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Accurate Learning with Few 
Atlases (ALFA): an algorithm for 
MRI neonatal brain extraction 
and comparison with 11 publicly 
available methods
Ahmed Serag1, Manuel Blesa1, Emma J. Moore1, Rozalia Pataky1, Sarah A. Sparrow1, 
A. G. Wilkinson2, Gillian Macnaught3, Scott I. Semple3 & James P. Boardman1,4

Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a 
critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms 
have been developed and evaluated for adult data and their validity for neonatal brain extraction, which 
presents age-specific challenges for this task, has not been established. We developed a novel method 
for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with 
Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited 
number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine 
learning based label fusion technique. The performance of the method for brain extraction from multi-
modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly 
available brain extraction methods. ALFA outperformed the eleven compared methods providing 
robust and accurate brain extraction results across different modalities. As ALFA can learn from partially 
labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied 
to other imaging modalities and other stages across the life course.

Magnetic resonance imaging (MRI) is a powerful technique for assessing the brain because it can provide 
cross-sectional and longitudinal high-resolution images with good soft tissue contrast. It is well-suited to study-
ing brain development in early life, investigating environmental and genetic influences on brain growth during a 
critical period of development, and to extract biomarkers of long term outcome and neuroprotective treatment 
effects in the context of high risk events such as preterm birth and birth asphyxia1–7.

Whole-brain segmentation, also known as brain extraction or skull stripping, is the process of segmenting an 
MR image into brain and non-brain tissues. It is the first step in most neuroimage pipelines including: brain tissue 
segmentation and volumetric measurement8–12; template construction13–15; longitudinal analysis16–19; and corti-
cal and sub-cortical surface analysis20–23. Accurate brain extraction is critical because under- or over-estimation 
of brain tissue voxels cannot be salvaged in successive processing steps, which may lead to propagation of error 
through subsequent analyses.

Several brain extraction methods have been developed and evaluated for adult data. These can be classified 
into non-learning- and learning-based approaches. Non-learning-based approaches assume a clear separation 
between brain and non-brain tissues, and no training data are required. For instance, the Brain Extraction Tool 
(BET) uses a deformable surface model to detect the brain boundaries based on local voxel intensity and surface 
smoothness24, while the Brain Surface Extractor (BSE) methodology combines morphological operation with 
edge detection25. 3dSkullStrip (3DSS) from the AFNI toolkit26 is a modified version of BET in order to avoid seg-
mentation of eyes and ventricles and reduce leakage into the skull. The Hybrid Watershed Algorithm27 combines 
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watershed segmentation with a deformable-surface model, in which the statistics of the surface curvature and 
the distance of the surface to the centre of gravity are used to detect and correct inaccuracies in brain extraction.

Learning-based approaches use a set of training data to segment a target or test image. A popular 
learning-based technique for brain MRI is multi-atlas segmentation28–31, where multiple manually-segmented 
example images, called atlases, are registered to a target image, and deformed atlas segmentations are combined 
using label fusion (such as Majority Vote (MV)28,31, STAPLE32 or Shape-based averaging (SBA)33; for review see 
Iglesias and Sabuncu)34. The advantage of multi-atlas segmentation methods is that the effect of registration error 
is minimised by label fusion, which combines the results from all registered atlases into a consensus solution, 
and this produces very accurate segmentations34. In the context of brain extraction: Leung et al.35 used non-rigid 
image registration to register best-matched atlas images to the target subject, and the deformed labels were fused 
using a shape-based averaging technique33; Heckemann et al.36 used an iterative refinement approach to prop-
agate labels from multiple atlases to a given target image using image registration; Doshi et al.37 used a set of 
atlas images (selected using K-means) with non-rigid image registration, and a weighted vote strategy was used 
for label fusion; and Eskildsen et al.38 proposed a method in which the label of each voxel in the target image is 
determined by labels of a number of similar patches in the atlas image library. In addition, Brainwash (BW)39 uses 
nonlinear registration from the Automatic Registration Toolbox (ART) with majority vote; and ROBEX40 com-
bines a discriminative random forest classifier with a generative point distribution model.

The neonatal brain presents specific challenges to brain extraction algorithms because of: marked intra- and 
inter-variation in head size and shape in early life; movement artefact; rapid changes in tissue contrast associated 
with myelination, decreases in brain water, and changes in tissue density; and low contrast to noise ratio between 
grey matter (GM) and white matter (WM). Most of the methods described above were optimised and evaluated 
on adult data and their validity for neonatal brain extraction has not been established.

Yamaguchi et al.41 proposed a method for skull stripping of neonatal MRI, which estimates intensity distri-
butions using a priori knowledge based Bayesian classification with Gaussian mixture model, and then a fuzzy 
rule-based active surface model is used to segment the outer surface of the whole brain. Also, Mahapatra42 pro-
posed a neonatal skull stripping technique using prior shape information within a graph cut framework. Recently, 
Shi et al.43 developed a framework for brain extraction of paediatric subjects which uses two freely available brain 
extraction algorithms (BET and BSE) in the form of a meta-algorithm44 to produce multiple brain extractions, 
and a level-set based label fusion is used to combine the multiple candidate extractions together with a closed 
smooth surface. The methods proposed by Yamaguchi et al.41 and Shi et al.43 rely on accurate detection of brain 
boundaries and have the risk of failing if the algorithm cannot successfully detect the brain boundaries. Also, 
Mahapatra42 and Shi et al.43 evaluated their methods on T2-weighted (T2w) scans only and their performance on 
other modalities such as T1-weighetd (T1w) is unknown.

In this article, we present a new method for neonatal whole-brain segmentation from MRI called ALFA 
(Accurate Learning with Few Atlases), within a multi-atlas segmentation strategy. A typical multi-atlas frame-
work consists of three main components: atlas selection, image registration and label fusion. The proposed 
method differs from current multi-atlas approaches in the following ways. First, in the atlas selection step, most 
multi-atlas techniques use a strategy whereby a number of most similar atlas images for each target image is 
selected45. While these strategies can achieve high levels of accuracy, they may be computationally demanding, 
and lack the scalability to large and growing databases due to limited availability of the large number of manually 
labelled images on which they depend. In contrast, ALFA eliminates the need for target-specific training data by 
selecting atlases that are ‘uniformly’ distributed in the low-dimensional data space. This approach also provides 
information from a range of atlas images, and this benefits learning based label fusion techniques by providing 
complementary information to the fusion algorithm.

Second, ALFA uses a machine learning voxel-wise classification where a class label for a given testing voxel 
is determined based on its high-dimensional feature representation. In addition to voxel intensities which 
are utilised by most of label fusion approaches, we incorporate more information into the features, such as 
gradient-based features. Figure 1 shows an outline of the proposed method.

Figure 1.  Outline of the proposed method, ALFA. A number of atlas images are selected from the atlas images 
library and registered to the target image. Then, atlas segmentations are deformed to the target image, and 
machine learning based label fusion is used to obtain the final brain segmentation.
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We evaluate the method using neonatal T1w and T2w datasets and compare its performance, defined as the 
agreement between the automatic segmentation and the reference segmentation, with eleven publicly available 
brain extraction methods that are a representation of a range of learning and non-learning techniques.

Results
MRI data from 50 preterm infants (mean PMA at birth 29.27 weeks, range 25.43–34.84 weeks) were scanned at 
term equivalent age (mean PMA 39.64 weeks, range 38.00–42.71 weeks). None of the infants had focal parenchy-
mal cystic lesions.

Validity of reference segmentations.  Ground truth accuracy of reference masks was evaluated by an 
expert and corrected, when necessary, by a trained rater. The mean (SD) Dice coefficient between corrected and 
uncorrected segmentations was 89.13 (0.67)%, while the mean (SD) Hausdorff distance was 7.23 (0.96) mm.

To evaluate the reliability of the reference brain masks, we manually segmented the MR images from 10 ran-
domly chosen subjects. The mean (SD) of the Dice coefficient and Hausdorff distance between the reference and 
manual segmentations of the first rater were 98.61 (0.25)% and 4.94 (1.75) mm, respectively. The mean (SD) of 
the Dice Coefficient and Hausdorff distance between the reference and manual segmentations of the second rater 
were 98.03 (0.29)% and 6.62 (1.17) mm, respectively. The inter-rater agreement between the two raters was 98.40 
(0.37)%.

Comparison with other methods and across modalities.  The proposed method ALFA was evaluated 
in comparison with eleven publicly available methods that include non-learning- and learning-based methods: 
[1] 3dSkullStrip (3DSS) from the AFNI toolkit26, [2] BET24, [3] BSE25, [4] LABEL43, [5] ROBEX40, [6] Majority 
Vote (MV)28,31, [7] STAPLE32, [8] Shape-based averaging (SBA)33, [9] Brainwash (BW) from the Automatic 
Registration Toolbox (ART)39, [10] MASS37, and [11] BEaST38. The parameters used for each of these methods 
were selected as described in Methods.

ALFA produced the highest accuracy among all evaluated methods: average Dice coefficient of 98.94% (T2w) 
and 97.51% (T1w); average Hausdorff distance of 3.41mm (T2w) and 3.41 mm (T1w); average sensitivity of 
98.58% (T2w) and 97.24% (T1w); average specificity of 99.30% (T2w) and 97.78% (T1w). For both T1w and 
T2w, ALFA’s Dice coefficients were significantly higher when compared to all eleven methods (P <  0.05, FDR 
corrected).

Figures 2 and 3 show box plots with different metrics values for the evaluated methods on the T1w and T2w 
modalities, and Table 1 shows means and standard deviations (SD) of the evaluation metrics for both modalities. 
Figure 4 shows sample outputs, i.e. the case with median Dice coefficient, from each method. For presented ALFA 
results, k =  3 for both image sequences.

Figure 2.  Box plots of Dice coefficient, Hausdorff distance, sensitivity, and specificity for T1w. The plots do 
not include data from eleven cases when MASS crashed (see Methods).
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Localisation of segmentation error.  Projection maps display average error in anatomic space for each 
algorithm (Figs 5 and 6). ALFA’s noticeable error was leaving in tissue along the borders of the temporal lobe, and 
leaving out tissue along the border of the parietal and occipital lobes, however ALFA’s rate of false positives and 
false negatives was noticeably less than the other methods. Other common errors included non-learning based 
methods (3DSS, BET, BSE) leaving in extra neck tissue and/or eye; learning-based methods (MV, STAPLE, SBA) 
over-segmenting the cerebellum and the bottom of the brainstem (T2w), while under-segmenting the parietal 
lobe; BW leaving in neck tissue and eye; ROBEX over-segmenting the cerebellum and the temporal (T1w), fron-
tal, occipital and parietal lobes (T2w); LABEL leaving in neck tissue and eye (T1w), while under-segmenting the 
occipital lobe; BEaST under-segmenting the brainstem, occipital and frontal (T2w) lobes, while over-segmenting 
the cerebellum, frontal and parietal (T1w) lobes; MASS leaving out tissue along the border of the frontal lobe 
close to the eye (T1w), while leaving in tissue in the occipital lobe (T1w).

Figure 3.  Box plots of Dice coefficient, Hausdorff distance, sensitivity, and specificity for T2w modality. 

T1w [Mean (SD)] T2w [Mean (SD)]

D (%) H (mm) SEN (%) SPE (%) D (%) H (mm) SEN (%) SPE (%)

3DSS 69.78 (5.27) 51.41 (6.34) 86.46 (4.47) 58.73 (6.42) 92.21 (5.93) 20.28 (12.93) 96.72 (1.05) 88.80 (10.47)

BET 88.36 (3.27) 16.90 (4.66) 83.48 (5.61) 94.17 (3.32) 79.18 (4.95) 28.36 (8.58) 66.21 (7.35) 99.19 (0.92)

BSE 89.62 (3.44) 27.32 (13.83) 89.03 (3.16) 90.62 (6.99) 71.44 (40.83) 38.51 (46.47) 72.99 (41.62) 70.41 (40.55)

LABEL 45.62 (15.59) 86.63 (29.63) 67.63 (16.98) 37.81 (20.69) 93.54 (3.32) 11.92 (6.39) 92.06 (7.03) 95.49 (2.08)

ROBEX 84.07 (7.80) 15.39 (9.22) 82.65 (9.32) 90.34 (18.32) 91.01 (5.53) 10.48 (3.78) 99.76 (0.24) 84.12 (8.89)

MV 95.50 (1.19) 6.09 (1.78) 94.12 (2.23) 97.01 (2.34) 95.11 (1.40) 7.26 (2.98) 94.69 (1.94) 95.63 (2.93)

STAPLE 95.62 (1.47) 7.21 (2.56) 96.83 (1.58) 94.53 (3.15) 94.85 (1.69) 7.35 (2.03) 97.13 (1.18) 92.77 (3.43)

SBA 96.09 (1.11) 6.01 (2.04) 94.67 (2.21) 97.61 (1.79) 96.01 (1.15) 8.00 (3.32) 95.49 (1.64) 96.60 (2.32)

BW 78.83 (23.81) 30.48 (22.91) 73.77 (23.31) 85.69 (25.72) 77.41 (30.31) 29.68 (30.16) 81.74 (29.47) 74.45 (31.42)

MASS 96.50 (3.06) 7.28 (5.97) 96.48 (5.18) 96.69 (1.96) 98.74 (1.96) 3.52 (3.31) 98.50 (2.75) 99.00 (1.12)

BEaST 94.33 (2.71) 9.36 (7.01) 95.38 (1.42) 93.43 (4.81) 93.86 (3.80) 7.61 (5.98) 91.30 (6.76) 97.02 (3.41)

ALFA 97.51 (0.54) 3.40 (1.13) 97.24 (0.51) 97.78 (0.66) 98.94 (0.17) 3.40 (2.10) 98.58 (0.24) 99.30 (0.21)

Table 1.   Means and standard deviations (SD) of the evaluation metrics (Dice coefficient D, Hausdorff 
distance H, Sensitivity SEN, Specificity SPE) for T1w and T2w images.
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Evaluating the feature importance and classifier performance.  We used two main categories of 
features: intensity features and gradient-based features. Figure 7 shows that intensity features alone provided 
higher accuracy than gradient-based features. However, combining both categories yielded higher accuracy than 
each individual category (P <  0.001). We tested two different linear classification techniques: Linear Discriminant 
Analysis (LDA) and Naïve Bayes (NB) demonstrated equivalent performance, with both providing a very high 
accuracy.

Figure 4.  Typical brain extraction results for different methods. The figure shows, for each method, the case 
with median Dice coefficient for T1w and T2w. Green: reference segmentation; Blue: automatic; Red: overlap 
between reference segmentation and automatic segmentation.
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Evaluating the effect of atlas selection strategy on ALFA’s performance.  We compared an atlas 
selection strategy based on the number of most similar atlases to the target subject (MSAS), with the proposed 
strategy of using uniformly distributed data (UAS). Although Fig. 8 shows that accuracy increases with higher 
numbers of training atlases, the segmentation accuracy of UAS does not benefit greatly from an increase in num-
ber of atlases as Dice coefficient only increases by < 0.5% [from 98.8% (k =  2) to 99.2% (k =  20)]. When using 
MSAS strategy, the segmentation accuracy increases from 97.6% (k =  2) to 98.5% (k =  20) [almost 1% increase]. 
In addition, using a set of two training atlases that are selected with UAS strategy provides greater accuracy than 
twenty atlases selected using the MSAS strategy.

Volume measurement.  To evaluate the utility of ALFA for extracting whole brain volume from T1w and 
T2w datasets, we measured agreement between volumes derived from ALFA with reference values for both 
modalities. Figure 9 shows that ALFA provides a level of agreement that is likely to be acceptable for most clini-
cal and experimental applications. There was no statistically significant difference between mean brain volumes 
estimated from T1w and T2w datasets (mean difference =  4.12 ml, P =  0.25); the difference observed may reflect 
differences in the masks created from the original templates.

Computation time.  The experiments for 3DSS, BET, BSE, LABEL, ROBEX, BW, BEaST and MASS were run 
on a 64-bit Linux machine (Intel®  Xeon®  CPU E5-2650 @ 2.00 GHz x 18, 64 GB RAM), and the experiments for 
MV, STAPLE, SBA and ALFA were run on a 64-bit iMac®  (Intel®  Core i7 @ 3.5 GHz ×  4, 32 GB RAM). 3DSS, BSE 
and ROBEX methods take less than a minute to perform a single brain extraction. BET (with chosen parameters 

Figure 5.  Axial, coronal, and sagittal projections of the false-negative (FN) and false-positive (FP) spatial 
probability maps for the different methods for T1w. The maps are scaled from 0 to 1.
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Figure 6.  Axial, coronal, and sagittal projections of the false-negative (FN) and false-positive (FP) spatial 
probability maps for the different methods for T2w. The maps are scaled from 0 to 1.

Figure 7.  Feature importance (Intensity, Gradients, and Combined) [left], and classifier performance 
(Linear Discriminant Analysis [LDA] and Naïve Bayes [NB]) [right]. 
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for neck and eye cleanup) takes ~8 minutes. LABEL takes ~3 minutes to complete a single brain extraction. As 
BW, MASS, MV, STAPLE, SBA and ALFA are multi-atlas-based methods, the computation time of a single extrac-
tion is a combination of two processes: registration and fusion. A single registration of BW or BEaST, takes 
~3 minutes; a single registration of MASS, based on DRAMMS registration framework46, takes ~20 minutes; and 
a single registration of MV, STAPLE, SBA or ALFA takes ~5 minutes (less than a minute based on an free-form 
registration using graphic processing unit47). The fusion time for all the multi-atlas based approaches (including 
ALFA) takes less than a minute.

Discussion
In this article, we propose a new method (Accurate Labeling with Few atlases, ALFA) for brain extraction of 
neonatal MRI and demonstrate that it provides robust and accurate results for T1w and T2w neonatal data. The 
method belongs to the multi-atlas family where a number of training atlases are used to train a voxel-wise local 
classifier. The atlas selection strategy of ALFA has a crucial role because the use of a number of atlases that are 
‘uniformly’ distributed in the low-dimensional data space provides information from a range of images and this 
benefits the classification process. The method contrasts with atlas selection strategies that select the most similar 
atlases to the test subject and hence provide less complementary information to the algorithm45. Also, the most 
similar atlas selection strategy is best suitable for large databases of images where for each subject, a large number 
of similar subjects (k ≥  20) exists35,45. With ALFA, atlases with relatively large anatomical variability could be 
selected but this does not represent a problem because the algorithm requires alignment of global brain bounda-
ries and not local structures. While alternative approaches for image registration with large anatomical variation 
could be used19,48, this would be at the expense of computation time.

As ALFA employs a sparsity-based technique to select a set of representative atlases from the target dataset, 
it eliminates the need for target-specific training data; quite similar to MASS37. However MASS uses K-means 
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Figure 8.  ALFA performance using different atlas selection strategies. Most Similar Atlas Selection (MSAS) 
and Uniform Atlas Selection (UAS).

Figure 9.  A Bland-Altman plot showing the agreement between volume measurement based on reference 
and automatic segmentations of the neonatal brain for T1w and T2w. The middle line represents the mean 
and the outer lines represent ± 1.96 standard deviations.
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to cluster the images, with subsequent selection of a number of images from each cluster, and K-means can fail 
when clusters of arbitrary shapes are present in the data because of sub-optimal selection of representative images 
and neglect of some clusters49. It is worth mentioning that there are other sparsity- and label-propagation-based 
techniques of interest that were applied to a range of medical image segmentation problems such as prostate 
segmentation from CT images50, hippocampus labeling in adult MRI51,52, and brain tissue segmentation and 
structural parcellation53.

In our leave-one-out cross-validation, learning-based approaches outperformed the non-learning-based 
methods. 3DSS, BET and BSE performed less well in extracting the neonatal brain compared to their established 
performance on adult data40. LABEL, which was designed and evaluated for paediatric and neonatal data, pro-
vided an acceptable accuracy on T2w (average Dice coefficient of 93.54%), however it did not perform well with 
respect to other methods on T1w data (average Dice coefficient of 45.62%). MASS outperformed MV, STAPLE, 
SBA (which are considered the benchmark for learning-based approaches); however ALFA provided accurate and 
robust results across modalities compared to MASS as well as the benchmark methods. It is notable that MASS 
crashed in eleven T1w cases (more details in Methods), and it takes ~20 minutes for a single registration. As the 
learning-based approaches are trained using the same set of selected atlases, the performance difference between 
the methods is a function of the accuracy of the registration algorithm used and/or the label fusion strategy (com-
parison of different registration approaches and label fusion schemes can be found in Klein et al.54, and Iglesias 
and Sabuncu34).

ROBEX is a special case in our comparison since it combines generative and discriminative approaches. It 
is similar to ALFA in that it uses voxel-wise classification to refine the voxels at brain boundaries, but the major 
difference between the two is that ROBEX uses an adult template as standard space for training the voxel-wise 
classifier, and where the target subject is supposed to be aligned. This limits the flexibility of ROBEX to work with 
different imaging modalities and young populations. In contrast to ROBEX, ALFA just needs a small number of 
manually labelled images from the population under study to provide very accurate results. Typically, 2–5 train-
ing images are sufficient, however this need might increase depending on the morphological variation within the 
population under study. Another important difference is that ROBEX uses a global classifier which uses the voxel 
coordinates as features (beside other features), but ALFA uses a local classifier which is trained by information 
from the neighbouring voxels so it is less susceptible to classification errors.

Regarding the performance of the compared methods across modalities, the eleven methods provided better 
performance on T2w images compared with T1w images. This might be because the T2w images have bet-
ter contrast than the T1w images and hence the brain boundaries can be detected more accurately on T2w 
images comparing to T1w. Also the better contrast on T2w images means that the registration process for 
learning-based methods is more accurate. It is worth mentioning also that evaluating the performance of the 
proposed method on different datasets was not performed because the main idea behind this work is to be able 
to provide accurate segmentation results using a very small number of within-study training images (which 
is not a labour intensive process), instead of the commonly used strategy of selecting training images from an 
external library.

We used a semi-automatic approach (automatic segmentations that were manually edited by a rater) to 
generate the reference brain masks. We chose this approach partly because of its accuracy in a recent evaluation 
of automatic neonatal brain segmentation algorithms55, and partly because it is more time-efficient than mask 
generation from scratch. It is possible that ALFA (in common with all other learning-based methods) may have 
an advantage over non-learning-based methods in the comparison because the reference segmentations were 
generated via a learning-based framework. However, any advantage conferred to learning-based methods is 
likely to be minimal for the following reasons. First, validation of the reference masks against a subset of manu-
ally delineated masks showed a very high agreement between reference and manually delineated masks. Second, 
ALFA and the learning-based methods show variable accuracies as the false positive rate and false negative 
rate maps of the learning-based methods show errors in various anatomical regions. This suggests that there is 
still inconsistency between the segmentations from learning based methods (including ALFA) and reference 
segmentations.

A possible limitation is that we tuned the parameters of 3DSS, BET and BSE based on previous experi-
ence1,8,14,20, and the suggestions from the authors of the methods, but it is possible that an expert user may be 
able to optimise parameters to produce improved results. Also, MV, STAPLE, SBA, BEaST, and BW might yield 
better results using an increased number of training atlases and/or a different atlas selection strategy. However, 
our intention was to design a method that can provide accurate results using a relatively small number of training 
data, and this formed the basis of the comparison study. It is worth mentioning that engines such as Segmentation 
Validation Engine56 would be ideal for evaluating the performance of the different methods for adult brain data.

To conclude, we present a novel method for extracting neonatal brain MRI that is robust and provides accurate 
and consistent results across modalities, which is useful because T1w and T2w data enable different yet comple-
mentary inferences about developmental processes. As ALFA can learn from partially labelled datasets, it can be 
used to segment large-scale datasets efficiently. Although ALFA was implemented and evaluated on neonatal MR 
images, the idea is generic and could be applied to other imaging modalities and other stages of the life course. 
ALFA is available to the research community at http://brainsquare.org.

Methods
Ethical Statement.  Ethical approval was obtained from the National Research Ethics Service (South East 
Scotland Research Ethics Committee), and informed written parental consent was obtained. The methods were 
carried out in accordance with the approved guidelines.

http://brainsquare.org
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Participants.  Preterm infants were recruited prospectively from the Royal Infirmary of Edinburgh between 
July 2012 and January 2015. Inclusion criteria: birthweight < 1500 g or postmenstrual age (PMA) < 33 weeks’ 
gestation. Exclusion criteria: major congenital malformations; chromosomal disorders; congenital infection; and 
infants with cystic periventricular leucomalacia, hemorrhagic parenchymal infarction or post-hemorrhagic ven-
tricular dilatation detected on cranial ultrasound or MRI. Infants were scanned during natural sleep.

Image acquisition.  A Siemens Magnetom Verio 3T MRI clinical scanner (Siemens AG, Healthcare 
Sector, Erlangen, Germany) and 12-channel phased-array head coil were used to acquire: (1) T1-weighted 3D 
MPRAGE: TR =  1650 ms, TE =  2.43 ms, inversion time =  160 ms, flip angle =  9°, acquisition plane =  sagit-
tal, voxel size =  1 ×  1 ×  1 mm3, FOV =  256 mm, acquired matrix =  256 ×  256, acquisition time =  7 min 49 sec, 
acceleration factor (iPAT) =  2; (2) T2-weighted SPACE: TR =  3800 ms, TE =  194 ms, flip angle =  120°, acquisi-
tion plane =  sagittal, voxel size =  0.9 ×  0.9 ×  0.9 mm3, FOV =  220 mm, acquired matrix =  256 ×  218, acquisition 
time =  4 min 34 sec. The image data used in this manuscript are available from the BRAINS repository57 (http://
www.brainsimagebank.ac.uk).

Preprocessing.  Images were corrected for intensity inhomogeneity using the N4 method58, and recon-
structed to isotropic voxel size (1 ×  1 ×  1 mm3) using windowed sinc interpolation.

Reference brain masks and atlas library construction.  The reference brain masks of the atlas library that 
was used for training, validation and method comparison was created using the following approach. First, all the 
images from the dataset were nonlinearly aligned to the 40 weeks PMA template from the 4D atlas constructed in 
Serag et al.14. Then, an Expectation–Maximization framework for brain tissue segmentation (defined as white matter, 
grey matter and cerebrospinal fluid) was used, where the priors were propagated using prior probabilities provided 
by the 4D atlas. Finally, brain masks were deformed to the subjects’ native space. Generated masks were inspected for 
accuracy by a radiologist experienced in neonatal brain MRI, and edited by a trained rater, when necessary.

To evaluate the reliability of the reference brain masks, an independent rater segmented the MR images from 
10 randomly chosen subjects (5 T1w and 5 T2w) using ITK-SNAP (http://itksnap.org) to separate brain (grey 
and white matter, and cerebrospinal fluid) and non-brain voxels (such as skull, eye and optic nerve). Similarly, to 
assess the inter-rater variability, a different rater delineated the brains from the same 10 images.

Atlas selection.  In this work, we use a sparsity-based technique to select a number of representative atlas 
images that capture population variability by determining a subset of n-dimensional samples that are ‘uniformly’ 
distributed in the low-dimensional data space. Let = D X X{ }N1  be a set of training images from N subjects. To 
select a subset S of k images where k ≤  N (optimally, k ≪  N), the atlas selection algorithm works as follows. First, 
all images from the training dataset are linearly registered (12 degrees of freedom) to the 40 weeks PMA template 
from the 4D atlas14, which is the closest age-matched template to the mean age of the subjects in the training 
dataset, and image intensities are normalised using the method described by Nyul and Udupa59. Then, all N 
aligned images are considered as candidates for the subset of selected atlases. The closest image to the mean of the 
dataset is included as the first subset image. Let us refer to it as S1. The consecutive images are selected sequen-
tially, based on the distances to the images already assigned to the subset. The distance from the i-th to the j-th 
image, d(i, j) is defined as:

Figure 10.  Illustration of the atlas selection principle. The brain images represent five chosen atlases, and the 
colour codes represent the order these atlases were chosen.

http://www.brainsimagebank.ac.uk
http://www.brainsimagebank.ac.uk
http://itksnap.org
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
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(1)i j i j
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where ∈x x,i j
n are data vectors obtained by concatenating the voxel, v, values of Xi, Yj, respectively. The main 

steps of the proposed atlas selection algorithm are presented in Algorithm 1, and Fig. 10 shows an illustration of 
the atlas selection principle.

It is worth mentioning that the proposed atlas selection strategy was inspired by the Kennard-Stone algorithm60, 
yet different in the way it is initialised. The Kennard-Stone algorithm begins by finding the two images which are 
farthest apart, however the proposed algorithm begins by finding the closest image to the mean of the dataset.

Image registration.  Image registration was carried out in two steps: first, a linear transformation was estimated 
using affine registration (12 degrees of freedom); second, a nonlinear registration step was carried out using the 
result of the affine registration as the initial transformation. The registration scheme is based on free-form defor-
mations (FFD)47,61 with normalised mutual information as the similarity metric62. The nonlinear registration was 
carried out in a coarse-to-fine manner with successive control point spacing of 20 mm, 10 mm, and 5 mm. All 
registration steps were carried out using the open-source image registration toolkit NiftyReg (https://sourceforge.
net/projects/niftyreg), using default settings.

Algorithm 1. Uniform atlas selection algorithm

Input: = = D X i N{ 1, , }i
Output: = | = ∈ ≤S S j k S D k N{ 1, , ; },k j j
Set x to represent the vector obtained by concatenating the voxel, v, values of an image X;
Set = ∑µ ∈x x

N i D i
1  to be the vector which represents the mean μ of the dataset;

Set m to represent the number of currently selected images;
foreach i ∈  D do

µ = − = ∑ −µ µ‖ ‖d i x x x x( , ) ( )i ix
2

v
2

end
Select µ=S d iargmin ( ( , ))i1 ;
Increase m by 1;
while ����m <  k do

   foreach i ∉  S do
= ∑ ∈d i S d i j( , ) ( , )

m j S
1

  end
  Select =+S d i Sargmax ( ( , ))m i1 ;
  Increase m by 1;

end

Label fusion.  Machine learning was used to assign a label to each voxel in the target image. The method is 
based on training a local classifier for each voxel. In addition to voxel intensities, which are utilised by most of 
label fusion approaches, we incorporate information from gradient-based features. Typically, each voxel v at the 
location (x, y, z) is converted to a five-dimensional feature vector

= I I I I rf [ ] (2)v x y z
T

where I is the grey scale intensity value, Ix, Iy and Iz are the absolute norms of the first order derivatives with 
respect to x, y and z, and the gradient magnitude r is defined as + +I I Ix y z

2 2 2. The image derivatives are calcu-
lated through the filter [− 1  0  1]T. The vector in equation (2) represents the testing sample. The training samples 
come from the deformed atlas images where feature vectors are extracted in the deformed atlas images from the 
26-adjacent voxels, which means that the number of training samples per voxel is equal to k ×  26.

Finally, linear discrimination techniques [such as Naïve Bayes (NB) and Linear Discriminant Analysis (LDA)] 
were used to classify the target image voxels into brain or non-brain.

Compared methods, parameter selection and software considerations.  The compared methods 
are listed in Table 2, and the parameter setting were determined as follows:

3DSS26. The parameters used for 3DSS: –shrink_fac_bot_lim 0.65,–shrink_fac 0.72 (suggested by the AFNI 
team). No problems encountered during running the software.
BET24. The parameters used for BET: -f 0.5, -g − 0.1, -R, -B. These parameters were set based on our experience 
using BET in previous neonatal studies1,8,14,20. No problems encountered during running the software.

BSE25. The parameters used for BSE: -d 20, -r 2, -s 0.8, -n 3, -p, –trim. We reached these setting by trying the 
interactive version of the software and experiment with the parameters there (as suggested by the BSE authors). 
No problems encountered during running the software.

LABEL43. No parameters needed, and no problems encountered during running the software.

ROBEX40. No parameters needed, and no problems encountered during running the software.

https://sourceforge.net/projects/niftyreg
https://sourceforge.net/projects/niftyreg
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MV28,31. Leung and colleagues35 showed that the accuracy of different label fusion techniques (MV, STAPLE, and 
SBA) for whole-brain segmentation started to reach a plateau when combining more than 19 segmentations. 
Based on that, for each test subject, we choose k =  20 most similar atlas images. No problems encountered during 
running the software.

STAPLE32. k =  20 atlases (see above). No problems encountered during running the software.

SBA33. k =  20 atlases (see above). No problems encountered during running the software.

BW39. Similar to MV, BW adopts a majority vote strategy. Hence, we chose to set k to 20 atlases. No problems 
encountered during running the software.

MASS37. k =  5 atlases were selected as in Doshi et al.37. Several crashes were encountered for T1w and T2w cases, 
and in the first run of the software only 10 T2w and 6 T1w were complete. By sharing the issue with the authors, 
we were advised to re-run the software as the issue might be because one or more registration jobs have failed to 
finish or was killed prematurely. After listening to the authors advice and re-running the software several times 
on the failed subjects, the whole T2W cases were complete (after 3 additional runs), however 11 T1w cases were 
just very stubborn to complete (even after all the re-runs we tried).

BEaST38. k =  20 atlases were selected as suggested in Eskildsen et al.38. Neonatal reference brain scans were used 
inside of the BEaST framework, replacing adult training dataset. No problems encountered during running the 
software.

Validation framework.  A leave-one-out cross-validation procedure was performed for the 50 subjects. 
Each subject in turn was left out as a testing sample and the remaining 49 subjects were used as the training data-
set where a subset of k atlases is selected using Algorithm 1. Agreement between the automatically segmented 
brain mask A and the reference mask M was evaluated using two complementary overlap metrics:

Dice coefficient.  The Dice coefficient D63 measures the extent of spatial overlap between two binary images. It 
ranges between 0 (no overlap) and 1 (perfect agreement). The Dice values are obtained using equation (3) and 
expressed as a percentage.

∩=
+

D A M
A M

A M
( , )

2
(3)

Hausdorff distance.  The Hausdorff distance H is generally used to measure the spatial consistency of the overlap 
between the two binary images by measuring the maximum surface-to-surface distance between the two images. 
It is given by

=H A M h A M h M A( , ) max{ ( , ), ( , )} (4)

where

 
= −h A M a m( , ) max min (5)a A m M

In addition to the overlap agreement measures, we compute sensitivity, defined as

∩=
+

=Sensitivity TP
TP FN

A M
M (6)

and specificity, defined as

Method Web address

ALFA http://brainsquare.org

3dSkullStrip (3DSS) http://afni.nimh.nih.gov

BET http://fsl.fmrib.ox.ac.uk

BSE http://brainsuite.org

LABEL http://www.nitrc.org/projects/ibeat

ROBEX http://www.nitrc.org/projects/robex

Majority Vote (MV) https://github.com/BioMedIA/IRTK

STAPLE http://www.itksnap.org/c3d

Shape-based Averaging (SBA) http://www.nitrc.org/projects/cmtk

Brainwash (BW) http://www.nitrc.org/projects/art

MASS http://www.cbica.upenn.edu/sbia/software

BEaST https://www.mcgill.ca/bic/software/tools-data-analysis/anatomical-mri/beast

Table 2.   Compared methods with their corresponding addresses.

http://brainsquare.org
http://afni.nimh.nih.gov
http://fsl.fmrib.ox.ac.uk
http://brainsuite.org
http://www.nitrc.org/projects/ibeat
http://www.nitrc.org/projects/robex
http://www.doc.ic.ac.uk/~dr/software
http://www.itksnap.org/c3d
http://www.nitrc.org/projects/cmtk
http://www.nitrc.org/projects/art
http://www.cbica.upenn.edu/sbia/software
https://www.mcgill.ca/bic/software/tools-data-analysis/anatomical-mri/beast
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FP TN

A M
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where TP is the true positive, TN is the true negative, FP is the false positive, FN is the false negative, and |·| is 
the number of elements in a set. Similar to the Dice values, both sensitivity and specificity are expressed as a 
percentage.

Localisation of segmentation error.  Projection maps were generated for false positive and false negative 
voxels, which enables the localisation of segmentation errors. First, the false positive/negative maps were aligned 
to one coordinate space, before averaging and projecting onto axial, coronal and axial orientations. For each 
method, and each modality, the projection maps give insight into the spatial locations where major false positive/
negative voxels exist, and hence it can be used to compare the performance of the evaluated methods against each 
other and across modalities.

Statistical analyses.  To test for differences between the results of the methods, t-tests were used for nor-
mally distributed data, and Mann Whitney U was used to compare non-normal distributions (Shapiro-Wilk 
normality test was used). P-values <  0.05 were considered significant after controlling for Type I error using false 
discovery rate (FDR).

The effect of feature importance, classifier performance and atlas selection was evaluated based on T2w images 
using the Dice coefficient. Note that to evaluate the effect of atlas selection strategy on the performance, the most 
similar atlas selection strategy (MSAS) was implemented as explained in the atlas selection section with one dif-
ference. This difference is that instead of aligning all images to a template, all images were aligned to the test image 
and the distance between warped training images and the test image was calculated using equation (1). Then, the 
most similar k atlases were selected.

Agreement between whole brain volumes extracted from T1w and T2w images using ALFA compared to the 
reference segmentation was investigated using Bland-Altman methods.
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