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Shock Wave-Induced Damage of a Protein by Void Collapse
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ABSTRACT In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of
shock waves on a membrane-bound ion channel. A planar shock wave was found to compress the ion channel upon impact, but
the protein geometry resembles the crystal structure as soon as the solvent density begins to dissipate. When a void was placed
in close proximity to the membrane, the shock wave proved to be more destructive to the protein due to formation of a nanojet
that results from the asymmetric collapse of the void. The nanojet was able to cause significant structural changes to the protein
even at low piston velocities that are not able to directly cause poration of the membrane.
INTRODUCTION
Blast-induced mild traumatic brain injury (mBTI) from
improvised explosive devices is the most frequent wound
occurring from the conflicts in Afghanistan and Iraq (1). It
has been estimated that more than 200,000 veterans have
had at least one traumatic brain injury (2). Clinical reports
and in vivo studies show exposure to a blast can cause
mBTI, although how the energy is transmitted to the brain
is not well understood (3). Many of our war fighters have re-
ported cognitive problems such as memory loss, difficulty
thinking, attention deficits, and mood swings long after the
initial injury (4). When a body is exposed to a blast, shock
waves are produced resulting in shear forces within the cra-
nium (5). In skull models, cavitation was observed due to
shock-bubble interactions and proposed as an injury mecha-
nism (6). Experiments and molecular simulations of bubble-
shock interactions have shown that the force generated by
bubble collapse is great enough to cause membrane poration
(7–10).Blast-induced porationof themembrane undoubtedly
leads to injury and ultimately neuronal death but it does not
account for the observed axonal retraction (11). The rapid
stretching of axons cause unregulated fluxes in ion concentra-
tions, including an efflux in potassium and influx of sodium
from and into the axon that, in turn, cause increased calcium
levels (12,13). The increased calcium levels trigger prote-
olysis of cytoskeletal proteins and irreversible damage (14).
Ionic imbalances likely play an important role in the cellular
damage incurred from mBTI. Unfortunately, finding the
possible causes of damage to cellular tissue can be difficult
and is likely to require a wide variety of techniques to eluci-
date the underlying mechanism.

Studying the damage caused by poration with experiment
can be very difficult, especially below the micron scale. In
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general, molecular dynamics (MD) with empirical force
fields is an approach that allows the simulation of millions
of atoms for timescales up to microseconds. MD simulations
are routinely used to study atomic-level interactions in
exquisite detail (15) and have proven to be an effective
tool for aiding in the interpretation of experimental mea-
surements. In particular, MD simulations have been
previously used to study the effects of shock waves on mem-
branes (9,10,16–22). Many recent simulations (9,10,18)
used the momentum-reflecting mirror method (see below)
to imitate the motion of a piston to produce shock waves
in the system under study. In one of the recent studies,
when the piston moved with a velocity above 3900 m/s,
the resulting shock wave severely damaged the membrane
but reversible damage occurred when piston velocities
were below 3000 m/s (18). More recently, MD simulations
using all-atom and coarse-grained (several atoms are
merged into a single bead) force fields have been used to
study the effects of shock wave-induced void collapse on
membranes (9,10). These studies showed impact of a shock
wave against one side of the void caused rapid collapse and
formation of a nanojet due to the solvent traveling through a
low density medium (void). At much lower piston velocities
(700 to 1000 m/s), the nanojet was able to readily cause po-
ration of the membrane. These results could have significant
consequences, because unregulated or faulty ions exchange
between the cell and the environment can lead to cellular
disease and death (23). In this regard, molecular simulation
can play an important role in elucidating the mechanism of
cellular damage by shock waves.

This study focuses on the effects of shock waves on a
membrane bound protein. Cell walls are composed mainly
of lipids but contain a large number of proteinaceous mate-
rial that is vital for the normal function of the cell (24). We
have performed all-atom MD simulations on shock wave-
induced void collapse to determine its impact on an axonal
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membrane bound protein (voltage-gated potassium ion
channel, Kv1.2) (25). Although we are using a Kv ion chan-
nel for this study, the results should be applicable to many
voltage-gated ion channels because they share similar over-
all structures (26). Voltage-gated ion channels sense the
change in voltage across the cell membrane and respond
by allowing specific ions in or out of the cell (27). Among
ion channels, the voltage-gated potassium channels (Kv)
are the most well-studied members (28). Kv channels allow
intracellular potassium ions to leave the cell to return the
membrane potential to the polarized state. Failure to release
cellular potassium can result in overexcitability of neuron
cells and disease. The Kv channels are homotetramers that
contain four voltage sensors and a central pore domain.
Each monomer contains four transmembrane helices (S1,
S2, S3, and S4) that form the voltage sensor domain and
two transmembrane helices (S5 and S6) that help form the
central pore of this channel (Fig. 1). Additionally, an intra-
cellular soluble domain (T1) is important for proper assem-
bly of the channel and a docking site for the b subunit.
Potassium ion channels play an important role in regulating
cardiac repolarization, insulin release, and smooth muscle
relaxation (28). Additionally, they are associated with dis-
eases such as diabetes, epilepsy, and long QT syndrome.
MATERIALS AND METHODS

All MD simulations were performed using the program GROMACS

(version 4.5.5) (29) with the all-atom CHARMM force field (version 36)

(30,31). The voltage-gated potassium ion channel Kv1.2 (Protein Data

Bank (PDB): 3LUT) (32) was embedded into the center of a preequilibrated

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid membrane that

has a surface area of ~320 � 320 Å2. The membrane-protein system was

solvated on the extracellular side of the membrane with a TIP3P (33) water

box 320 � 320 � 550 Å3 and with a 320 � 320 � 450 Å3 water box on the

intracellular side of the membrane using the program PACKMOL (34).

Counterions (NaCl) were added to the solution to neutralize the system

and to bring the ion concentration to 0.150 M. The final system size was

~320� 320� 1000 Å3 and consisted of 3055 DPPC lipids, 3,290,641 water

molecules, 8809 sodium cations, and 8765 chloride anions (10,311,891 to-

tal atoms).
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FIGURE 1 (A) Structure of the homotetrameric Kv1.2 potassium ion

channel (A). (B) Single subunit of Kv1.2, helices S5 and S6 form the central

pore of the ion channel. To see this figure in color, go online.
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The system was energy minimized using the steepest descent algorithm

and positional restraints were placed on nonhydrogen atoms of the protein

and lipid (Kr ¼ 1000 kJ/mol , nm2) to prevent large deviations. MD (200 ps

run) was performed on the energy minimized system initially using the

NVT ensemble with positional restraints. The system was coupled to a ther-

mostat (323 K) using the Berendsen method (35) with a coupling constant

of 0.1 ps. The short-range interaction was cut off with a switching function

between 8 and 10 Å (36) and the electrostatic interactions were treated with

the particle mesh Ewald method using a grid spacing of 1.6 Å (37). A 2 fs

time step was used and bonds containing hydrogens were constrained using

LINCS (38). The MD simulations were continued using the NPT ensemble

with the Nose-Hoover method (39,40) for temperature coupling (323 K and

0.5 ps) and the Parrinello-Rahman method (41) for pressure coupling (5 ps)

at 1 atm. All other parameters were the same as in the NVT simulation. The

positional restraints were gradually removed during the dynamics and the

system was equilibrated for 4.2 ns.

To determine the suitability of the TIP3P water model for shock wave

simulations, a rectangular box of water 110 � 110 � 430 Å3 in size was

tested. NPT dynamics was performed on the water using the same param-

eters as in the previous protein-membrane simulation. The final coordinates

from the NPT dynamics was used for the shock wave simulation. All shock

wave simulations were performed in the NVE ensemble without con-

straints. The system was periodic only in the XY direction and a time step

of 1 fs was used in the simulations to conserve energy. The nonperiodic sys-

tem required the electrostatics interactions to be treated with a reaction field

(42) (reaction-field-zero as implemented in GROMACS 4.5.4 (43)) to better

conserve energy. A twin-range cutoff of 10/12 Å was used for the short-

range and Coulomb interactions, respectively. The short-range and long-

range neighbor lists were cut off at 15 and 20 Å, respectively. Simulating

a shock wave propagating through the system was achieved by colliding

the system with a solid wall consisting of carbon atoms with a density of

25 atoms/nm3 placed at Z ¼ 0 and spanned the XY plane. The Lennard-

Jones interaction between the wall and all other atoms were treated with

a 9-3 potential (44). Initially, all atoms were translated þ20 Å along the

Z axis to create a gap between the water and solvent to avoid unfavorable

interactions. All atoms in the system were given an additional (piston) ve-

locity in the –Z direction causing the system to collide with the wall (reflect-

ing the momentum) and generated a shock wave traveling in the opposite

direction (þZ). This procedure is equivalent to having a massive piston

pushing the system along the –Z direction. This method is relatively simple

and similar to experiments that use a high-speed impactor on a stationary

target (45). A different method for generating a shock wave was used by

Koshiyama et al. to study water penetration through a membrane (16). In

their study, a segment (slab) of water was given an excess velocity resulting

in a shock impulse. This method requires a large number of atoms to pro-

duce a shock wave. We observed that the calculated shock wave velocities

of TIP3P water are in reasonable agreement with experiment (46) for piston

velocities ranging from 300 to 1000 m/s (Fig. 2). The deviation between the
FIGURE 2 Shock wave velocity of TIP3P water and experiment as a

function of piston velocity.



FIGURE 3 (A) Shows the solvent density during shock wave simulation

(piston velocity 1000 m/s) at 17 ps (red) and 25 ps (green). (B) and (C)

Show the progression of the shock wave in the system before (17 ps) and

after (25 ps) impact with the membrane shown in blue. The blue regions

show an absence of solvent density (membrane and T1 domain). The Z

axis is perpendicular to the membrane. To see this figure in color, go online.
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simulated and experimental shock wave velocities was <10% for all piston

velocities tested.

To study the effects of a shock wave on the protein-membrane system, the

coordinates from the equilibriumNPTdynamicswere used as the starting co-

ordinates for the shock wave simulations. Five shock wave simulations were

performed using the coordinates from the equilibrium dynamics at 3.8, 3.9,

4.0, 4.1, and 4.2 ns. The same protocol used previously to generate a shock

wave was used for the protein-membrane system. A piston velocity of

1000 m/s was added to all the atoms to produce the shock wave.

The effect of shock wave-induced void collapse on the protein-mem-

brane system was studied by creating a 100 Å radius void by the membrane.

Removing a 100 Å radius sphere of water from the system reduced the

amount of water by ~4% (~140,850 water molecules were removed). The

edge of the void was within 20 Å of the membrane. The same protocol

used to generate a shock wave in water was used for the protein-membrane

system. Piston velocities of 1000, 500, 400, and 300 m/s were added to all

atoms to produce the shock wave. To determine the reproducibility of the

results, five simulations at each piston velocity (500, 400, and 300 m/s)

were performed. The initial coordinates for these simulations were taken

from the equilibrium dynamics at times 3.8, 3.9, 4.0, 4.1, and 4.2 ns. We

observed that the results from five repeated simulations were very similar

in each case when repeated simulations were performed; therefore, we

report here results from one of the simulations.

A recent study showed that void collapse (without a shock wave) in close

proximity to a membrane causes severe deformation to the lipid bilayer

(47). To investigate if damage to the protein could occur by this mechanism,

we continued the equilibrium NPT dynamics without a shock wave but con-

taining the 100 Å radius void. The system was periodic in all directions and

all parameters used for the NPT dynamics were also used for this simula-

tion. This simulation was performed for a total of 2 ns.

The a-helix content of the protein was monitored with the program

STRIDE (48) that uses a hydrogen bond criteria and dihedral angle poten-

tial to determine the secondary structure. The pore radius of the ion channel

was determined with the program HOLE (49). This program finds the chan-

nel cavity from a user-defined point and vector (direction) by moving the

point on a plane normal to the vector to find the largest sphere that can

be accommodated without overlap with the van der Waals surface of any

atom. The shape parameter (S) was used to determine the overall shape

of the protein (50). The shape parameter measures the deviation from a

spherical geometry and ranges in value from �0.25 to 2. Negative values

refer to oblate structures and positive values correspond to prolate struc-

tures. The root mean-squared deviations (RMSDs) were performed with

VMD (51) and the density profiles and distance matrices were calculated

and rendered with programs within GROMACS.
RESULTS AND DISCUSSION

To determine the effect of a shock wave on the structure of
the Kv1.2 ion channel, the system was moved at a piston ve-
locity of 1000 m/s into a solid wall to produce the planar
shock wave. When the shock wave passes through the pro-
tein-membrane system, it caused temporary compression of
these entities as the solvent density jumps from 1 g/ml to
~1.45 g/ml (Fig. 3). The average phosphorous to phospho-
rous distance between the inner and outer leaflets of the
DPPC membrane is 40.4 Å before the shock wave. The
initial helical content of Kv1.2 is 58.5% (912 out of 1560
residues). The RMSD of the backbone atoms (N, C, and
CA) relative to the crystal structure (PDB: 3LUT) is most
affected when the shock wave initially impacts the structure
at ~20 ps (Fig. 4 A). The RMSD of the protein backbone
jumps from 3.6 Å to almost 7 Å during impact. Residues
184 to 219 (S1–S2 linker) in each subunit were excluded
from the RMSD calculation because this is a long loop re-
gion that is highly flexible and normally absent in most crys-
tal structures of Kv1.2 (52). The individual subunits of
Kv1.2 react in the same manner to shock waves as the com-
plex (Fig. 4 B). Chain C of the ion channel has a higher
RMSD relative to the other subunits due to having the first
turn of helix S4 unwind and having the S3–S4 linker change
position (see Fig. S1 in the Supporting Material). If these
residues (270 to 290) are excluded from the fitting, the
RMSD for chain C is reduced by ~0.5 Å. The average phos-
phorous to phosphorous distance of the membrane contracts
to 31.6 Å and the helical content of Kv1.2 reduces slightly
to 57.8 5 0.6% at 25 ps. Interestingly, as the shock wave
progresses through the system and the solvent density de-
creases, the protein structure begins to resemble the crystal
structure again.
Biophysical Journal 110(1) 147–156



FIGURE 4 (A) RMSD of the backbone atoms (N, C, and CA) of Kv1.2

during the shock wave simulation (1000 m/s) relative to the crystal structure

PDB: 3LUT. (B) RMSD for the individual subunits A (red), B (green), C

(blue), and D (violet) of Kv1.2. (C) Shape parameter (S) for the protein

complex during the shock wave simulation. To see this figure in color, go

online.

FIGURE 5 Snapshots of Kv1.2 during the shock wave simulation with

piston velocity 1000 m/s and no void. To see this figure in color, go online.
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The RMSD lowers to ~4.5 Å relative to the crystal
structure at 50 ps. The application of high pressures is
known to cause proteins to denature and is a common
Biophysical Journal 110(1) 147–156
method for studying protein folding and stability (53).
Because the shock wave passes through the system
quickly (the wavefront leaves the system at 33 ps), the
change in pressure does not significantly affect the protein
structure (Fig. 5). The protein begins to approach its
previous ternary structure as the solvent density decreases
after 40 ps. The helical content of the ion channel is
57.5 5 1.1% at 50 ps and is almost identical to the start-
ing structure. The shape parameter (S) measures the devi-
ation from a spherical geometry (Fig. 4 C). A plot of S for
the protein shows the compression of the protein at ~20 ps
into a spherical shape but after 43 ps, the shape parameter
steady approaches its previous value. Calculation of the
alpha-carbon distance matrices for Kv1.2 at times 22.5
and 50 ps show that the protein initially compresses
(22.5 ps) as many of the CA-CA separations >100 Å dis-
appears but does not drastically change the overall struc-
ture (Fig. S2). At 50 ps, Kv1.2 elongates and begins to
resemble the crystal structure (PDB: 3LUT). The channel
along the central pore of the protein contracts during the
initial impact of the shock wave but the channel widens
as the simulation progresses (see Fig. 6 B). The shock
wave causes the channel of the central pore to close off
at 25 ps. After 50 ps, the central pore has not returned
to its original dimension, thus producing changes in the
selectivity filter. The selectivity filter is the narrowest
portion of the central pore and consists of the highly
conserved residues 374–378 (TVGYG). The backbone
carbonyl groups of these five residues form the selectivity
filter and reside in the P-loop. After passage of the shock
wave, these loops in Kv1.2 are displaced and end up clos-
ing off the central pore (Fig. 6 C). Typically, one or two of
the loops cause closure of the central pore. No water mol-
ecules were able to cross the membrane in these shock
wave simulations. The shock wave does not appear to
cause significant damage to either the membrane or the
associated voltage-gated ion channel. These results are
consistent with high-pressure experiments of ion channels
in squid giant axon (54). The resistance and capacitance
across the membrane were not affected over a range of



FIGURE 6 (A) Shows a schematic of the pore radius along the crystal

structure of Kv1.2. The selectivity filter is shown in green and found be-

tween �40 and �25 along the Z axis. (B) Shows the pore radius along

the Z axis for the protein at time points 25 ps (green) and 50 ps (blue).

The pore radius of the crystal structure (PDB: 3LUT) is shown in red. These

plots are centered on the largest radius along the Z axis. (C) Shows an over-

lay of the selectivity filter from the individual subunits (shades of green) at

50 ps with the crystal structure (red). Gly-378 in the displaced loop that

FIGURE 7 (A) Shows the solvent density during shock wave simulation

(piston velocity 500 m/s) with a 100 Å radius void at 24 ps (red), 28.5 ps

(green), and 33 ps (blue). The blue areas show an absence of solvent den-

sity. (B)–(D) Show progression of the shock wave comes in contact with the

void (B), creation of the nanojet (C), and impact with the membrane (D). To

see this figure in color, go online.
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pressures up to 62 MPa (54,55). The predominant effect of
pressure was to slow the overall kinetics of the voltage
clamp currents. Both the early (sodium) and delay (potas-
sium) currents were slowed down by the same factor.

MD simulations of shock wave-induced void collapse
have shown that a nanojet forms (Fig. 7) due to the shock
wave impinging on the side of the void opposite the mem-
brane. This causes the void to collapse more rapidly on
one side and water is able to move faster through the void
blocks the pore is shown in violet. Typically one or two loops cause the

closure of the pore. To see this figure in color, go online.

Biophysical Journal 110(1) 147–156



FIGURE 8 (A) Snapshot showing the effects of poration on the mem-

brane and protein at 50 ps in shock wave simulation with piston velocity

of 1000 m/s with void. (B) Rotated side view of the membrane. To see

this figure in color, go online.
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than in solution to form a nanojet (Fig. S3). Jet formation
from shock-induced bubble collapse is a well-known phe-
nomena (56) and commonly used to destroy kidney stones
(57). Previous simulations showed that nanoject can cause
poration of a membrane at relatively mild velocities (10),
likely leading to unregulated exchange of ions and mole-
cules across the membrane. Present shock wave simulations
of the protein-membrane system in the presence of a void
showed that the result of void collapse can be detrimental
to the cell. Fig. 8 shows that poration of the DPPC mem-
brane occurred when the piston velocity was 1000 m/s. A
pore of ~65 Å in radius was created in the membrane at
33 ps. The force of the nanojet is great enough that Kv1.2
is forced out of the membrane and denaturation of the ion
channel occurs. The Kv1.2 channel has a RMSD of over
Biophysical Journal 110(1) 147–156
30 Å relative to the crystal structure and only retains
11.9% helical content at 50 ps. The shape parameter for
the channel at 50 ps indicates the protein is spherical
(�0.004). All S5 and S6 helices that formed the central
pore in this ion channel are completely denatured and the
voltage sensor domain lacks most of its helical structure.
The force of the nanojet was also great enough to cause sep-
aration of the T1 domain of the subunits and 27,341 water
molecules were able to pass through the membrane by 50 ps.

We next studied the impact of shock wave-induced void
collapse at piston velocities that are known to cause minimal
to no damage to the membrane (10). A piston velocity of
500 m/s was able to create a nanojet with enough force to
cause deformation of the lipid bilayer without poration of
the membrane and was not able to dislodge the protein
before the shock wave left the system. The solvent density
reaches ~1.30 g/ml during creation of the shock wave
(Fig. 7 A). The RMSD for the protein rises to 10.0 Å at
50 ps and only decreases slightly during the remainder of
the simulation (Fig. 9 A). Although the protein does not
denature during the simulation, the impact of the nanojet
causes the overall topology of the channel to change drasti-
cally. Similar to the planar shock wave, the protein is com-
pressed, but because of the nanojet, the protein also expands
outward. Both the sensor domain and the central pore are
severely impacted, although the T1 domain is not greatly
affected. Analysis of the pore radius shows the protein
length is drastically shortened and does not recover during
the simulation (Fig. 10 A). The narrowest region of the cen-
tral pore no longer exists and the transmembrane portion of
the central channel is only 10 Å in length. The shape param-
eter shows the deformation the protein undergoes is more
severe when the void is present and that the protein becomes
FIGURE 9 (A) RMSD of the backbone atoms

(N, C, and CA) for Kv1.2 relative to crystal struc-

ture (PDB: 3LUT excluding residues 184–219 in

each monomer) during shock wave simulations at

piston velocities of 500 (red), 400 (green), and

300 (blue) m/s. (B)–(D) Show the RMSD for the in-

dividual subunits A (red), B (green), C (blue), and

D (violet) of Kv1.2 at piston velocities 500 (B), 400

(C), and 300 (D) m/s. To see this figure in color, go

online.



FIGURE 10 (A) Pore radius along the Z axis for Kv1.2 in the crystal

structure (red, PDB: 3LUT) and at time 37 ps (green) and 50 ps (blue)

for shock wave simulation at 500 m/s piston velocity. (B) Pore radius for

the Kv1.2 crystal structure (red) and for the 300 (green) and 400 (blue)

m/s piston velocity shock wave simulations at 75 ps. In both plots, the

pore radius of the crystal structure is shown in red. (C) Shows an overlay

of the selectivity filter of the individual subunits (in shades of green) at

50 ps (300 m/s) with the crystal structure (red). To see this figure in color,

go online.

FIGURE 11 (A) Overlay of the Kv1.2 crystal structure (red) subunit with

subunit (cyan) taken at 50 ps from the 400 m/s piston velocity shock wave

simulation. Although only subunit A is shown relative to the crystal struc-

ture for clarity, the other three subunits show the same positional change in

helices S5–S6. (B) Shows an overlay of the crystal structure (red) with a

subunit of Kv1.2 at 75 ps from the 300 m/s piston velocity shock wave

simulation (green). To see this figure in color, go online.
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more oblate (�0.005 5 0.001). Additionally, the helical
content of the protein drops to 51.1 5 1.9% after impact
of the nanojet and dips to 45.95 1.1% during the remainder
of the simulation.

Although nanojets created with piston velocities of 400
and 300 m/s do not deform the lipid bilayer, the nanojet
damages the protein when the piston velocity is 400 m/s.
The RMSD for the protein is above 7 Å at 42 ps and slowly
decreases as the simulation proceeds (Fig. 9 A). The radius
of the central pore region shows the deformation of the pro-
tein is not as severe as seen at 500 m/s but still undergoes
significant changes (Fig. 10 B). In particular, the transmem-
brane portion of the central pore is drastically reduced. An
overlay of the crystal structure with the subunit at 50 ps
shows that S5 and S6 are displaced ~18 Å (Fig. 11 A) but
are able to retain their secondary structure. All four subunits
of Kv1.2 have the S5 and S6 displaced. Previous MD simu-
lations of Kv1.2 have shown that the pore lining helices are
very rigid relative to the rest of the protein (58). The sensor
and T1 domains are not significantly affected by the nanojet
and retain their overall structure. The helical content of the
protein is 54.65 1.8% at 50 ps. The shape factor of the pro-
tein is spherical (0.001) after impact of the shock wave and
remains spherical for the duration of the simulation. When a
nanojet was created by the shock wave due to the motion of
the piston with a velocity of 300 m/s, only modest changes
in the structure of the protein occurred. The RMSD only rea-
ches ~5 Å relative to the crystal structure during the impact
of the nanojet and slowly decreases. The density of the so-
lution only reaches ~1.20 g/ml at this piston velocity. The
helical content of the protein is 57.2 5 0.6% at 75 ps. An
overlay of the crystal structure with the protein at 75 ps after
the shock wave shows most of the secondary structure has
remained intact and in the same relative positions (Fig. 11
B). Most of the change in structure is due to movement of
the flexible loops connecting the helices. The transmem-
brane portion of the central pore, although shorter than the
crystal structure, still retains most of the general features
(Fig. 10 B). The selectivity filter in the central pore is
affected by the nanojet (Fig. 10 C). An overlay of the sub-
units shows that the extracellular portion of the loops have
shifted and are further away from each other. Gly-378 has
Biophysical Journal 110(1) 147–156



FIGURE 12 (A) Void collapse simulation without a shock wave at 400

ps. (B) The void has reduced to a radius of 85 Å. At 1000 ps, the void

has reduced to 65 Å in radius and deformation of the membrane is substan-

tial. (C) The void collapses by 1600 ps. To see this figure in color, go online.
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shifted ~7–8 Å from its position in the crystal structure after
the shock wave. Only Thr-374 remains close to its original
position in the crystal structure. The modest changes to the
overall structure of the ion channel at this piston velocity
should enable the protein to rapidly recover activity.
Although there is only modest changes to the protein at
slower shock wave speeds, the impact of these slower shock
waves with larger voids would likely cause greater damage
to the ion channel. Santo and Berkowitz have shown that far
more damage to a membrane can occur at lower shock speed
when it causes the collapse of large voids (10).

A recent study by Fu et al. showed that void collapse can
damage a membrane without a shock wave impact (47).
The violent collapse of the void in close proximity to the
membrane caused large-scale distortion of the lipid bilayer.
We performed a single simulation to explore the effects of
void collapse on the structure of the ion channel when no
shock wave was present. The void was able to persist in the
system for almost 1.6 ns (Fig. 12). The void causes deforma-
tion of the membrane and the embedded protein. Interest-
ingly, the deformation of the protein is localized within the
linker region that connects the transmembrane domain to
the T1 domain. Collapse of the void causes the separation
of the T1 domain from the transmembrane domain. The heli-
cal transmembrane domain within the lipid bilayer is rela-
tively unchanged (Fig. S4) and the helical content of the
protein is 56.3%. The RMSD of the transmembrane domain
was 3.72 Å relative to the crystal structure PDB: 3LUT
(calculated without the contributions of the T1 domain, S1–
S2 linker, and S3–S4 linker). The individual RMSD of the
subunits of Kv1.2 were 3.35 Å (A), 2.67 Å (B), 4.90 Å (C),
and 2.78 Å (D). The nanoscale void collapse caused large
deformation to the membrane, but the structural domains of
the ion channel were resistant to major damage, although
much larger voids are likely more destructive.
CONCLUSION

The effects of mTBI are of great concern and will require a
great deal of study to pinpoint the underlying causes. It has
been previously shown that shock wave-induced void
collapse at moderate velocities can lead to significant dam-
age to lipid bilayers. The resulting poration of the mem-
brane likely leads to unregulated exchange of ions and
molecules that can have adverse effects on an organism.
For example, ion channel dysfunction in humans is known
to be a factor in diseases such as cystic fibrosis, long QT
syndrome, and epilepsy (59). Molecular simulations have
shown that membranes can self-heal from nanometer size
pores in tens of nanoseconds (9,10). In this study, we have
shown that shock waves alone do not significantly damage
membrane bound proteins (ion channel). In fact, the
RMSD of the ion channel after the solvent density reduces
is no greater than seen for a standard MD simulation for a
protein of this size. But, shock wave-induced void collapse
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can have adverse effects on a membrane bound ion channel
even at piston velocities that are too slow to affect the mem-
brane. The damage to the organism from faulty ion regula-
tion can be severe since, unlike a membrane, ion channels
may not self-heal as rapidly (60,61). Voltage-gated potas-
sium channels fold without assistance in suitable mem-
branes. Injection of proteoliposomes containing in vitro
synthesized Shaker potassium channel from fruit flies into
Xenopus laevis oocytes will show activity after 4 h (61).
Additionally, 15% of denatured KvAP, a thermophilic
voltage-gated potassium channel, in a liposome will refold
after 2 h at room temperature, although elevating the tem-
perature will significantly increase the refolding rate (73%
after 10 min at 80�C) for this channel (60). For the protein
damage seen in our simulations, Kv1.2 will repair itself
rapidly over time. Protein dysfunction from shock wave-
induced void collapse could contribute to ionic imbalances
and initials symptoms of mTBI such as headaches and sei-
zures (62), but it is unknown if this could contribute to
longer term problems.
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