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Phase Behavior of DNA in the Presence of DNA-Binding Proteins
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ABSTRACT To characterize the thermodynamical equilibrium of DNA chains interacting with a solution of nonspecific binding
proteins, we implemented a Flory-Huggins free energy model. We explored the dependence on DNA and protein concentrations
of the DNA collapse. For physiologically relevant values of the DNA-protein affinity, this collapse gives rise to a biphasic regime
with a dense and a dilute phase; the corresponding phase diagram was computed. Using an approach based on Hamiltonian
paths, we show that the dense phase has either a molten globule or a crystalline structure, depending on the DNA bending ri-
gidity, which is influenced by the ionic strength. These results are valid at the thermodynamical equilibrium and therefore should
be consistent with many biological processes, whose characteristic timescales range typically from 1 ms to 10 s. Our model may
thus be applied to biological phenomena that involve DNA-binding proteins, such as DNA condensation with crystalline order,
which occurs in some bacteria to protect their chromosome from detrimental factors; or transcription initiation, which occurs in
clusters called transcription factories that are reminiscent of the dense phase characterized in this study.
INTRODUCTION
Predicting the three-dimensional (3D) structure of chromo-
somes from the primary DNA sequence has become an
important goal, as genomic and transcriptomic data are be-
ing generated at an elevated pace. In eukaryotes and pro-
karyotes, transcription of highly active genes has been
shown through morphological evidence to occur within
discrete foci containing RNA polymerases (RNAPs). It
has later been demonstrated that one given focal point was
enriched in one type of dedicated transcription factor (TF)
(1,2) and one type of gene promoter (3), as well as nascent
transcripts (4), thus justifying the naming of such foci as
transcription factories. A thermodynamic model has shown
that the stiff DNA polymer and properly located attractive
sites mimicking TF bridges were necessary and sufficient
ingredients to produce a transcription factory through
DNA looping (5). Indeed, there is now convincing evidence
that chromosomes are organized into loops (Hi-C, 3C, etc.)
(2), and that looping brings distant genes together so that
they can bind to elevated local concentrations of RNAPs
(FISH, 3C, etc.) (6). DNA-binding proteins such as TFs
are generally positively charged, thus providing a nonspe-
cific interaction with the negatively charged DNA polymer.
DNA sequence-dependent binding offers specific interac-
tions. Together, nonspecific and specific associations allow
proteins to search their target DNA sequences more effi-
ciently via facilitated diffusion (7,8), which combines 3D
diffusion in the bulk volume and monodimensional diffu-
sion along the DNA. These considerations motivated studies
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to characterize the timescale of the dynamics or anomalous
diffusion. Molecular dynamics simulations are used to
model proteins that diffuse to DNA, bind, and dissociate.
The timescales reached in numerical simulations are usually
several orders of magnitude smaller than the biological
ones, and thus the phenomena observed during such simula-
tions might be transient and irrelevant biologically.

In this article, we present a study of the properties and
phase diagram of a DNA-protein solution, at thermody-
namic equilibrium, which entails DNA condensation into
compact structures induced by nonspecific DNA-binding
proteins. The calculated phase diagram is thus expected
to be relevant at biological timescales. To do so, we
consider a simplified model in which the nucleus (or bac-
terial nucleoid) is represented by a closed volume V
(Fig. 1). The double-stranded DNA chains are modeled
as M semiflexible polymer chains (polymerization index N)
that interact with P spheres, which represent either tran-
scription factors or structural proteins. We consider the nu-
cleus (or bacterial nucleoid) to be a good solvent for DNA
chains, so that monomers experience a repulsive interaction
between themselves. Conversely, we assume that there is
an attractive interaction between proteins and DNA that al-
lows the proteins to bind to DNA. As for the protein-pro-
tein interaction, we consider a repulsive (hard-core)
interaction, but the case of an attractive (e.g., complexa-
tion, dimerization, etc.) interaction could be treated in the
same way. Finally, we assume that all interactions are
nonspecific. In the sequel, subscripts D and P stand for
DNA and protein, respectively. We first describe the phase
diagram of such a system in the mean-field approximation
and show that there is a phase transition from a dilute phase
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FIGURE 1 (A) Model of DNA represented as beads-on-string polymers

(blue) interacting with proteins (red). Dotted circles stand for clusters

with high concentrations of DNA monomers and proteins. (B) Monomer-

monomer interaction is repulsive. (C) Protein-protein interaction is repul-

sive. (D) DNA-protein interaction is attractive. To see this figure in color,

go online.
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at high temperature to a concentrated phase of the DNA
and proteins at lower temperature, which can be identified
as the transcription factory phase. In a second step, we
characterize the structure of the dense phase and show
that it can adopt a crystalline order, suggesting an inter-
esting parallel with the existence of some DNA biocrystals
in vivo. This general method can be applied to many
genome architecture problems.
Flory-Huggins theory

Free energy and thermodynamic functions

In the following, we study the phase diagram of the bulk of
the bacterial cell (or nucleus) in the mean-field approxima-
tion. In the context of polymer theory, this approximation is
also called the Flory-Huggins theory (9). A similar kind of
approach has been used to study the demixion of a mixture
of polymers and colloids, in which the interaction is repul-
sive (10). By contrast, in our study, the polymer-colloid
interaction is taken as attractive. We denote the concentra-
tions of DNA monomers and proteins as cD and cP, respec-
tively, and the molecular volume of a DNA monomer and of
a protein as sD and sP, respectively. The (Flory-Huggins)
free energy per unit volume is as follows:

bf ðcD; cPÞ ¼ 1

2
aDc

2
D þ 1

2
aPc

2
P þ vcDcP þ 1

6
wðcD þ cPÞ3

þ cPlog
cPsP

e
þ cD

N
log

cDsD

eN
;

(1)
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where aD, aP, and v are second-order virial coefficients
denoting the DNA-DNA, protein-protein, and DNA-protein
interactions, respectively; and w is the third virial coeffi-
cient, necessary to avoid the collapse of the system. Note
that this last term comes mostly from the entropy of the
solvent. Indeed, if solvent molecules were present with
concentration cS and molecular volume sS, the solvent
translational entropy would be cSlogcSsS=e. If we assume
incompressibility of the DNA-protein-solvent mixture
(i.e., cD þ cP þ cS ¼ c0), the solvent entropy can be written
as a mean-field solution as ðc0 � cD � cPÞlogðc0 � cD�
cPÞs0=e, which, when expanded to the third order in
ðcD þ cPÞ, yields the cubic term in Eq. 1.

The Gibb’s free energy per unit volume is the following
Legendre transform of Eq. 1:

bgðcD; cPÞ ¼ bf ðcD; cPÞ � mDcD � mPcP ¼ �bP; (2)

where P is the osmotic pressure and mD and mP are the
chemical potentials of DNAmonomers and proteins, respec-
tively. The total number of particles of the system is fixed,
but as we show below, these chemical potentials play a use-
ful role when the system separates into two phases at equi-
librium. At thermal equilibrium, the Gibb’s energy is an
extremum: vbg=vcD ¼ 0 and vbg=vcP ¼ 0, from which
we deduce the following chemical potentials:

mDðcD; cPÞ ¼ vbf

vcD
¼ aDcD þ vcP þ 1

2
wðcD þ cPÞ2

þ1

N
ln
�cDsD

N

�

mPðcD; cPÞ ¼ vbf

vcP
¼ aPcP þ vcD þ 1

2
wðcD þ cPÞ2

þlnðcPsPÞ:

(3)

By inserting the last expressions in Eq. 2, we see that aD, aP,

and v are indeed identified to the coefficients of a virial
expansion.

The free energy in Eq. 1 is quite general and holds for
arbitrary interactions between the constituents. It is possible
to relate aD, aP, and v to any pair potential, say uðrÞ, used to
model the corresponding interaction. Indeed, these virial co-
efficients can be computed to lowest order (in the density)
using the following well-known Mayer relation:

a ¼ �
Z

d3r
�
e�buðrÞ � 1

�
; (4)

and the same for v.
In physiological conditions, salt (e.g., NaCl and KCl) and
ions (e.g., Ca2þ and Mg2þ) are present in solution, giving
rise to screened electrostatic interactions. The interactions
are therefore short-ranged with a range given by the De-
bye-Hückel length. Yet, at the mean-field level, the specific
shapes of the interaction potentials is irrelevant, and the
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effect of ions in solution only arises through an adjustment
of the Mayer coefficients aD, aP, and v. The DNA excluded
volume coefficient aD, which accounts also for the electro-
static repulsion between negatively charged monomers, is
positive. The protein-protein coefficient aP in general is
positive (repulsive), because of electrostatic repulsion be-
tween identically charged proteins; but it can be attractive
(negative) for specific molecules, which may undergo
dimerization or hybridization. For hard spheres, for
instance, a ¼ 23s, s is the volume of one sphere. We here-
after restrict our focus to the case where DNA-DNA and
protein-protein interactions are purely repulsive (steric).

Conversely, we assume v < 0, i.e., the DNA-protein
interaction has an attractive tail, which is temperature-inde-
pendent (in first approximation). As we show below, the
Flory-Huggins theory predicts the existence of a critical tem-
perature Tc. We assume that vðTÞ is analytic in jT � Tc j and
can be written to the leading order as in the following:

vðTÞ ¼ vðTcÞ q� T

q� Tc
; (5)

where q is the Flory-Huggins temperature for which

vðqÞ ¼ 0, i.e., the interaction vanishes.
The regime of phase separation

As mentioned previously, there is a phase transition when
the homogeneous solutions cD ¼ MN=V and cP ¼ P=V
become unstable. It is well known that generically, when
the temperature decreases, the system separates into two
phases. At the phase separation point, the homogeneous
high-temperature phase may stay metastable down to a
point, called the spinodal point, where the homogeneous
phase becomes totally unstable. The so-called spinodal con-
dition is given by the following equation:���� v2ðbf Þ

vðcD; cPÞ
���� ¼

���� v2bf
�
vc2D v2bf

�
vcDvcP

v2bf
�
vcDvcP v2bf

�
vc2P

����%0; (6)

where the array denotes the determinant of the matrix.
In general for vðTÞ fixed, Eq. 6 with the equality deter-
mines a line of spinodal points, delimiting the region where
the homogeneous mean-field solution is stable from the re-
gion where it is not. In the unstable regions, the system un-
dergoes a phase separation. If T is increased, vðTÞ becomes
less negative. At some point, the spinodal lines merge into a
point when T reaches a critical value Tc (Fig. 2). This is a
tricritical point. For T >Tc, the homogeneous solution is sta-
ble for any value of c�D and c�P, where we use the � super-
script to emphasize that these concentrations are the
mean-field solutions in the absence of phase separation.
There are critical lines emerging from the tricritical point
when the temperature is decreased, as we show below.

In a biphasic regime, the concentrations are different but
uniform in each of the two phases, separated by an interface
whose energy is not extensive (the interfacial free energy is
proportional to the surface of the interface). We label the
dilute phase by I, and the dense phase by II. The total sys-
tem free energy then reads as follows:

bFtot

V
¼ fIbf ðIÞ þ fIIbf ðIIÞ; (7)

where f ðIÞ is a shorthand for f ðcID; cIPÞ and fI and fII denote

the volume fraction of the dilute and dense phase.

A straightforward minimization of Eq. 7, with the con-
straints of conservation of volume and particles number of
D and P, yields the following usual equations of coexistence
between phase I and phase II:8<

:
mDðIÞ ¼ mDðIIÞ
mPðIÞ ¼ mPðIIÞ
PðIÞ ¼ PðIIÞ

; (8)

where P denote the osmotic pressures of each phase. The
above equations are simply the equalities of the chemical
potentials and the osmotic pressures. It trivially implies
fII ¼ 1� fwith f ¼ fI . Note that Eq. 8 is a system of three
equations with five variables ðcIP; cID; cIIP ; cIID; TÞ; thus it deter-
mines a surface of coexistence.
FIGURE 2 Three-dimensional representation of

the coexistence surface in a ðhD;hP; tÞ coordinate
system. Coexistence lines are shown for

h�P ¼ 0:0015 and 0.015, with h�D ¼ 0:01 (red

lines). Critical lines (black lines) emerge from

the tricritical point (black dot). To see this figure

in color, go online.
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TABLE 1 Parameters for the truncated Lennard-Jones

potential modeling the DNA-DNA, protein-protein, and DNA-

protein interactions

1 2 ε a dtr Mayer Coefficient a

DNA DNA 1.00 1.00 1.12 4.40

Protein Protein 1.00 1.00 1.12 4.40

DNA Protein 3.00 1.00 2.00 �62.6

The mean-field pair coefficients are computed using Mayer formula.
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MATERIALS AND METHODS

Molecular dynamics simulations

To sample configurations of our system we used the LAMMPS (large-scale

atomic/molecular massively parallel simulator) software package. The sys-

tem is coarse-grained so that DNA is modeled as a beads-on-string polymer

and proteins as spheres. The simulations are run in the Brownian dynamics

(BD) mode. The resulting dynamics consists in the integration of the

following Langevin equation:

mi

d2ri
dt2

¼ Fi � gi

dri
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTgi

p
hiðtÞ; (9)

where i is the index of one bead, ri is the position of the bead, gi is the fric-

tion coefficient, Fi is the resulting force exerted on the bead from the rest of
the system, kB is the Boltzmann constant, and T is the temperature. The last

term is a stochastic force in which hiðtÞ is a Gaussian white noise such that
hhiðtÞhjðt0Þi ¼ dijdðt � t0Þ. Simulations were run with mi ¼ 1, gi ¼ 1, and

kBT ¼ 1, in a cubic volume of size L ¼ 100 with periodic boundary condi-

tions, and we took a polymer with N ¼ 400 beads. The diameter a of the

beads was taken as the unit length.

As for the polymer chain model, beads i and iþ 1 are connected with a

finitely extensible nonlinear potential (FENE) that results in the following:

UelðuiÞ ¼ �Kel

2
r20 ln

	
1� u2i

r20



; (10)

where ui ¼ ri � ri�1. Simulations were run with Kel ¼ 30 kBT=a
2 and

r0 ¼ 1:5 a.

The bending rigidity of the polymer chain is introduced through the

following Kratky-Porod potential:

UbðqiÞ ¼ Kbð1� cosqiÞ; (11)

where qi is the angle between vectors ui and uiþ1. The bending coefficient is

related to the persistence length by K ¼ l � k T.
b p B

We restricted our analysis to the case of DNA monomers and protein

spheres of same dimension (with diameter a). This assumption does not

alter the main qualitative features of the physics but makes the discussion

simpler. Steric as well as attractive interactions between beads are intro-

duced using a truncated Lennard-Jones potential such as the following:
ULJ

�
rij
� ¼

8><
>:

4ε

�	
a

rij


12

�
	
a

rij


6

�
� a

dtr

�12

þ
� a

dtr

�6

#
if rij < dtr

0 otherwise

: (12)
Unless stated otherwise, we took the values indicated in Table 1. The DNA-

DNA interaction being purely repulsive, we retrieve aDx23sD, where sD
is the volume of one monomer. The same argument holds for the proteins.

Conversely, the monomer-sphere coefficient vðTÞ is largely negative (Ta-

ble 1 and Fig. 3).

We systematically performed equilibration runs of 105 time units to reach

thermal equilibrium.We then performed sampling runs of 106 time units that

we used tomeasure physical quantities. Our simulation time units can be un-

derstood as follows. The diffusion coefficient can be expressed as

D ¼ a2=tB, where tB is the Brownian time corresponding to one simulation

time unit. Therefore, we can do a mapping to physical units. Assuming a

diffusion coefficient ofDx10 mm2s�1 for a protein in the bacterial nucleoid

(11), we find tB ¼ 600 ns for a ¼ 6 nm, and tB ¼ 2:0 ms for a ¼ 20 nm.
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Mean-field concentrations

To assess physiological concentrations, we assimilate an Escherichia coli

(E. coli) bacteria to a cylinder of radius 0:5 mm and length 1 mm. We

took a genome length of 4:6 106 base pairs (bp). We consider that the diam-

eter of one monomer is 1 a ¼ 6 nmh17 bp, so that one such chromosome

is modeled as a polymer of N ¼ 2:6 105 monomers with diameter 1 a. This

leads to a density of DNA hD � 10�2. As for the proteins, there are several

DNA-binding proteins, called nucleoid-associated proteins, which act on

the structure of the DNA. In E. coli, for instance, HU, H-NS, Fis, RecA,

Dps, and other proteins have this structuring function. We choose to use

Fis as a reference because it is a well-known structural protein with a large

number of target sites (12) and binds to DNA sequences of 17 nucleotides

(13). In E. coli, there are ~75,000 Fis proteins per genome copy (14) in the

early exponential growth phase, yielding a ratio hP=hDx0:3. This is also

consistent with previous numerical studies for which 0:1< hP=hD < 0:5

(15). Eventually we suggest that this ratio might be quite general and can

also be mapped to eukaryotes. Indeed, we could either consider a human

cell (genome length of � 3:3 109 bp and nucleus diameter of 10 mm) and

take 1 a ¼ 20 nm as a unit length (size of protein complex). Considering

that the DNAwould be packed as euchromatin with a linear packing frac-

tion n ¼ 100 bp=nm (16), the unit length is 1 ah1:7106 bp and we get

hD � 10�2. In the former case, the proteins are assumed to be ~6 nm in

diameter, whereas the latter case better describes the interaction of DNA

with large protein complexes.
Computation of the phase diagram

The coexistence surface is computed by solving Eq. 8. Because of numer-

ical accuracy limitations, we computed the phase diagrams for chains with a
polymerization index of N ¼ 5000. Because the critical values scale like

1=
ffiffiffiffi
N

p
(Fig. 4), this arbitrary choice captures the essential features of the

N/N limit. Finally, the model relies on a free parameter w, which can

be used to fit the model. In Flory-Huggins theory, w is extracted from the

development of the entropy of mixing and would be wF ¼ 1=c20, where c0
is the close packing concentration. However, cells are crowded environ-

ments, containing other species, metabolites, or organelles. Furthermore,

biological compartments can also restrict the accessible volume. Eventu-

ally, this value is underestimated and we arbitrarily choose w ¼ 10� wF.

Although it could be much larger, the variations of ccP above this value

are quite slow and do not alter dramatically the previous phase diagrams

(Fig. 4). With all these parameters, we find for the tricritical point coordi-

nates: ccP ¼ 2:2 10�2 a�3, ccD ¼ 7:7 10�4 a�3, and bcvðTcÞ ¼ �25:67 a3.



FIGURE 4 (A) The DNA critical concentration ccD � 1=
ffiffiffiffi
N

p
. (B) For

w> 10wF the variations of ccP and of the other critical parameters are

very slow. To see this figure in color, go online.

FIGURE 3 Truncated Lennard-Jones potential modeling an attractive

interaction between DNA and proteins with parameters indicated in Table 1:

(A) potential shape and (B) Mayer function. To see this figure in color, go

online.
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RESULTS

We present in this section the results of the mean-field
theory and defer the discussion of the actual values of
the parameters (see Materials and Methods). We assume
that DNA and protein spheres have the same size
(diameter a) that we use as the new unit length. The tem-
perature T and the coefficient vðTÞ are related through
Eq. 5, and we therefore introduce the order parameter t
in the following:

vðTÞ ¼ vðTcÞð1þ tÞ: (13)
We choose to discuss the phase separation in terms of t and
of the densities hD ¼ cDsD and hP ¼ cPsP. The coexis-

tence surface is then computed numerically by solving
Eq. 8 and is shown in Fig. 2. At the critical point, Eq. 8
has a unique solution, namely the triplet ðhcD; hcP; TcÞ. As
previously reported for such systems (10), we find the
following:
hc
D � 1ffiffiffiffi

N
p : (14)

This is the same scaling as the overlap density for polymer

chains of size N, which is the density at which polymer coils
begin to interpenetrate (see, for instance, (9)). Given that
DNA is present in the nucleoid at concentrations close to
the overlap density, this suggests that biological systems
may function at the vicinity of this tricritical point.

For T <Tc we have vðTÞ< vðTcÞ< 0, which corresponds
to a DNA-protein interaction more attractive than at the crit-
ical point and the solutions of Eq. 8 are distributed on a
closed curve. This closed curve is in fact the collection of
all pairs of coexisting dilute ðcID; cIPÞ and dense ðcIID; cIIPÞ
phases. They are represented in Fig. 5, where the pairs of co-
existing phases are connected by tie lines. Although there is
an infinite set of possible states of coexistence, the total
number of DNA and protein spheres selects a unique
solution pair. The resulting coexistence state is uniquely
determined by the following relation, whose graphical inter-
pretation is shown in Fig. 5:

f

	
cID
cIP



þ ð1� fÞ

	
cIID
cIIP



¼

	
c�D ¼ MN

�
V

c�P ¼ P
�
V



: (15)

An important point to note is that in general, the concentra-

tion of DNA in the dilute phase is very small. Indeed, the
Biophysical Journal 110(1) 51–62



FIGURE 5 Coexistence lines for t ¼ 0:05; 0:5; 1:0. The coexistence line

shrinks toward the tricritical point (red dot) when t/0. For each curve, the

dilute phase is shown in green and the concentrated phase is shown in blue.

Coexisting states are connected by tie lines (dotted segments). The volume

fraction of each phase is determined (black arrows) according to Eq. 15. To

see this figure in color, go online.
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translational entropy of DNA is small, because of the factor
1=N, and thus there is no entropic gain for the DNA to be in
the dilute phase, whereas it has an important enthalpic
advantage to be in the concentrated phase. To illustrate
how one can determine the composition of the system, we
now explain how phase separation takes place when cooling
the system from high to low temperature. We consider the
following case of DNA and protein densities:
Biophysical Journal 110(1) 51–62
h�
D ¼ 0:01; (16)

h�
P ¼ 0:0015: (17)
Again, we defer the justification for this choice of the pa-

rameters. The system splits into two phases at a temperature
T�. For T >T�, the system is homogeneous with values of
the concentration given by Eq. 16, whereas for T <T�, the
system splits into two phases whose composition is deter-
mined by Eqs. 8 and 15. The line of coexistence obtained
is shown on Fig. 2. Note that at T ¼ T�, the phase transition
is first order, except when T� is on a critical line, in which
case it is second order. Let us now assume that the concen-
tration of proteins is increased by a factor of 10 to
h�P ¼ 1:5 10�2. When the system is cooled from high tem-
peratures, it splits into two phases, and as before, the coex-
isting states are distributed on the surface of coexistence.
However, the mass conservation requirement (Eq. 15) yields
a different line of coexistence. The new line of coexistence
is shown with dashed lines in Figs. 2 and 6. As might have
been expected, an augmentation of the protein concentration
results in an increased protein concentration in both the
dilute and concentrated phases (Fig. 6 A). The DNA concen-
tration, however, shows a two-step pattern. When additional
proteins are added to the solution, the free DNA monomers
of the dilute phase are transferred to the concentrated one,
and consequently, the DNA concentration in the dense phase
first increases. But at some point, the DNA concentration in
the dense phase reaches a maximum and starts to decrease
(Fig. 6, B and C). Indeed, a fraction of the newly added pro-
teins populate the concentrated phase and make it swell,
while the amount of DNA remains the same. Therefore,
varying the total quantity of proteins can induce
FIGURE 6 Coexistence lines for h�P ¼ 0:0015

and 0.015, with h�D ¼ 0:01. These are the projec-

tions of the coexistence lines of Fig. 2 as a function

of the density of (A) proteins or (B) DNA. (C) Sec-

tion of the phase diagram at t ¼ 1:5 (corresponding

to the parameters given in Table 1). A path corre-

sponding to a fixed DNA density of h�D ¼ 0:01 is

drawn (black line). (D) Density ratio

ðhD þ hPÞ=ðh�D þ h�PÞ for the dilute phase and

dense phase, for a density of DNA fixed to

h�D ¼ 0:01. To see this figure in color, go online.
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nonmonotonous variations of the DNA concentration in the
phases of the system.
Structure of the dense phase

Example of structures

We showed above how the Flory-Huggins theory predicts
the existence of a phase separation between two homoge-
neous phases. It is well known that within the Flory-Hug-
gins approximation, the chain structure is not taken into
account, except through the suppression of the transla-
tional entropy of the chains. In particular, the fact that
chains may have a strong bending rigidity (long persis-
tence length) does not play any role at this level. There-
fore, the predicted structure of the dense phase is that of
a melt of collapsed polymer with spheres. However,
several studies have highlighted that the bending rigidity
of the polymer has an influence on the microstructure of
the dense phase (15-17). This is well characterized
(Fig. 7). A standard way to characterize the effect of the
chain structure is to use the random phase approximation
(RPA) (see (9)). We have performed such RPA calcula-
tions, but we do not report them in this article, because
they did not show any interesting instability in the dense
phase. The reason for the failure of RPA is that the phase
FIGURE 7 Two equilibrium configurations of a single polymer chain

(blue) displaying the coexistence of a dense and a dilute phase, with persis-

tence length lp ¼ 1 (A) and lp ¼ 20 (B) interacting with proteins (red).

For small bending rigidity, the structure of the dense phase is globular

whereas it is cylindrical in the other case. We performed simulations with

P ¼ 10 spheres (see Materials and Methods). To see this figure in color,

go online.
transition from the homogeneous to the separated phases is
first order and thus is not driven by critical fluctuations.
This is a typical case when RPA fails to give insights about
the dense phase structure.

Theory of Hamiltonian paths

Because RPA is not appropriate to describe the system in
the dense phase, we adopt another approach. Because of
their attractive interactions with the DNA, the spheres in
which the polymer is immersed play the role of colloid
particles that bridge various parts of the polymers. Conse-
quently, these spheres induce an effective attraction be-
tween the monomers. We thus turn to a model of a
semiflexible polymer chain on a lattice that has been pro-
posed initially to explain the folding of a protein in
compact structures (17-19) (see Fig. 8). An attraction en-
ergy εv between nonbonded nearest neighbors is included,
which favors compact configurations. A bending energy of
the chain is introduced as a corner penalty. It penalizes
corners by an energy εh and thus plays the role of a
bending rigidity. As we show below, this term induces an
ordering transition between a random (molten) globule
where corners are mobile in the bulk, and a crystalline
phase, where corners are expelled to the surface of the
globule. Using mean-field theory, it was shown that de-
pending on the temperature and chain stiffness, three
phases can exist, namely a dilute phase where the polymer
is swollen; a condensed phase, which we call a molten
globule, where the polymer is collapsed and disordered;
and finally a second condensed phase where the polymer
is collapsed but with a local crystalline ordering. The
phase diagram is described simply by the two parameters
εv and εh. For fixed small εh, there is a second-order phase
transition at a temperature T ¼ Tq between a dilute and a
disordered condensed phase, followed by a first-order
freezing transition at TF between the disordered condensed
phase and a locally ordered condensed phase of the
FIGURE 8 Two realization of Hamiltonian paths on a cubic lattice. The

globular state contains an extensive number of corners whereas the crystal-

line state contains a nonextensive number of corners (proportional to the

surface). To see this figure in color, go online.
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polymer. Upon increasing the chain stiffness εh, the molten
globule region shrinks until it eventually vanishes. For
larger stiffness, the polymer goes abruptly from a swollen
to a frozen configuration ðTF > TqÞ through a direct first-or-
der transition (Fig. 9). These theoretical results were
readily confirmed and improved by Monte-Carlo simula-
tions (17,20,21).

In its simplest form, this model considers a completely
collapsed polymer on a lattice. It is represented as a
Hamiltonian path (HP) on a lattice, that is a path that
visits each site once and only once. Thus the density of
monomer is h ¼ 1. A good approximation to the total
number N of HP on a lattice was shown to be (22) the
following:

N ¼
�q
e

�N

; (18)

where N is the total number of points of the lattice and q is
the coordination number of the lattice, e.g., q ¼ 2d on a

d-dimensional cubic lattice.

In the case of semiflexible polymers (HP with corner
penalty), the partition function is the following (17):

Z ¼
X
fHPg

e�bεhNCðHPÞ; (19)

where NCðHPÞ counts the number of corners of a HP
realization.
FIGURE 9 Phase diagram obtained for a polymer chain interacting with

spheres. The phase diagram is plotted as a function of kBT=ε and lp, where ε
is the strength of the Lennard-Jones DNA-protein interation and lp is the

persistence length. We performed simulations with P ¼ 100 spheres (see

Materials and Methods). To see this figure in color, go online.
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A saddle-point approximation gives the following corre-
sponding free energy per monomer:

bf ¼ �ln
qðbÞ
e

; (20)

where
qðbÞ ¼ 2þ 2ðd � 1Þe�bεh ; (21)

is an effective coordination number, e ¼ 2:718 28:::, and

d is the dimensionality of the lattice. Note that if the corner
penalty vanishes, we recover the result of Eq. 18.

As the temperature decreases, the effective coordination
number qðbÞ decreases, and the free energy increases. There
is a temperature TF for which qðbÞ ¼ e, giving a free energy
per monomer f ðTFÞ ¼ 0. For T <TF, f ðTÞ would become
positive in Eq. 20 if the saddle-point approximation were
still valid. However, f ðTÞ is a negative quantity (18) and,
therefore, remains zero the freezing temperature TF. Conse-
quently for temperatures T >TF, the corners are mobile in
the bulk, leading to a liquid-like structure for the corners;
whereas for T <TF, the polymer is frozen in stretched con-
figurations with f ðTÞ ¼ 0, in which corners are expelled to
the surface and polymer segments tend to be aligned inside
(Fig. 8). These configurations have been studied previously:
they are elongated neck structures or toroı̈ds (23), whose
typical size is given by the following:

εh

UðbÞ � lp; (22)

where UðbÞ ¼ vðbf Þ=vb is the internal energy.
This simple model can be extended to the case where the
volume fraction h< 1. It requires the introduction of the
parameter εv ¼ �c, where c is the Flory-Huggins parameter
of a polymer chain in a solvent and denotes the effective
attraction between monomers induced by the proteins.
This leads to the computation of the above mentioned phase
diagram in terms of the two parameters εv and εh.
Results

To make the HP approach more quantitative, it is interesting
to relate its parameters to our simplified picture of DNA in-
teracting with proteins. Namely, we would like to relate εv

and εh to the parameters of the Flory-Huggins free energy
in Eq. 1. But in the last one, the monomer-monomer attrac-
tion is mediated by spheres. In the dense phase, the total
concentration of monomers and spheres: c ¼ cD þ cP is
essentially fixed to the close packing concentration c0. By
inserting this in Eq. 1, we obtain the following:

bf ¼
	
aD þ aP

2
þ vðTÞ



c2D þ 1

6
c3 þ ðc� cDÞln c� cD

e
;

(23)

where we neglect the translational entropy of the polymer in
the dense phase and drop the linear terms in cD as this results
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in an adjustment of the chemical potentials. We then have
the following correspondence:

εvh� vðTÞ � aD þ aP

2
: (24)

For low temperature, vðTÞ can reach large negative values.

This is mapped to a large εv in the HP model. Depending
on the rigidity of the chain, the dense phase might be glob-
ular (low lp) or crystalline (large lp). The effective monomer
density in the dense phase is given by the following:

hh
cD

cD þ cP
: (25)

One important result obtained using a HP model is the phase
diagram of a polymer on a lattice (implicit solvent) with
bending rigidity, obtained in an earlier mean-field study
(17) and then supplemented by Monte Carlo studies (20).
We show in our study that the phase diagram of a semiflex-
ible polymer interacting explicitly with spheres in an off-lat-
tice volume is very similar. We performed BD simulations
with a polymer chain of N ¼ 400 beads and P ¼ 100 protein
spheres in a cubic volume of size L ¼ 100 with periodic
boundary conditions (see Materials and Methods). Polymer
beads and protein spheres interact through a Lennard-Jones
potential with a well depth given by the energy scale ε

(in kBT). We used a Kratky-Porod model of polymer, with
bending rigidity characterized by the persistence length lp.
By varying lp and ε independently, we were able to explore
the phase behavior of this system. We monitored the coil-
globule transition by looking at the quantity in the
following:

q ¼ logRg

logN
; (26)

where Rg is the radius of gyration of the polymer. For a
self-avoiding polymer with scaling law Rg � bNn,
q ¼ nþ cst=logN. In a good solvent, the polymer is swollen
with n ¼ 0:588, whereas in a bad solvent it collapses with
n ¼ 1=3 . It is clear that q varies like n.

Following the same authors (20), we define the quantity
na ¼ Pjui,ea j for a ¼ x; y; z, in which i runs over all the
bonds of the polymer, ui is the unit vector having
the same direction as the bond i and ea is the unit vector
of the corresponding a-axis. We then define nmin ¼
minaðnaÞ, nmax ¼ maxaðnaÞ, and the following:

p ¼ 1� nmin
nmax

: (27)

For an isotropic configuration, nx ¼ ny ¼ nz resulting in

p ¼ 0. Conversely, for a configuration stretched in one di-
rection, for example, along the x axis, nx ¼ 1 and
ny ¼ nz ¼ 0, resulting in p ¼ 1. Thus p measures the direc-
tional order of the polymer.
We plotted the phase diagram obtained as a function of
kBT=ε and lp (Fig. 9). There is a clear similarity with the
case of a polymer on a lattice without explicit proteins.
However, we observe that the coil-globule and globule-crys-
tal transitions occur at a higher interaction energy ε. This
might be a consequence of going from a lattice model to a
continuous model. It might also be because of the fact that
in the high-temperature regime, the concentration of spheres
in solution is smaller than the close packing, therefore mak-
ing it hardly comparable with an actual solvent. There is a
specific persistence length lcpx10 such that

� for lp < lcp, the polymer collapses through a second-order
coil-globule transition, followed by a first-order
globule-crystal transition when ε increases; and

� for lp > lcp, the coil-globule transition no longer exists and
the polymer collapses directly from a coil to a crystalline
phase through a first-order phase transition.
DISCUSSION

DNA condensation in vitro

The condensation of DNA induced by DNA-binding pro-
teins or ions has been thoroughly studied. It is well known
that DNA collapses from disperse structures corresponding
to swollen coil configurations into ordered, highly
condensed states. This has been the focus of several
in vitro experimental studies (24-28). One important conclu-
sion from these studies is that during its collapse, DNA un-
dergoes phase transitions through the following three
phases: isotropic fluid, cholesteric, and crystalline (hexago-
nal), in agreement with our results. As stated above, within
the Flory-Huggins theory, the phase transition induced by
ions or DNA-binding proteins appears to be first order,
except at the tricritical point and on the critical lines. There-
fore, the transition from the swollen to the condensed state
should be discontinuous and present hysteresis effects,
which was indeed observed (27,29). Interestingly, the
Flory-Huggins theory predicts another effect. At fixed tem-
perature, there is a line of possible coexisting states. Given a
certain amount of DNA, we are able to discuss the conse-
quences of adding proteins to the system. The protein con-
centration would increase from zero until it reaches a
value for which the system splits into two phases. If we
keep adding proteins, the system will at some point exit
the biphasic regime (Fig. 6, C and D). This phenomenon
called reentrance has been observed in some experimental
work (26).
DNA condensation in vivo

Although it is premature to draw any clear biological
conclusion, it is tempting to discuss at least qualitatively
the effect of DNA condensation on biological functions.
In eukaryotes, nucleosomal organization provides an
Biophysical Journal 110(1) 51–62
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effective protection against detrimental factors. This organi-
zation is absent in prokaryotes, which have a significantly
lower ratio of DNA-binding proteins (30). However, in
harsh environmental conditions (radiations, temperature,
oxidating agents, and radicals), several bacteria resort to
DNA condensation mechanisms to protect their genome.
Maybe the most spectacular case is the appearance of mac-
roscopical DNA aggregates with crystal-like order in
starved E. coli cells. In stressful conditions, the alternative
sS factor is expressed, in response to low temperature, cell
surface stress, or oxidative shock. This in turn induces the
expression of the DNA-binding protein Dps (31,32). In
starved cells, Dps is the most abundant DNA-binding pro-
tein, with ~20,000 Dps protein per cell. Consequently,
DNA is condensed into crystal-like aggregates, which
make it less accessible to damaging factors. This process
is reversible and wild-type E. coli cells starved for three
days remain unaffected by a high dose of oxidating agents
whereas mutants lacking Dps lose viability (31). Interest-
ingly, Dps binds nonspecifically to DNA. In regard to
what has been discussed in this article, we may infer that
when Dps concentration increases, a dense phase appears.
But at a scale of Dps size ð� 10 nmÞ, the apparent rigidity
of DNA is large ð� 50 nmÞ. Therefore, as Fig. 9 shows,
this might be a case where the coil-globule transition is pre-
cluded by the freezing transition. Other examples of DNA
compaction by nonspecific proteins seem to exist (33,34).
Local concentration effects and transcription

Increasing evidence suggests that transcription proceeds
from nucleation points called transcription factories, which
are formed from the interaction of DNA with general and
dedicated transcription factors. Although the nonspecific
hypothesis is not guaranteed, it is true that RNAP can
bind widely onto DNA thanks to its s-unit. The Flory-Hug-
gins results from this article suggest that a biphasic regime
can exist, with a dense phase spanning a volume of size
ð1� fÞV and with local concentrations of DNA and
RNAP increased by a factor of 4-to-8 with respect to the
mean-field ones (Fig. 6 D). This would result in shifting
the equilibrium of complexation reactions such as the
following:

DNA þ protein %RNAP bound to DNA

toward the formation of complexes and may favor transcrip-
tion initiation. This is consistent with some experimental
work showing that RNAP clusters are formed during preini-
tiation and initiation of transcription (35). The same authors
also proposed that crowding of enzymes, i.e., higher local
concentrations, may aid in rate-limiting steps of gene regu-
lation. From a dynamical standpoint, the confinement of un-
bound RNAP in a restricted volume of size ð1� fÞV can
reduce the search time for a promoter. To this extent, it is
Biophysical Journal 110(1) 51–62
worthwhile to point out a recent study claiming that the pro-
moter search mechanism is indeed dominated by 3D diffu-
sion of RNAP over the one-dimensional diffusion along
DNA (36).
Structure of the dense phase

Earlier studies have demonstrated that the frozen phase can
present various metastable states (21). In the N/N limit
(N is the length of one chain), the transition timescale
from one to another could be very large, and the system
might well never equilibrate within biological timescales.
Finally, the parallel drawn between the HP theory and the
Flory-Huggins theory does not pretend to mathematical
rigor. One essential difference is that in our case the attrac-
tive interaction between monomers is mediated by spheres.
A way to compute more precisely the structure of the dense
phase would be to go beyond the homogeneous saddle-point
approximation, for instance, by using the so-called self-
consistent field theory method (37,38), which is a very com-
plex method in the case of semiflexible polymers.
CONCLUSIONS

We presented in this study two complementary frameworks
to describe the phase diagram of polymeric fluids induced
by colloids, and we applied it to a DNA chain interacting
with DNA-binding proteins. Starting from a Flory-Huggins
free energy, we first computed the mean-field phase diagram
and found that at low temperature (i.e., high DNA-protein
affinity) a biphasic regime exists, consisting of the coexis-
tence of a dilute phase and a concentrated phase. The dilute
phase may correspond to swollen configurations of the DNA
whereas the concentrated phase is a model for condensed
states of DNA. This theory may also apply to DNA conden-
sation by multivalent ions or proteins in general. Second, we
addressed the characterization of the dense phase structure
and showed that the chain bending rigidity can have dra-
matic effects. Without bending rigidity, the dense phase
has no directional order and is a molten globule. However,
when the chain bending rigidity is large enough, there is a
freezing transition from the globular to crystalline phase.
Eventually for very rigid chains, the coil-globule transition
is precluded by the freezing transition and the phase transi-
tion predicted in the Flory-Huggins framework does not
occur.

In the cell, the existence of a dense phase could be a good
approximation for the transcription factories observed
experimentally. It is conjectured that this may increase the
rate of success in transcription initiation by means of protein
crowding and by enhancing the promoter search mecha-
nism. Note that at a scale that is coarse-grained to several
thousand base-pairs (gene scale), the chromosome is flex-
ible and the dense phase has the structure of a molten
globule. Conversely, at a scale of a few base-pairs, the
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apparent rigidity of DNA is much higher. Thus, the Dps pro-
tein, which binds nonspecifically to DNA, can induce the
collapse of the E. coli chromosome into crystal-like aggre-
gates; the dense phase is then frozen. This is not an efficient
state for a searching mechanism. But on the contrary, it is
very adequate to protect DNA.

The two frameworks are quite general and can be used to
describe biological phenomena where DNA compaction oc-
curs under the cooperative effect of binding proteins. In the
future, we plan to apply it to other biological cases when
more quantitative experiments become available.
AUTHOR CONTRIBUTIONS

F.K. and H.O. designed the research. G.L.T. and H.O. performed the

research; and G.L.T. wrote the software and analyzed the data. All authors

contributed to the writing of the article.
ACKNOWLEDGMENTS

The authors thank the MEGA team members at iSSB for excellent discus-

sions. This work was supported by the IDEX Paris-Saclay grant, CNRS

Genopole, and the ANR project Synpathic.
REFERENCES

1. Montero Llopis, P., A. F. Jackson,., C. Jacobs-Wagner. 2010. Spatial
organization of the flow of genetic information in bacteria. Nature.
466:77–81.

2. Schoenfelder, S., T. Sexton, ., P. Fraser. 2010. Preferential associa-
tions between co-regulated genes reveal a transcriptional interactome
in erythroid cells. Nat. Genet. 42:53–61.

3. Xu, M., and P. R. Cook. 2008. Similar active genes cluster in special-
ized transcription factories. J. Cell Biol. 181:615–623.

4. Caudron-Herger, M., P. R. Cook, ., A. Papantonis. 2015. Dissecting
the nascent human transcriptome by analysing the RNA content of tran-
scription factories. Nucleic Acids Res. 43:e95.

5. Junier, I., O. Martin, and F. Képès. 2010. Spatial and topological orga-
nization of DNA chains induced by gene co-localization. PLOS Com-
put. Biol. 6:e1000678.

6. Spilianakis, C. G., M. D. Lalioti,., R. A. Flavell. 2005. Interchromo-
somal associations between alternatively expressed loci. Nature.
435:637–645.

7. Sheinman, M., O. Bénichou,., R. Voituriez. 2012. Classes of fast and
specific search mechanisms for proteins on DNA. Rep. Prog. Phys.
75:026601.

8. Berg, O. G., and P. H. von Hippel. 1981. Diffusion-driven mechanisms
of protein translocation on nucleic acids 2. American Chemical Society.
20:6948–6960.

9. de Gennes, P. 1979. Scaling Concepts in Polymer Physics.. Cornell
University Press, Cornell, NY.

10. Sear, R. P. 2002. Flory-Huggins theory for athermal mixtures of hard
spheres and larger flexible polymers. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 66:051401.

11. Elowitz, M. B., M. G. Surette,., S. Leibler. 1999. Protein mobility in
the cytoplasm of Escherichia coli. J. Bacteriol. 181:197–203.

12. Kahramanoglou, C., A. S. N. Seshasayee, ., N. M. Luscombe. 2011.
Direct and indirect effects of H-NS and Fis on global gene expression
control in Escherichia coli. Nucleic Acids Res. 39:2073–2091.
13. Nowak-Lovato, K., L. B. Alexandrov, ., B. S. Alexandrov. 2013.
Binding of nucleoid-associated protein fis to DNA is regulated by
DNA breathing dynamics. PLOS Comput. Biol. 9:e1002881.

14. Ishihama, A., A. Kori, ., N. Fujita. 2014. Intracellular concentrations
of 65 species of transcription factors with known regulatory functions
in Escherichia coli. J. Bacteriol. 196:2718–2727.

15. Johnson, J., C. A. Brackley,., D. Marenduzzo. 2015. A simple model
for DNA bridging proteins and bacterial or human genomes: bridging-
induced attraction and genome compaction. J. Phys. Condens. Matter.
27:064119.

16. Brackley, C. A., S. Taylor, ., D. Marenduzzo. 2013. Nonspecific
bridging-induced attraction drives clustering of DNA-binding proteins
and genome organization. Proc. Natl. Acad. Sci. USA. 110:E3605–
E3611.

17. Doniach, S., T. Garel, and H. Orland. 1996. Phase diagram of a semi-
flexible polymer chain in a theta solvent: application to protein folding.
J. Chem. Phys. 105:1601–1608.

18. Bascle, J., T. Garel, and H. Orland. 1992. Mean-field theory of polymer
melting. J. Phys. Math. Gen. 25:1323.

19. Bascle, J., T. Garel, and H. Orland. 1993. Formation and stability of
secondary structures in globular proteins. J. Phys. II France.
3:245–253.

20. Bastolla, U., and P. Grassberger. 1997. Phase transitions of single semi-
stiff polymer chains. J. Stat. Phys. 89:1061–1078.

21. Doye, J. P. K., R. P. Sear, and D. Frenkel. 1998. The effect of chain
stiffness on the phase behaviour of isolated homopolymers. J. Chem.
Phys. 108:2134–2142.

22. Orland, H., C. Itzykson, and C. de Dominicis. 1985. An evaluation of
the number of Hamiltonian paths. J. Physique Lett. 46:353–357.

23. Montesi, A., M. Pasquali, and F. C. MacKintosh. 2004. Collapse of a
semiflexible polymer in poor solvent. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 69:021916.

24. Bloomfield, V. A. 1996. DNA condensation. Curr. Opin. Struct. Biol.
6:334–341.

25. Livolant, F., and A. Leforestier. 1996. Condensed phases of DNA:
structures and phase transitions. Prog. Polym. Sci. 21:1115–1164.

26. Vasilevskaya, V. V., A. R. Khokhlov,., K. Yoshikawa. 1995. Collapse
of single DNA molecule in poly(ethylene glycol) solutions. J. Chem.
Phys. 102:6595–6602.

27. Yoshikawa, K., and Y. Matsuzawa. 1995. Discrete phase transition of
giant DNA dynamics of globule formation from a single molecular
chain. Physica D. 84:220–227.

28. Durand, D., J. Doucet, and F. Livolant. 1992. A study of the structure of
highly concentrated phases of DNA by X-ray diffraction. J. Phys. II
France. 2:1769–1783.

29. Widom, J., and R. L. Baldwin. 1980. Cation-induced toroidal conden-
sation of DNA studies with Co3þ(NH3)6. J. Mol. Biol. 144:431–453.

30. Kellenberger, E., and B. Arnold-Schulz-Gahmen. 1992. Chromatins of
low-protein content: special features of their compaction and conden-
sation. FEMS Microbiol. Lett. 100:361–370.

31. Almirón, M., A. J. Link, ., R. Kolter. 1992. A novel DNA-binding
protein with regulatory and protective roles in starved Escherichia
coli. Genes Dev. 6 (12B):2646–2654.

32. Altuvia, S., M. Almirón, ., G. Storz. 1994. The dps promoter is acti-
vated by OxyR during growth and by IHF and sigma S in stationary
phase. Mol. Microbiol. 13:265–272.

33. Frenkiel-Krispin, D., and A. Minsky. 2006. Nucleoid organization and
the maintenance of DNA integrity in E. coli, B. subtilis and
D. radiodurans. J. Struct. Biol. 156:311–319.

34. Newton, G. L., J. A. Aguilera, ., R. C. Fahey. 1996. Polyamine-
induced compaction and aggregation of DNA–a major factor in radio-
protection of chromatin under physiological conditions. Radiat. Res.
145:776–780.
Biophysical Journal 110(1) 51–62

http://refhub.elsevier.com/S0006-3495(15)01101-7/sref1
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref1
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref1
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref2
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref2
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref2
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref3
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref3
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref4
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref4
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref4
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref5
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref5
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref5
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref6
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref6
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref6
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref7
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref7
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref7
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref8
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref8
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref8
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref9
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref9
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref10
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref10
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref10
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref11
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref11
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref12
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref12
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref12
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref13
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref13
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref13
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref14
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref14
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref14
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref15
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref15
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref15
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref15
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref16
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref16
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref16
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref16
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref17
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref17
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref17
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref18
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref18
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref19
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref19
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref19
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref20
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref20
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref21
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref21
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref21
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref22
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref22
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref23
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref23
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref23
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref24
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref24
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref25
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref25
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref26
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref26
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref26
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref27
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref27
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref27
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref28
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref28
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref28
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref29
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref29
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref29
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref30
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref30
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref30
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref31
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref31
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref31
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref32
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref32
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref32
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref33
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref33
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref33
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref34
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref34
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref34
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref34


62 Le Treut et al.
35. Cisse, I. I., I. Izeddin, ., X. Darzacq. 2013. Real-time dynamics of
RNA polymerase II clustering in live human cells. Science.
341:664–667.

36. Wang, F., S. Redding, ., E. C. Greene. 2013. The promoter-search
mechanism of Escherichia coli RNA polymerase is dominated by
three-dimensional diffusion. Nat. Struct. Mol. Biol. 20:174–181.
Biophysical Journal 110(1) 51–62
37. Edwards, S. F., and M. Doi. 1988. The Theory of Polymer Dynamics.
International Series of Monographs on Physics. Oxford University
Press, Oxford, UK.

38. Fredrickson, G. 2005. The Equilibrium Theory of Inhomogeneous Poly-
mers. International Series of Monographs on Physics. Oxford Univer-
sity Press, Oxford, UK.

http://refhub.elsevier.com/S0006-3495(15)01101-7/sref35
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref35
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref35
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref36
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref36
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref36
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref37
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref37
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref37
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref38
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref38
http://refhub.elsevier.com/S0006-3495(15)01101-7/sref38

	Phase Behavior of DNA in the Presence of DNA-Binding Proteins
	Introduction
	Flory-Huggins theory
	Free energy and thermodynamic functions
	The regime of phase separation


	Materials and Methods
	Molecular dynamics simulations
	Mean-field concentrations
	Computation of the phase diagram

	Results
	Structure of the dense phase
	Example of structures
	Theory of Hamiltonian paths
	Results


	Discussion
	DNA condensation in vitro
	DNA condensation in vivo
	Local concentration effects and transcription
	Structure of the dense phase

	Conclusions
	Author Contributions
	Acknowledgments
	References


