
ORIGINAL ARTICLE

Cadmium overkill: autophagy, apoptosis and necrosis signalling
in endothelial cells exposed to cadmium

Barbara Messner1
• Adrian Türkcan1

• Christian Ploner2
• Günther Laufer1

• David Bernhard3

Received: 20 August 2015 / Revised: 23 October 2015 / Accepted: 9 November 2015 / Published online: 20 November 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Apoptosis, necrosis, or autophagy—it is the

mode of cell demise that defines the response of surround-

ing cells and organs. In case of one of the most toxic

substances known to date, cadmium (Cd), and despite a

large number of studies, the mode of cell death induced is

still unclear. As there exists conflicting data as to which cell

death mode is induced by Cd both across various cell types

and within a single one, we chose to analyse Cd-induced

cell death in primary human endothelial cells by investi-

gating all possibilities that a cell faces in undergoing cell

death. Our results indicate that Cd-induced death signalling

starts with the causation of DNA damage and a cytosolic

calcium flux. These two events lead to an apoptosis sig-

nalling-related mitochondrial membrane depolarisation and

a classical DNA damage response. Simultaneously, autop-

hagy signalling such as ER stress and phagosome formation

is initiated. Importantly, we also observed lysosomal

membrane permeabilization. It is the integration of all sig-

nals that results in DNA degradation and a disruption of the

plasma membrane. Our data thus suggest that Cd causes the

activation of multiple death signals in parallel. The geno-

type (for example, p53 positive or negative) as well as other

factors may determine the initiation and rate of individual

death signals. Differences in the signal mix and speed may

explain the differing results recorded as to the Cd-induced

mode of cell death thus far. In human endothelial cells it is

the sum of most if not all of these signals that determine the

mode of Cd-induced cell death: programmed necrosis.
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Abbreviations

Cd Cadmium

HUVEC Human umbilical vein cells

ICAM-1 Intracellular adhesion molecule-1

VCAM-1 Vascular cell adhesion molecule-1

NO Nitric oxide

ROR Reactive oxygen radicals

Ca2? Calcium

PI Propidium iodide

EGTA Ethylene glycol tetra-acetic acid

EDTA Ethylenediaminetetraacetic acid

ER Endoplasmatic reticulum

2APB 2-Aminoethoxydiphenyl borate

KD Knock down

OE Over-expression

3MA 3-Methyladenine

LDH Lactate dehydrogenase

LMP Lysosomal membrane permeabilization
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Introduction

Cadmium (Cd) is a toxic heavy metal and pollutant which

is ubiquitously distributed in our environment. Human

uptake occurs mainly by diet and exposure to cigarette

smoke [1, 2]. The primary target organs in the human

body are the kidneys, liver, testes, bones [1–5] and those

of the cardiovascular system [6]. Furthermore, Cd is also

known to be carcinogenic within different organs and

tissues, which has led the International Agency for

Research on Cancer to classify Cd as a Group I human

carcinogen [7, 8].

Based on the variety of target organs of Cd-induced

toxicity, a mass of in vitro data exists investigating the

effect of Cd on different cell types. Further, Cd triggers

different pathways within different cell types, rendering the

landscape even more complex. In this respect one of the

most useful examples is in Cd-induced cell death. In gen-

eral and based upon knowledge gained thus far cell death

may be classified into apoptosis, necrosis and autophagy,

whereby, above all, detailed molecular and biochemical

analyses are indicative of an alternative classification. In

this regard, the morphological system of classification is

being replaced by a functional system based on the

demonstration of detailed signalling pathways and

involved molecules [9]. Further adding to the complexity

of signalling pathways in response to Cd toxicity, outcome

is also dependent on Cd concentration; this may serve to

explain some of the contradictory reports presently existing

as to Cd-induced cell death. Interestingly, a review of lit-

erature revealed that even within one cell type different

pathway outcomes are described. Important examples of

contradictory findings regarding the Cd-induced cell death

signals and final outcome are found in experiments per-

formed upon kidney cells. Different in vitro studies have

revealed highly diverse signalling pathways, ranging from

caspase-independent [10] to caspase-dependent [11–14]

apoptosis, although nearly all apoptotic cell death signals

have in common an attendant impairment of the mito-

chondria. Additionally, several studies performed upon

kidney cells have demonstrated autophagic signals [15], as

well as signals for apoptosis and necrosis [16–18] or

apoptosis and autophagy [19, 20] within the same cell type.

Similarly, Lemaire et al. has reported caspase independent

Cd-induced cell death in liver cells [21], whereas within

the same cells, Oh et al. and Lasfer et al. provided evidence

of caspase-dependent apoptotic signals [22, 23].

In addition to accumulating in known tissues such as the

kidney, liver and bone, increased Cd concentrations were

detected in blood serum and aortic walls (up to 20 lM) [6]

of young smokers [24]. Beyond that, we and others have

demonstrated that Cd is a risk factor for the development of

atherosclerosis leading to fatal cardiovascular outcomes

[24–29]. Thus, in addition to activating the cell death

machinery [30–32] Cd exerts further effects on endothelial

cells. These effects include increased expression of the

adhesion molecules ICAM-1 [33, 34] and VCAM-1 [35]

which possibly facilitates the adhesion and trans-endothe-

lial migration of leucocytes leading to vascular

inflammation. Furthermore, Cd treatment is known to

attenuate the production of the essential vascular signalling

molecule nitric oxide (NO) [36–38] thereby reducing the

responsiveness of the vascular wall to essential signals. In

2000, Liu et al. demonstrated the genotoxic effect of Cd in

endothelial cells as a result of the production of reactive

oxygen radicals (ROR). [39] Cd-caused endothelial dys-

function is triggered by defective migratory ability of

endothelial cells and inhibited angiogenesis. [40, 41]

Ultimately, exposure of endothelial cells to Cd once again

initiates cell death signals with inconsistent findings

regarding the final fatal outcome. Kim et al. and Jung et al.

have postulated a caspase-dependent apoptotic signalling

pathway [30, 31] whereas Wolf et al. detected evidence of

cell membrane damage and therefore necrosis [32].

Recently, a study conducted by Dong et al. revealed a

novel pathway, whereby Cd-induced apoptotic signals are

inhibited and rather autophagy is induced [42]. The process

of Cd-induced endothelial cell death becomes further

complicated still, as we have now shown that Cd triggers a

programmed form of necrotic cell death accomplished by

the rupture of lysosomes [43].

Taken together, the results concerning Cd-induced cell

death signalling in endothelial cells are inconsistent. Pro-

ceeding from the results of a previous study by our group

[43] in which we analysed the effect of Cd as a new risk

factor for atherosclerosis development on endothelial cells,

the present study aims to provide a highly detailed

description of cell death signals within Cd-exposed

endothelial cells, from Cd uptake over initiated signalling

pathways and involved organelles right up to cell

execution.

Materials and methods

Cell culture

A detailed description of the isolation of endothelial cells

(HUVECs) of umbilical cords is described elsewhere [44].

The isolation and analyses of the used cells is approved by

the Ethics Committee of the Medical University of Vienna

(EK Nr. 1183/2012). Endothelial cells were cultured on

gelatine-coated (Sigma Aldrich, Austria) polysterene culture

flasks (TPP, Switzerland) in a specialised endothelial cell
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culture medium (EGM-2, Lonza). Prior to each experiment,

the medium was replaced by fresh medium containing the

indicated Cd concentrations. The following inhibitors were

used: 50 lM calpain-inhibitor III (MDL 28170, Sigma

Aldrich, Germany), 2 mM 3-Methyladenine (3MA; M9281,

Sigma Aldrich, Germany) and 50 lM 2-Aminoethyl

diphenylborinate (2APB, D9754, Sigma Aldrich, Germany),

100 lM Dantrolene (550-072-M050, Eubio) and 10 lM

BAPTA (BML-CA411-0025, Enzo Lifesciences).

Comet assay

To detect DNA damage in endothelial cells after Cd treatment,

a Comet-assay was performed according to the manufac-

turer’s instructions (Trevigen, Cat.No.: #4250-050-K).

Generation of stable BCL-XL OE cells as well as p53

KD HUVECs

Generation of stable BCL-XL OE cells and knock-down of

p53 in endothelial cells was performed as previously

described [43]. Monitoring of stable p53 KD and BCL-XL

OE in endothelial cells is shown in the Supplemental

Material, Figure S10, S11.

Quantification of intracellular Ca21 concentration

After the treatment, cells were incubated with 1 lM FLUO

3/AM (Calbiochem, # 343242), a cell-permeable Ca2?

indicator that exhibits an increase in fluorescence upon Ca2?

binding. Increase in fluorescence intensity after Cd treatment

was detected using flow cytometry analysis (FACS Canto II,

BD Biosciences) and quantified as change in the intensity as

compared to the control level. We used BAPTA-AM (BML-

CA411-0025, Enzo Life Sciences) at a concentration of

10 lM as a sensitive intracellular Ca2? chelator.

Detection of intracellular Cd

After treatment the cells were handled as indicated by the

manufacturer’s instructions (LeadmiumTM Green AM Dye

for intracellular Detection of Lead and Cadmium; Life

Technologies, Cat.No.: 10024) and analysed by flow

cytometry (FACS Canto II, BD Biosciences, Germany).

Detection of changes in the mitochondrial

membrane potential and staining of mitochondria

After the treatment, cells were enzymatically detached,

washed with PBS and incubated with 5 lM JC-1 according

to the manufacturer’s instructions (Molecular Probes, Aus-

tria). Analysis and quantification of changes in the

fluorescence intensity, indicating depolarised mitochondria,

was performed using a FACS Canto II (BD Biosciences,

Germany). Tracking of the cellular distribution of mito-

chondria in Cd-treated cells as compared to the control cells

was performed using Mitotracker� Red FM and according to

the manufacturer’s instructions (Life Technologies, Molec-

ular Probes).

Tracking of lysosome stability

Labelling of lysosomes was performed as previously descri-

bed in Messner et al. [43]. Endothelial cells with or without an

inhibitor and p53 KD cells were incubated with 15 lM Cd and

30 lM Cd, respectively for the indicated times.

Western blot analyses

Whole protein extracts from Cd-treated and control cells were

obtained by incubation of detached cells in a triple detergent

lysis buffer (50 mM Tris-Chloride, 150 mM Sodium Chlo-

ride, 0.02 % Sodium Azide, 0.1 % SDS, 1 % Nonident P-40,

0.5 % Sodium Deoxycholate, 5 lg/ml Aprotinin, 1 lg/ml

Leupeptin, 1 lg/ml Pepstatin and 1 mM ABESF). Cells were

lysed by repeated freezing and thawing and subsequent son-

ication. After determination of protein concentration, equal

amounts of proteins were separated (20 lg) on SDS–poly-

acrylamide gels and subsequently transferred onto a

nitrocellulose membrane (Schleicher and Schuell, Germany).

The primary antibody used was anti-phospho S51 eIF2 alpha

(ab47769; Abcam, UK; dilution: 1:750). The secondary

antibody used was goat anti-rabbit IgG HRP-conjugate

(#31460, Thermo Scientific, Austria). To control loading of

equal protein amounts, membranes were stained with Ponceau

S and the GAPDH expression (ab9485; Abcam, UK, dilution

1:2500) was analysed using Western blotting (secondary

antibody: goat anti-rabbit IgG HRP-conjugate #31460,

Thermo Scientific, Austria). Quantification of bands was

performed using ImageJ software (National Institute of

Health) and the ratios of the band intensities (GAPDH to

specific eIF2 alpha S51) were calculated.

Quantification of cell death

For the analysis and quantification of Cd-induced cell

death, different methods were used. Annexin V/PI staining

served for the discrimination of apoptotic and necrotic cell

death. The staining of the cells was performed as described

in Bernhard et al. [44]. And the quantification was per-

formed using a flow cytometry device (FACS Canto II, BD

Biosciences, Germany). Annexin V and PI positive cells

were summarised and quantified compared to correspond-

ing controls to display all dead cells. Furthermore, the

effect of Cd on the cell membrane integrity of endothelial

cells was analysed by the quantification of lactate
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dehydrogenase (LDH) release using the LDH cytotoxicity

kit II (Biovision) according to the manufacturer’s instruc-

tions. Released LDH was quantified as compared to the

LDH content of the entire cell.

Detection and quantification of cellular DNA content

and PI staining

After permeabilization of cell membranes with 1 mg/ml of

saponin, the DNA was stained with PI and the DNA content

was then quantified by flow cytometry (FACS Canto II, BD

Biosciences, Germany). Moreover, cells were cultivated in

Lab Teks (BD Biosciences) and treated with 15 and 30 lM

Cd, respectively for 48 h. After fixation with 4.5 %

paraformaldehyde, cells were permeabilized with 0.2 %

Triton X-100 and cell nuclei were stained with PI (1 mg/ml).

Scanning electron microscopic images of Cd-treated

endothelial cells

Fixation of treated cells was performed using 2.5 % glu-

taraldehyde. Thereafter, cells were dehydrated in a graded

ethanol series (70, 90, 100, 100, 100 %, and acetone), des-

iccated by critical point drying (Emitech K850; Quorum

Technologies LTD, West Sussex, UK), mounted, sputtered

with gold–palladium (Polaron CA 508; Fisons Instruments,

Mainz-Kastel, Germany) and examined with a JEOL JSM—

5400 scanning electron microscope (Eching, Germany).

Statistical analysis

Primary data were tested for a Gaussian distribution and

equality of variances. Equal distributed data were subjected

either to student’s t Test or to one-sided ANOVA. Statis-

tical analyses were performed using IBM SPSS Statistics

20.0 (SPSS Inc. USA).

Results

Chelation of Cd by EGTA prevents toxicity and Cd

treatment induces DNA strand breaks in endothelial

cells

Pre-treatment of Cd incubated endothelial cells with the

Ca2? (Calcium) chelator EGTA (ethylene glycol tetra-

acetic acid) significantly reduces the toxicity of this heavy

metal. Quantification of flow cytometry-based Annexin

V/Propidium Iodide (PI) staining revealed a significant

inhibition of Cd-induced cell death by increasing EGTA

concentrations after treatment with 15 or 30 lM Cd

(Fig. 1a). To analyse the genotoxic effects of Cd on

endothelial cells, a Comet-Assay was performed. Figure 1c

shows representative images of the Comet Assay from both

control and Cd-treated cells after 12 h. The amount of

Comet positive cells after Cd treatment was quantified and

the results are displayed in Fig. 1b. Massive DNA strand

breaks are observed after treatment with 15 or 30 lM Cd.

However, no influence of Cd on the cell cycle could be

observed (Supplemental Material, Figure S5).

Cd treatment provokes an increase in intracellular

Ca21 concentration

In addition to the rapid genotoxic effect, Cd provokes a

significant increase in intracellular Ca2? concentration,

already detectable after 1 h of incubation (Supplemental

Material, Figure S1). Furthermore, the involvement of the

Ca2? sensitive non-lysosomal cysteine protease calpain

was analysed by the usage of the calpain I and II inhibitor

(MDL 28170) showing a significant inhibition of Ca2? flux

in cells treated with 15 lM Cd, but no effect in cells treated

with 30 lM Cd after 24 h (Fig. 2b). To rule out the role of

p53 in Cd-induced cell death as previously suggested [43],

we generated p53 KD endothelial cells to address the

question of whether Cd-induced DNA breaks result in a

p53-dependent cell death response. Although p53 is

involved in the Cd-induced cell death pathway, a knock-

down of p53 was not able to inhibit the intracellular Ca2?

flux induced by Cd after 24 h (Fig. 2a).

Involvement of BCL-XL in Cd-induced Ca2? flux was

analysed using endothelial cells overexpressing this anti-

apoptotic protein, and Fig. 2c shows that this overexpression

is highly efficient in inhibiting Ca2? flux. To test the

hypothesis that Cd treatment induces a substantial release of

Ca2? from the endoplasmatic reticulum (ER), 2APB (2-

Aminoethoxydiphenyl borate) was used to inhibit InsP3

(Inositol 1,4,5-triphosphate)-mediated Ca2? release. Flow

cytometry-based analyses uncovered that 2APB incubation

is not able to inhibit Cd-induced Ca2? flux entirely, but does

so significantly as observed 24 h after treatment with 30 lM

(Fig. 2d). Referring to the controversially discussed speci-

ficity of 2APB as restricted to ER Ca2? pumps, we analysed

the effect of this inhibitor upon the cellular Cd uptake.

Leadmium-dye-based intracellular Cd quantification indi-

cates that 2APB significantly inhibits Cd uptake (Fig. 2e).

Cd treatment induces mitochondrial membrane

depolarisation and changes in the mitochondrial

distribution

Further in-depth characterisation of Cd-induced cell death

signals uncovered an involvement of the mitochondria.

Treatment of endothelial cells with 15 lM Cd as well as

30 lM Cd provokes a significant depolarisation of the

mitochondria over an incubation period of 72 h (Fig. 3). As
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calpains are also present in the mitochondria, the effect of

the calpain inhibitor on mitochondrial depolarisation was

tested. Figure 3a shows that the calpain inhibitor was

efficient in inhibiting the depolarisation after treatment

with 15 and 30 lM Cd over a period of 72 h. A

stable overexpression of the anti-apoptotic protein BCL-

XL was able to inhibit mitochondrial depolarisation

although the effect is less pronounced as compared to the

effect of the calpain inhibitor (Fig. 3b). A similar inhibi-

tory effect on mitochondrial depolarisation was detected in

cells with a stable p53 knock-down (KD) (Fig. 3c). Fur-

thermore, chelation of Ca2? by the chelating agent BAPTA

completely inhibits mitochondrial depolarisation induced

by 15 lM Cd after 48 h, but showed no effect after treat-

ment with 30 lM Cd or after a longer Cd exposure (up to

72 h). However, this effect can be explained by the cell-

toxic effect of BAPTA treatment itself (Fig. 3d). A detailed

analysis of mitochondrial structure revealed severe Cd-

dependent effects on mitochondrial mass (Fig. 3e, 15 lM)

and integrity (Fig. 3e, 30 lM). This strongly suggests that

Cd-induced cell death is mediated by mitochondria

integrity.

Lysosomal membrane permeabilization

and induction of autophagy signals are

characteristic of death signalling in Cd-treated

endothelial cells

As already reported by our group, Cd treatment of

endothelial cells induces autophagy signals (namely, an

increase in LC3 I to LC3 II ratio). As the lysosomes are

involved in autophagy signalling, we analysed stability of

these organelles using flow cytometry techniques which

show a strong Cd-dependent disruption of lysosome

integrity (Fig. 4). Moreover, Fig. 4a shows that the

stable knock-down of p53 is able to completely inhibit

lysosomal degradation after treatment with 15 lM Cd over

a time period of 96 h as well as in cells incubated with

30 lM Cd over 72 h. In contrast, inhibition of calpain

protease or autophagy (3MA) failed to exert lysosome-

protective characteristics (Supplemenatl Material, Fig-

ure S6 A, B). In response to the unfolded protein response

(UPR) (also a part of autophagy signalling) within the ER,

the function of eukaryotic initiation factor eIF2 alpha is

inhibited by phosphorylation. Western blot-based analyses

showed a phosphorylation of eIF2 alpha in response to Cd

treatment (Fig. 4b).

Classical AnnexinV/PI based flow cytometry

analyses reveal apoptosis as the prevailing mode

of Cd-induced cell death

Flow cytometry-based analyses uncovered apoptosis as the

prevailing cell death mode. After 72 h of treatment with

15 lM Cd, nearly equal numbers of cells are dying by

apoptosis and necrosis. Treatment with a higher Cd con-

centration of 30 lM induces a marked increase in the

amount of apoptotic cells. Prolonged treatment with

15 lM Cd over a time period of 96 h enhances necrotic

and, to a greater extent, apoptotic cell death (Fig. 5a).

Fig. 1 Inhibition of Cd toxicity by EGTA and the effect of Cd on

endothelial DNA. a Shows the quantification of Cd-induced cell death

(Annexin V/PI staining) after pre-treatment of cells with increasing

EGTA concentrations. (b) Quantification of Comet-tail positive

endothelial cells after treatment with 15 and 30 lM Cd for 12 h.

(c) Representative images of cell nuclei stained with SYBR green. All

experiments were performed in triplicates and were repeated at least

three times. Results depict the mean ± standard deviation. Asterisks

indicate significant differences compared to the corresponding control

(*p\ 0.05; **p\ 0.01, ***p\ 0.001) and hash signs indicate

significant differences between the groups (#p\ 0.05; ##p\ 0.01);

ns not significant
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Figure 5b depicts the calpain inhibitor’s ability to reduce

the amount of dead cells after treatment with 15 and

30 lM Cd for 72 h. Likewise, the stable knock-down of

p53 is able to prevent Cd-induced death over 72 h, where

the effect of the knock-down is stronger than the effect of

the calpain inhibitor (Fig. 5c). Overexpression of the anti-

apoptotic protein BCL-XL has only a minor inhibiting

effect upon cell death, yet the effect is nonetheless sta-

tistically significant at both concentrations (Fig. 5d).

Neither inhibition of autophagy with 3MA (Fig. 5e)

nor energy supplementation (Supplemental Material,

Figure S9 A–C) protects cells treated with 15 lM Cd.

However, we observed an almost-significant increase of

viability in 30 lM Cd-treated cells (p = 0.079; Fig. 5e).

Based on the controversial results obtained with 2APB

(partial inhibition of Ca2? flux and inhibition of Cd

uptake), the effect of this inhibitor on Cd-induced cell

death was assessed. 2APB was able to completely inhibit

death of cells treated with 15 lM Cd and showed the most

potent cell death inhibitory effect in cells treated with

30 lM Cd as compared to all other inhibitors, knock-

downs and over-expressions (Fig. 5f).

Fig. 2 Cd induced increase in

cytosolic Ca2? concentration.

a–d show flow cytometry-based

quantifications of intracellular

Ca2? concentration after Cd

treatment of endothelial cells for

the indicated times. The effect

of p53 KD (a), the incubation

with calpain inhibitor (b), over-

expression of BCL-XL (c), and

of the incubation with 2APB

(d) on cytosolic Ca2?

concentration is also depicted.

e Shows flow cytometry-based

analyses of the effect of 2APB

on endothelial Cd uptake after

96 h. All experiments were

performed in triplicates and

were repeated at least three

times. Results depict the

mean ± standard deviation.

Asterisks indicate significant

differences compared to the

corresponding (*p\ 0.05;

**p\ 0.01) and hash signs

indicate significant differences

between the groups (#p\ 0.05;
##p\ 0.01)
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DNA degradation is characteristic of end-stage

processes of Cd-induced endothelial cell death

In contrast to the flow cytometry-based analyses of

Annexin V/PI stainings, measurement of DNA content in

Cd-treated cells suggests a necrotic outcome (Fig. 6).

Inhibition of Cd-induced DNA degradation was achieved

by the stable knock-down of p53 as these cells were

unaffected when incubated with 15 lM Cd after 48 and

72 h. Inhibition of DNA degradation by p53 KD was also

Fig. 3 Cd impairs

mitochondrial membrane

potential and reduces

mitochondrial mass. Flow

cytometry-based analyses of

mitochondrial membrane

potential in Cd-treated

endothelial cells are shown in

(a–d). Cd-treated endothelial

cells were incubated either with

the calpain inhibitor or BAPTA

and mitochondrial membrane

potential was assayed using a

JC-1 assay and quantified by

flow cytometry analyses (a, d).

b, c The effects of either p53

KD or BCL-XL OE on

mitochondrial membrane

potential in Cd-treated

endothelial cells. e The first row

shows representative images of

Cd-treated endothelial cells

(48 h) stained with MitoTracker

Red and the second row shows

magnifications indicated by the

corresponding white boxes. All

experiments were performed in

triplicates and were repeated at

least three times. Results depict

the mean ± standard deviation.

Asterisks indicate significant

differences compared to the

corresponding (*p\ 0.05;

**p\ 0.01, ***p\ 0.001) and

hash signs indicate significant

differences between the groups

(#p\ 0.05; ##p\ 0.01)
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visible after treatment with 30 lM Cd, despite the effect

only being significant after 48 h (with a non-significant

trend observed after 72 and 96 h; Fig. 6a). Overall, no

inhibitory effect on Cd-induced DNA degradation could be

observed after the pre-incubation with the calpain inhibitor

and the autophagy inhibitor (Supplemental Material, Fig-

ure S7 A, B). Moreover, the pre-incubation of Cd-treated

cells with the Ca2? -Mg2? -dependent endonuclease inhi-

bitor Aurintricarboxylic acid (ATA) does not abolish the

progressive DNA degradation (Supplemental Material,

Figure S8A). However, incubation with the extracellular

Ca2? chelator EGTA prevents Cd-induced DNA degrada-

tion completely (Supplemental Material, Figure S8B).

Figure 6b depicts images of stained cell nuclei of control

and Cd-treated cells after 48 h of incubation. Control cells

show intact cell nuclei containing DNA, whereas the nuclei

of Cd-treated cells show reduced DNA content to almost

complete degradation.

Cd induces the permeabilization of the plasma

membrane and release of LDH

Further confirmation of necrosis as the final outcome of

Cd-induced endothelial cell death is the permeabilization

of the plasma membrane, shown by a massive LDH release

and through scanning electron microscopic-images

(Fig. 7). LDH release induced by 15 lM Cd could be

significantly suppressed by inhibition of calpain activity,

3MA incubation, p53 KD and the combination of the cal-

pain inhibitor with 3MA. LDH release induced by 30 lM

Cd is inhibited neither by the previously mentioned inhi-

bitors nor by a knock-down of p53. Furthermore, a

combination of p53 KD and the individual inhibitors was

not effective in inhibiting membrane permeabilization.

However, the combined treatment of p53 KD endothelial

cells with the calpain inhibitor and 3MA completely

abolishes LDH release in cells treated with 15 lM Cd and

reduces the amount of LDH released from cells treated

with 30 lM Cd to below 21 % of the control level

(Fig. 7a). To illustrate the Cd-induced effects on the

endothelial cell surface, scanning electron microscopic

images were taken and are depicted in Fig. 7b. Shown are

wild-type endothelial cells (CTRL) treated with Cd and

p53 KD cells incubated with the calpain inhibitor and

3MA. Untreated cells show a flattened shape with an intact

plasma membrane and the location of the nucleus is clearly

visible. CTRL cells treated with 15 lM Cd exhibit blebs of

different size on their surface (labelled with stars) and in

addition several leaks in the plasma membrane (labelled

with arrows). Moreover, shrinkage of these cells is

observable. In contrast, p53 KD cells incubated with the

calpain inhibitor and 3MA, and treated with 15 lM Cd are

completely intact. Wild-type cells incubated with 30 lM

Cd exhibit a large number of blebs of different sizes (la-

belled with stars) and the plasma membrane appears to be

completely disintegrated (labelled with stars). As expected

from the results of the LDH assay, p53 KD cells incubated

with the calpain inhibitor and 3MA and treated with 30 lM

Cd showed a slight detachment from the surface and only a

few small holes in the membrane (Fig. 7b).

Discussion

The chelating agents EGTA and EDTA (ethylenedi-

amineteteaacetic acid) which are clinically applied for the

treatment of metal intoxications clearly reduce Cd-induced

DNA degradation in a concentration-dependent manner by

Fig. 4 Cd-induced lysosomal membrane permeabilization and eIF2

alpha phosphorylation. Flow cytometry-based quantification of LMP

was performed in endothelial cells treated with 15 and 30 lM Cd for

72–96 h. The effect of the p53 KD on Cd-induced LMP is depicted in

(a). Western Blot-based analyses of eIF2 alpha phosphorylation in

endothelial cells after Cd treatment is depicted (b). To compensate

unequal protein loading, the Ponceau staining of membranes as well

as the GAPDH expression is shown and the ratio between specific

signal intensity and protein loading (GAPDH) was calculated and

depicted. All experiments were performed in triplicates and were

repeated at least three times. Results depict the mean ± standard

deviation. Asterisks indicate significant differences compared to the

corresponding control (*p\ 0.05; **p\ 0.01) and hash signs

indicate significant differences between the groups (##p\ 0.01)
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forming extracellular complexes with the metal ion,

thereby hindering the cellular uptake of Cd. [45] Once

taken up by cells, Cd is known to cause DNA damage as

already proven in different cell types such as liver cells [46,

47], fibroblasts [48], lung cells [49], and epithelial cells

[50]. Similarly, endothelial cells are also sensitive to Cd-

induced DNA damage as demonstrated by our previous

data showing an increase in the expression of the DNA

Fig. 5 Cd treatment results in

apoptotic as well as necrotic cell

death in endothelial cells.

Endothelial cells were treated

with Cd as indicated for 72 and

96 h and the amount of necrotic

as well as apoptotic cells were

quantified using Annexin V/PI

stainings and flow cytometry-

based analyses (a). The cell

death inhibitory effect of the

calpain inhibitor (b), p53 KD

(c), BCL-XL OE (d), autophagy

inhibition (e) and of 2APB (f) is

also depicted in this figure. All

experiments were performed in

triplicates and were repeated at

least three times. Results depict

the mean ± standard deviation.

Asterisks indicate significant

differences compared to the

corresponding control

(*p\ 0.05; **p\ 0.01,

***p\ 0.001) and hash signs

indicate significant differences

between the groups (#p\ 0.05;
##p\ 0.01; ###p\ 0.001)
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damage response protein p53 [29] and the latest data

showing a pronounced amount of Comet-positive cells

after 12 h of Cd treatment. Interestingly, the extent of

damage is comparable between 15 and 30 lM Cd, although

the number of dead cells is significantly higher after

treatment with 30 lM Cd. Furthermore, the involvement of

DNA damage and p53 in Cd-induced cell death signalling

is shown by the inhibition of cell death (and the preser-

vation of proliferation after Cd treatment, Supplemental

Material, Figure S3 A, B) after the knock-down of p53.

This demonstrates that Cd causes DNA damage in

endothelial cells even at lower concentrations leading to

cell death with the involvement of p53.

In addition to the induction of DNA damage, Cd treat-

ment of endothelial cells induces a rapid and substantial

increase in intracellular Ca2? concentration within 6 h.

Ca2?, as a universal intracellular messenger, influences a

wide range of cellular processes (such as cell death sig-

nalling) when the concentration is elevated in the cytosolic

compartment [51, 52]. Cytosolic Ca2? increase is accom-

plished by either uptake from the extracellular space or

release from intracellular Ca2? stores such as the ER and

the mitochondria. 2APB, a critically discussed blocker of

Ca2? release from the ER, reduces Cd-induced cytosolic

Ca2? concentration but simultaneously inhibits both cel-

lular Cd uptake and Cd-induced cell death significantly.

Moreover, chelation of extracellular Ca2? by EGTA pro-

tects endothelial cells from Cd-induced cell death. Ca2?

concentration showed no link to p53-dependent DNA

damage signalling. Another indication of the release of

Ca2? from the ER through Cd treatment is the fact that the

over-expression of BCL-XL—an anti-apoptotic BCL-2

family member located in the ER membrane—is able to

inhibit the increase of cytosolic Ca2? concentration in

endothelial cells. However, BCL-XL OE did not effec-

tively prevent endothelial cell death following Cd

incubation. Withe and Li et al. confirmed this hypothesis

by providing evidence of a regulation of the inositol

trisphosphate receptor (InsP3R) by BCL-XL through direct

interaction to increase apoptosis resistance [53]. Trans-

mission of the cell death signal from Ca2? is mediated by a

family of Ca2?-dependent non-lysosomal cysteine pro-

teases known as calpains [54]. Interestingly, inhibition of

calpain activity reduces intracellular Ca2? concentration

significantly at low Cd concentrations. Although an

involvement of autophagy in Cd-induced endothelial cell

death is already proven [43], no interplay between

increased cytosolic Ca2? and autophagy could be detected.

The complex signalling pathway is extended by an

involvement of the mitochondria and a variety of factors

influencing mitochondrial function [29]. Depolarisation of

mitochondria as well as the simultaneous loss of mito-

chondrial mass certainly occurs late in the Cd-induced cell

death process (after 48 h). Similarly to p53-mediated cell

death in neuronal cells [55], Cd toxicity leads to mito-

chondrial depolarisation through p53, which was reduced

Fig. 6 Cd treatment of

endothelial cells provokes

complete DNA degradation.

Endothelial cells were treated

with 15 and 30 lM Cd for 48

and 72 h and the cellular DNA

content was quantified in

permeabilized cells using PI

staining and flow cytometry-

based analyses. The effect of

p53 KD on Cd-induced DNA

degradation is shown in (a).

b Representative images of the

PI stained endothelial nuclei

after Cd treatment for 48 h. All

experiments were performed in

triplicates and were repeated at

least three times. Results depict

the mean ± standard deviation.

Asterisks indicate significant

differences compared to the

corresponding control

(*p\ 0.05; **p\ 0.01,

***p\ 0.001) and hash signs

indicate significant differences

between the groups (#p\ 0.05;
##p\ 0.01)
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by the p53 KD. Since outer membrane permeabilization is

weakly inhibited by BCL-XL OE, Bax activation is argu-

ably involved in mitochondrial depolarisation.

Additionally, Cd-induced mitochondrial depolarisation is

also indirectly induced by calpain activation (as already

shown in endothelial cells [55]) as well as directly through

elevated Ca2? levels as indicated by the limited inhibitory

effect of intracellular Ca2? chelation. Lastly, the close

Fig. 7 Cd induced membrane permeabilization and LDH release.

a The analyses of Cd-induced LDH release from endothelial cells into

the cell culture supernatant as well as the effects of inhibitors (calpain

inhibitor and 3MA) and p53 KD and also their combined effect.

Representative scanning electron microscopic images of wild-type

endothelial cells treated with Cd and p53 KD cells pre-incubated with

the calpain inhibitor and 3MA treated with Cd are shown (stars

indicate membrane blebs and arrows mark holes in the plasma

membrane) (b). All experiments were performed in triplicates and

were repeated at least three times. Results depict the mean ± standard

deviation. Asterisks indicate significant differences compared to the

corresponding control (ctrl; *p\ 0.05; **p\ 0.01, ***p\ 0.001),

hash signs indicate significant differences compared to the control

group without the inhibitor or KD (CTRL; #p\ 0.05; ##p\ 0.01;
###p\ 0.001) and section signs indicate significant differences as

between the p53 cells without the inhibitor and p53KD cells with the

inhibitor (§§p\ 0.01)
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proximity between ER cisternae and the mitochondria

allows for local Ca2? oscillation into mitochondria [56].

All these factors ultimately lead to a central element in

apoptosis, which is signal transduction through caspases,

known as apoptosis executors. In the case of Cd-treated

endothelial cells we have previously shown that caspase-3

is cleaved, but Cd inhibits its activity [29]. Therefore, the

apoptotic signalling is halted at this point, underpinned by

unchanged intracellular ATP concentration (Supplemental

Material, Figure S2).

Ca2? imbalance and calpain activation not only lead to

mitochondrial signalling but also result in the initiation of

Fig. 8 Schematic representation of Cd-induced signalling pathways in

endothelial cells. After uptake of Cd in endothelial cells [possibly

through divalent metal transporter 1 (DMT-1)] the cytosolic Ca2?

concentration rises. Besides being taken up from the extracellular space,

Ca2? could also originate from the ER. Redirection of the signal to the

mitochondria could take place directly by Ca2? or also indirectly by the

activation of calpains. Forwarding of the apoptotic signalling from the

mitochondria occurs via the cleavage of caspase-3, but the apoptotic

signal is halted at this point as Cd treatment is known to simultaneously

inhibit caspase-3 activity. Alongside affecting the mitochondria, Cd

treatment impairs also the ER function and induces ER stress (shown by

UPR). Cd-induced ER stress may stop protein synthesis via eIF2 alpha

phosphorylation and also induce autophagic signalling, potentially as a

survival mechanism. An additional target of Cd-induced toxicity in

endothelial cells is cellular DNA. Cd-induced DNA damage results in

upregulation of the DNA damage response protein p53, which in turn is

shown to influence mitochondrial membrane potential. The central

organelle in Cd-induced toxicity is the lysosome, as Cd-induced death

signals from the mitochondria, the ER and p53 are finally ‘‘merging’’ at

the lysosome, inducing LMP. LMP induction is in consequence

responsible for complete DNA degradation and also for plasma

membrane permeabilization and therefore ultimately for the execution

of necrosis in Cd-treated endothelial cells although apoptotic as well as

autophagy signals are triggered as well
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the UPR and induce ER stress, indicated by the phos-

phorylation of eIF2 alpha. Phosphorylation of eIF2 alpha

disables initiation of translation and thereby inhibits the

production of novel unfolded proteins to reduce ER

stress. If this protective feedback loop fails, apoptotic

signalling is induced—likely, once again, via the mito-

chondria [57]. Importantly, the PERK-eIF2 alpha

complex is responsible for the up-regulation of Atg12 and

thereby induces autophagosome formation. The induction

of autophagy signals by Cd treatment, shown by an

increased LC3 II/LC3 I ratio [43] as well as cell death

protection through 3MA incubation, might therefore be

triggered by UPR and eIF2 alpha phosphorylation.

However, autophagy is inhibited since Cd treatment of

endothelial cells provokes lysosomal membrane perme-

abilization (LMP) [43].

Lysosomes are known as ‘‘suicide bags’’ indicating their

role in both cell death mainly through necrosis but also in

survival mechanisms in the case of autophagy [58]. As

previously described, Cd-induced LMP provokes the

release of nucleases triggering complete DNA degradation,

as well as proteases and lipases causing permeabilization of

the plasma membrane [43]. Previously, BCL-XL OE

demonstrated a stabilizing effect on LMP which suggests

the involvement of the mitochondria [43]. An explanation

of this effect could be the fact that BCL-XL attenuates

BAX activity, a pro-apoptotic protein which is known to

induce LMP. Moreover, as BCL-XL is also present in the

ER-membrane, an involvement of this organelle in LMP

cannot be excluded. Lastly, we were able to provide a

connection between a DNA damage-induced increased

expression of p53 and LMP, as the knock-down of p53

rescues cells from Cd-induced LMP, which is already

shown in myeloid leukaemic cells [59]. The signalling

cascade from increased p53 protein levels to LMP is fur-

ther confirmed by the protection of DNA degradation and

the inhibition of plasma membrane rupture by p53 KD. In

contrast to data from neuronal cells by Villalpando

Rodriguez et al. [60], in endothelial cells no connection

between calpain activation, LMP induction and DNA

degradation could be observed. However, an inhibition of

calpain activity inhibits cell membrane permeabilization

and preserves proliferation (Supplemental Material, Fig-

ure S4 A, B), possibly through an as yet unknown

mechanism. Comparable to the inhibition of calpain

activity and the knock-down of p53, the disruption of

autophagy signals also inhibits plasma membrane perme-

abilization. Remarkably, an inhibition of apoptotic

signalling (by p53 KD and inhibition of calpain activity)

combined with autophagy (by using 3MA) was able to

completely prevent necrotic cell death induced by 15 lM

Cd, and to significantly reduce the number of necrotic cell

deaths induced by 30 lM Cd.

In conclusion, although necrosis is commonly known as

an accidental non-regulated death process, Cd-treated

endothelial cells present a highly regulated and complex

cell death signalling mechanism which involves a variety

of different cell organelles. Apoptotic and autophagy sig-

nals induced through Cd toxicity culminate in necrosis

(Fig. 8) and can be prevented by the inhibition of all

activated signalling pathways. In summary, our work

supports the growing body of evidence of the existence of a

highly regulated form of necrosis, as recently reviewed by

Vanden Berghe et al. [61].

Study limitations

The present study is based on several hypotheses, which

limit the extensibility of the observed results to the situa-

tion in humans. A central limitation is that all observations

made are based on an in vitro cell culture model including

the chosen Cd concentrations, which are not necessarily

applicable to the situation in humans. Cd-concentrations

chosen are based on studies by Abu-Hayyeh et al. [6] who

reported on the occurrence of up to 20 lM of Cd in the

aortic wall of chronic smokers, and a study by Bergström

et al. reporting up to 50 fold increased Cd concentrations in

the vascular intima compared to the blood stream. [62].
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