 77.3 % with sample

entropy at electrode P3, P4, O1 and O2 (Abasolo et al.

2006a) and 81.8 % with conventional LZC at electrode P3,

P4, O1 (Abasolo et al. 2006b). However, their results are

based on single electrode and the whole frequency band

rather than the specific bands with significant group dif-

ference between AD patients and the normal controls. In

addition to the above classification difference between this

study with the previous researches, the difference of sex,

age and severity of disease between AD groups may be

another important reason for the differences in the classi-

fication results.

Conclusions

In this paper, we have investigated the abnormalities of

corticocortical response of AD patients by analyzing rela-

tive PSD, Lempel–Ziv complexity and multi-scale Lem-

pel–Ziv complexity of scalp-recorded EEG signals. By the

analysis of relative PSD, significant energy abnormalities

were found in the theta and alpha band of AD EEG. And

through the analysis of LZC and multi-scale LZC, the

complexity of EEG in AD patients was found significantly

decreased in most brain regions. In addition, the multi-

scale LZC method is more suitable for the discrimination

of AD patients and the normal controls. Finally, the com-

bined feature of relative PSD and multi-scale LZC was

used to improve the classification of the two groups. The

results indicated that the combined feature performed

better than any one feature. Therefore, the slowing of

power and the loss of complexity may well represent a

significant aspect of cognitive dysfunction in AD. The

abnormalities of AD brain in the alpha frequency band, as

revealed through the relative PSD and multi-scale LZC

features could be used as potential features to distinguish

AD patients from the normal effectively. Moreover, a lar-

ger cohort of clinical patients with different stages of AD

may be necessary in our further study of the disease.
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Abasolo D, Hornero R, Gómez C, Garcia M, Lopez M (2006b)

Analysis of EEG background activity in Alzheimer’s disease

patients with Lempel–Ziv complexity and Central Tendency

Measure. Med Eng Phys 28:315–322

Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos

methodology for analysis of EEGs and EEG subbands to detect

seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211

Ahmadlou M, Adeli H, Adeli A (2010) New diagnostic EEG markers

of the Alzheimer’s disease using visibility graph. J Neural

Transm 117(9):1099–1109

Akin M, Kiymik MK (2000) Application of periodogram and AR

spectral analysis to EEG signals. J Med Syst 24:247–256

Babiloni C, Vecchio F, Bultrini A, Romani GL, Rossini PM (2006)

Pre- and poststimulus alpha rhythms are related to conscious

visual perception: a high-resolution EEG study. Cereb Cortex

16:1690–1700

Bennys K, Rondouin G, Vergnes C, Touchon J (2001) Diagnostic

value of quantitative EEG in Alzheimer’s disease. Neurophysiol

Clin 31:153–160

Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S,

Schreiter-Gasser U, Forstl H (1997) Discrimination of Alzhei-

mer’s disease and normal aging by EEG data. Electroen-

cephalogr Clin Neurophysiol 103:241–248

Claus JJ, Strijers RL, Jonkman EJ, Ongerboer de Visser BW, Jonker

C, Walstra GJ, Scheltens P, van Gool WA (1999) The diagnostic

value of electroencephalography in mild senile Alzheimer’

disease. Clin Neurophysiol 110:825–832

Czigler B, Csikós D, Hidasi Z, Gaál ZA, Csibri E, Kiss E, Salacz P,

Molnár M (2008) Quantitative EEG in early Alzheimer’s disease

patients-power spectrum and complexity features. Int J Psy-

chophysiol 68:75–80

Dauwels J, Vialatte F, Latchoumane C, Jeong J, Cichocki A (2009)

Loss of EEG synchrony in early-stage AD patients: a study with

multiple synchrony measures and multiple EEG data sets. In:

Proceedings of the 31st annual international conference of the

IEEE engineering in medicine and biology society, 2009

Dauwels J, Vialatte F, Cichocki A (2010a) Diagnosis of Alzheimer’s

disease from EEG signals: where are we standing? Curr

Alzheimer Res 7:487–505

Dauwels J, Vialatte F, Musha T, Cichocki A (2010b) A comparative

study of synchrony measures for the early diagnosis of

Alzheimer’s disease based on EEG. Neuroimage 49(1):668–693

Dauwels J, Srinivasan K, Reddy MR, Musha T, Vialatte FB,

Latchoumane C, Jeong J, Cichocki A (2011) Slowing and loss

of complexity in Alzheimer’s EEG: two sides of the same coin?

Int J Alzheimers Dis 539621

Dringenberg HC (2000) Alzheimer’s disease: more than a ‘cholin-

ergic disorder’-evidence that cholinergic-monoaminergic inter-

actions contribute to EEG slowing and dementia. Behav Brain

Res 115:235–249

Eckmann JP, Ruelle D (1992) Fundamental limitations for estimating

dimensions and Lyapunov exponents in dynamical systems. Phys

D 56:185–187

Escudero J, Abásolo D, Hornero R, Espino P, López M (2006)
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Gómez C, Hornero R, Abásolo D, Fernández A, Escudero J (2007)

Analysis of the magnetoencephalogram background activity in

Alzheimer’s disease patients with auto-mutual information.

Comput Methods Programs Biomed 87(3):239–247

Grassberger P, Procaccia I (1983) Characterization of strange

attractors. Phys Rev Lett 50(5):346–349

Gu FJ, Meng X, Shen EH, Cai ZJ (2003) Can we measure

consciousness with EEG complexities? Int J Bifurc Chaos

13:733–742

Han CX, Wang J, Yi GS, Che YQ (2013) Investigation of EEG

abnormalities in the early stage of Parkinson’s disease. Cogn

Neurodyn 7(4):351–359

Hornero R, Abásolo D, Escudero J, Gómez C (2009) Nonlinear
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