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Abstract

Little is known about the relative performance of competing model-based dose-finding methods 

for combination phase I trials. In this study, we focused on five model-based dose-finding 

methods that have been recently developed. We compared the recommendation rates for true 

maximum-tolerated dose combinations (MTDCs) and over-dose combinations among these 

methods under 16 scenarios for 3 × 3, 4 × 4, 2 × 4, and 3 × 5 dose combination matrices. We 

found that performance of the model-based dose-finding methods varied depending on (1) whether 

the dose combination matrix is square or not; (2) whether the true MTDCs exist within the same 

group along the diagonals of the dose combination matrix; and (3) the number of true MTDCs. We 

discuss the details of the operating characteristics and the advantages and disadvantages of the five 

methods compared.
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1. Introduction

Phase I trials in oncology are conducted to identify the maximum tolerated dose (MTD), 

which is defined as the highest dose that can be administered to a population of subjects 

with acceptable toxicity. A model-based dose-finding approach is efficient in locating the 
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MTD in phase I trials. The continual reassessment method (CRM) [1] has provided a 

prototype for such an approach in single-agent phase I trials. Many other dose-finding 

methods have been developed for single-agent phase I trials, while in recent years, two-

agent combination trials have also attracted significant attention. In two-agent combination 

phase I trials, we need to capture the dose-toxicity relationship for the combinations and 

identify a MTD combination (MTDC). To accommodate this requirement, many authors 

have developed combination dose-finding methods, an overview of which is given in 

Harrington et al. [2]. Some of these published methods can be classified as rule-based or 

algorithm-based designs [3–5]. A recent editorial in Journal of Clinical Oncology by 

Mandrekar [6] described the use of the method of Ivanova and Wang [3] in a phase I study 

of neratinib in combination with temsirolimus in patients with human epidermal growth 

factor receptor 2-dependent and other solid tumors [7]. Recently, Riviere et al. [8] compared 

two algorithm-based and four model-based dose-finding methods using three evaluation 

indices under 10 scenarios of a 3 × 5 dose combination matrix. Among their conclusions 

was that the model-based methods performed better than the algorithm-based ones, as has 

been demonstrated in single-agent studies [9].

A key assumption to phase I methods for single-agent trials is the monotonicity of the dose-

toxicity curve. In this case, the curve is said to follow a ‘complete order’ because the 

ordering of probabilities of dose-limiting toxicity (DLT) for any pair of doses is known and 

administration of greater doses of the agent can be expected to produce DLTs in increasing 

proportions of patients. In studies testing combinations, the probabilities of DLT often 

follow a ‘partial order’ in that there are pairs of combinations for which the ordering of the 

probabilities is not known. One approach taken in early work in model-based dose finding 

for drug combinations was to reduce the problem to a complete order by laying out an a 

priori ordering of the combinations, where the initial ordering is based on single agent 

toxicity profiles. Korn and Simon [10] present a graphical method, called the ‘tolerable dose 

diagram’, based on single agent toxicity profiles, for guiding the escalation strategy. Kramar 

et al. [11] also lay out an a priori ordering for the combinations and estimate the MTDC 

using a parametric model for the probability of a DLT as a function of the doses of the two 

agents. The disadvantage of this approach is that it limits the number of combinations that 

can be considered and could produce highly misleading results if the assumed ordering is 

incorrect. More recent methods have moved away from reducing the two-dimensional dose-

finding space to a single dimension. Thall et al. [12] proposed a six-parameter model for the 

toxicity probabilities in identifying a toxicity equivalence contour for the combinations. 

Wang and Ivanova [13] proposed a logistic-type regression that used the doses of the two 

agents as the covariates. The papers by Thall et al. [12] and Wang and Ivanova [13] differ 

from Korn and Simon [10] and Kramar et al. [11] in their view of what constitutes a ‘MTD’ 

for a combination. By specifying a prior ordering, Korn and Simon [10] and Kramar et al. 

[11] produce a single MTDC that is estimated to have acceptable toxicity. Thall et al. [12] 

and Wang and Ivanova [13] note that unlike the completely ordered (monotone) case, there 

is no unique MTDC. The set of combinations with acceptable toxicity forms an equivalence 

contour in two dimensions.
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Our focus here is on model-based dose-finding methods for combinations, in which the 

primary interest is to find only one MTDC for recommendation in phase II studies. To this 

end, Conaway et al. [14] estimated the MTDC by determining the complete and partial 

orders of the toxicity probabilities by defining nodal and non-nodal parameters. A nodal 

parameter is one whose ordering is known with respect to all other parameters. Although the 

method of Conaway et al. [14] does not rely on a parametric dose-toxicity model, it is not an 

algorithmic-based or rule-based design, so we choose to consider it in the set of model-based 

approaches. This method was implemented in a phase I trial investigating induction therapy 

with Velcade (Takeda Pharmaceuticals International Corporation, Cambridge, MA, USA) 

and Vorinostat in patients with surgically resectable non-small cell lung cancer [15]. Yin 

and Yuan [16, 17] developed Bayesian adaptive designs based on latent 2 × 2 tables [16] and 

a copula-type model [17] for two agents. Braun and Wang [18] proposed a hierarchical 

Bayesian model for the probability of toxicity of two agents. Wages et al. [19, 20] 

developed both Bayesian [19] and likelihood-based [20] designs that laid out possible 

complete orderings associated with the partial order and used model selection techniques 

and the CRM to estimate the MTDC. Hirakawa et al. [21] proposed a dose-finding method 

based on the shrunken-predictive probability of toxicity for combinations. Some authors 

have compared their method with existing model-based methods [19–21]. Wages et al. [20] 

reported that their method was competitive with the previously proposed method of Wages 

et al. [19], which has been demonstrated to have a comparable performance to the methods 

of Conaway et al. [14] and Yin and Yuan [16, 17]. Hirakawa et al. [21] reported that their 

method was competitive with the methods of Yin and Yuan [17] and Wages et al. [20].

These comparisons have been made under limited and ideal settings with respect to the type 

of combination matrix, the position and number of true MTDCs, using few evaluation 

indices, and often for large sample sizes (i.e., ≈ 60). However, in practice, we often 

encounter complex and various settings of phase I trials as shown later in Section 3.1. 

Specifically, (1) the dose combination matrices are not only square type (i.e., 3 × 3 and 4 × 

4) but also rectangle one (2 × 4 and 3 × 5); (2) the underlying position and number of true 

MTDCs are possibly various; and (3) the sample size is as small as 30 in practice. 

Furthermore, the operating characteristics of the dose-finding methods developed based on 

different principles should be compared based on many evaluation indices. In this paper, we 

examine performance of five methods based on six evaluation indices under 16 toxicity 

scenarios. In general, our goal is to evaluate (1) how well each method identifies MTDC’s at 

and around the target rate; (2) how well each method allocates patients to combinations at 

and around the true MTDC; and (3) how feasible is it to implement each method given its 

respective prior specifications and software capabilities. We organize the results by the types 

of dose-combination matrix and the position and number of true MTDCs. We provide some 

recommendations on the use of the five model-based dose-finding methods for practitioners 

who design a phase I trial with some discussions about the rationale for the performance 

differences among the methods.

The compared methods can be roughly categorized into two groups: (1) those using a 

flexible model, with/without an interaction term, to jointly model the DLT probability at 

each dose pair of the two agents and (2) those that take a more underparameterized 
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approach, relying upon single-parameter ‘CRM-type’ models and/or order-restricted 

inference [22]. For those in group (1), we focus on the method based on a copula-type [17] 

model, termed the YYC. We also evaluate the method using a hierarchical Bayesian model 

[18], termed the BW method. Finally, we evaluate the likelihood-based dose-finding method 

using a shrinkage logistic model [21], termed the HHM method. For those methods in group 

(2), we choose likelihood-based CRM for partial ordering [20], termed the WCO method 

and the order-restricted inference method of Conaway et al. [14], which we term CDP. This 

will be the first time, to our knowledge, that CDP will be compared to competing methods in 

a drug combination matrix setting. Of course there are other methods that have been left out 

of this comparison such as latent contingency table approach of Yin and Yuan [16] and a 

recent method by Braun and Jia [23]. However, we have included at least one method by 

these authors in our comparison, and the included methods have the advantage of having 

user-friendly software available on the web. During review of this manuscript, Riviere et al. 

[24] proposed a Bayesian dose-finding design based on the logistic model, while Mander 

and Sweeting [25] published a curve-free method that relies on the product of independent 

beta probabilities.

In the simulation studies, we compared the recommendation rates for true MTDCs and 

overdose combinations (ODCs). Average number of patients allocated to true MTDCs, 

overall percentage of observed toxicities, average number of patients allocated to a dose 

combination above the true MTDCs, and an index that reflects a design’s accuracy were also 

evaluated. The designs vary in terms of (1) whether they are one-stage or two-stage; (2) the 

nature of their start-up rules/initial escalation schemes; and (3) the characteristics of their 

dose-finding algorithms. We wanted to keep these aspects of the methods as close as 

possible to the published work, so as to be true to the original design intended by the 

authors. We feel that, if every design aspect of each method were the same, the results 

would essentially be reduced to a comparison of dose-response models. Our goal is to 

compare the dose-finding designs proposed by these published methods. The remainder of 

this paper is organized as follows. We describe the motivating examples in the remainder of 

this section. We summarize the five model-based dose-finding methods we compared in 

Section 2 and compare the operating characteristics through simulation studies in Section 3. 

Finally, some discussions will appear in Section 4.

2. Dose-finding methods compared

In this section, we overview the five dose-finding methods we compared. The 

methodological characteristics of each design are summarized in Table I. The YYC and BW 

methods have been developed based on Bayesian inference, while the HHM and WCO 

methods are based on likelihood inference. The approach of CDP is based on the estimation 

procedure of Hwang and Peddada [26]. The YYC and HHM methods model the interactive 

effect of two agents on the toxicity probability, but the BW method does not. The WCO 

method is based on the CRM and uses a class of underparameterized working models based 

on a set of possible orderings for the true toxicity probabilities. In terms of the restriction on 

skipping dose levels, the BW method allows the simultaneous escalation or de-escalation of 

both agents, whereas the YYC, CDP, and HHM methods do not. On the other hand, the 
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WCO method allows a flexible movement of dose levels throughout the trial and does not 

restrict movement to ‘neighbors’ in the two-agent combination matrix.

In this section, we introduce both the statistical model for capturing the dose-toxicity 

relationship and the dose-finding algorithm for exploring the MTDCs because almost all of 

the dose-finding methods for two-agent combination trials have been often developed by 

improving or devising these components of the method. The other detailed design 

characteristics are not shown in this paper. We considered a two-agent combination trial 

using agents Aj (j = 1, …, J), and Bk (k = 1, …, K), respectively, throughout. We denote the 

probability of DLT by π and the targeting toxicity probability specified by physicians by ϕ. 

The other symbols are independently defined by the dose-finding methods we compared.

2.1. Bayesian approach based on copula-type regression (YYC)

Yin and Yuan [17] introduced Bayesian dose-finding approaches using copula-type models. 

Let pj and qk be the pre-specified toxicity probability corresponding to Aj and Bk, 

respectively, and subsequently  and  be the modelled probabilities of toxicity for agents 

A and B, respectively, where α > 0 and β > 0 are unknown parameters. Let the true 

probability of DLT at combination (Aj, Bk) be denoted πjk. Yin and Yuan [17] proposed to 

use a copula-type regression model in the form of

where γ > 0 characterizes the interaction of two agents (i.e., the YYC method). Several 

authors have recently provided a more in-depth discussion on multiple binary regression 

models for dose-finding in combinations [27–29]. Using the data obtained at that time, the 

posterior distribution is obtained by

where L(α, β, γ|Data) is the likelihood function of the model and f(α), f(β), and f(γ) are prior 

distributions, respectively.

2.1.1. Prior specifications in YYC—In performing YYC, we need to elicit the prior 

toxicity probabilities pj and qk from investigators. In two-agent combination phase I trials, 

the highest dose level of each agent would be often the MTD that has been identified in each 

monotherapy phase I trial; therefore, it is reasonable to set the prior toxicity probability of pJ 

(or qK) equal to the target ϕ (i.e., 0.30). The remaining toxicity probabilities (p1, …, pJ−1 

and q1, …, pK−1) could be based on the investigators’ elicitations, but a recent publication 

by Yin and Lin [30] recommended taking an even distribution from 0 to ϕ. We also need to 

specify the hyperparameters α, β, and γ. Although we cannot change them in the software 

released by Yin and Yuan [17], they had examined the sensitivity of operating 

characteristics for α and β and reported that YYC is robust for different hyperparameter 

values. The Gamma(2, 2) priors for α and β and the Gamma(0.1, 0.1) prior on γ are further 

recommended for the Clayton-type copula by Yin and Lin [30].
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2.1.2. Dose-finding algorithm in YYC—Let ce and cd be the fixed probability cut-offs 

for dose escalation and de-escalation, respectively. Yin and Yuan [17] indicate that their 

dose-finding algorithm may be difficult to implement early in the trial because of limited 

available data.

Start-up rule: 

1. Treat patients along the vertical dose escalation in the order of {(A1, B1), (A1, B2), 

…} until the first DLT is observed.

2. Next, treat patients along the horizontal dose escalation in the order of {(A2, B1), 

(A3, B1), …} until the first DLT is observed.

3. As long as one DLT is observed in both the vertical and horizontal directions, then 

the Bayesian dose finding will be started.

After the start-up rule for stabilizing parameter estimation, we move to the following model-

based dose-finding stage based on the posterior probability of πjk for the rest of the trial. In 

this stage, dose escalation or de-escalation is restricted to one dose level of change only 

while not allowing a transition along the diagonal direction (corresponding to simultaneous 

escalation or de-escalation of both agents).

1. If at the current dose combination (j, k), Pr(πjk < ϕ) > ce, the dose is escalated to the 

aforementioned adjacent dose combination with the probability of toxicity higher 

than the current value and closest to ϕ. If the current dose combination is (AJ, BK), 

the doses remain at the same levels.

2. If at the current dose combination (j, k), Pr(πjk > ϕ) > cd, the dose is de-escalated to 

the adjacent dose combination with the probability of toxicity lower than the 

current value and closest to ϕ. If the current dose combination is (A1, B1), the trial 

is terminated.

3. Otherwise, the next cohort of patients continues to be treated at the current dose 

combination (doses staying at the same levels).

4. Once the maximum sample size Nmax has been achieved, the dose combination that 

has the probability of toxicity that is closest to ϕ is selected as the MTDC.

2.2. A hierarchical Bayesian design (BW)

Braun and Wang [18] developed a novel hierarchical Bayesian design for combination trials. 

Let aj and bk be the dose levels corresponding to Aj and Bk respectively and the values of 

which are not the actual clinical values of the doses but are the ‘effective’ dose values that 

will lend stability to their dose-toxicity model. It is assumed that each πjk has a beta 

distribution with parameters αjk and βjk. Notably, αjk(βjk) can be interpreted as the prior 

number of patients assigned to combination (j, k) expected to have (not have) a DLT. Braun 

and Wang [18] proposed to model αjk and βjk using the parametric functions of aj and bk,
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respectively, where θ = {θ0, θ1, θ2 } has a multivariate normal distribution with mean μ = 

{μ0, μ1, μ2 }, λ = {λ0, λ1, λ2} has a multivariate normal distribution with mean ω = {ω0, ω1, 

ω2 }, and both θ and λ have variance σ2I3, in which I3 is 3 × 3 identity matrix. The samples 

from the posterior distribution for (θ, λ) are easily obtained using Markov chain Monte 

Carlo methods. These samples lead to posterior distributions for each element of θ and λ, 

which, in turn, lead to a posterior distribution for each πjk. The corresponding posterior 

means π̄
jk are calculated.

The BW method necessitates careful elicitation of priors and effective dose values. 

Development of priors begins with the specification of pj1 and q1k, which are a priori values 

for the E(πj1) and E(π1k). Braun and Wang [18] set the lowest dose of each agent to zero, 

that is, a1 = b1 = 0. Consequently, log(α11) = θ0 and log(β11) = λ0 so that θ0 and λ0 describe 

the expected number of DLTs for combination (A1, B1) and the remaining parameters in θ 

and λ will describe how the expected DLTs for other combinations relate to (A1, B1). Braun 

and Wang [18] also used the fact that

Then, the prior values for μ0 and ω0 are obtained via

where K = 1000 was chosen as a scaling factor to keep both hyperparameters sufficiently 

above 0. Further, Braun and Wang [18] select  so that 97.5% of the 

prior distributions for θ1, θ2, λ1 and λ2 will lie above 0, depending upon the value ofσ2. The 

authors point out that a value in the interval [5, 10] is often sufficient in their settings for 

adequate operating characteristics but each trial setting will require fine tuning of σ2. Braun 

and Wang [18] further define elicited odds ratios that can be approximated by

in which effective dose values are obtained by solving for aj and bk. All doses are rescaled to 

be proportional to log-odds ratios relative to combination (A1, B1). The developments priors 

and effective dose values in BW are somewhat complex, and it is recommended to read the 

original paper of BW for further detail.

2.2.1. Prior specifications in BW—As in YYC, we need to elicit the toxicity probability 

parameter pj1 and q1k from investigators. As we described in the previous section of YYC, 

the values for pJ1 and q1K are set to 0.3, and the toxicity probabilities of all dose 

combinations are set arithmetically (as you seen in Table 3) in the simulation studies. We 

assessed operating characteristics of BW using three different values of σ2, that is, σ2 = {3, 

5, 10}. The best overall performance was obtained using σ2 = 3, which we present in our 

results, while BW for σ2 = 5 (or 10) performed less well under the scenarios we selected. 
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We are happy to share these additional results with any interested reader. This indicates that 

we need to fine-tune the value of σ2 in practice, as Braun and Wang [18] have suggested.

2.2.2. Dose-finding algorithm in BW—The BW method accrues all patients in a single 

stage, rather than in two stages. The dose-finding algorithm is similar to that of the YYC 

method after the YYC start-up rule.

1. The first subject is assigned to combination (A1, B1).

2. Compute a 95% CI for the overall DLT rate among all combinations using the 

cumulative number of observed DLTs for subjects 1, 2, …, (i−1). If the lower 

bound of the CI is greater than the target DLT rate, ϕ, terminate the trial.

3. Otherwise, use the outcomes and assignments of subjects 1, 2, …, (i−1) to 

determine the posterior distribution of each πjk, with posterior means π̄jk.

4. Extract the set of dose combinations, that is,

that contains combinations that are within one-dose level of the corresponding 

doses in the combination assigned to the most recently enrolled patient (1, 2, ⋯, (i

−1)) and subsequently allocate the dose combination (j*, k*) in S as the one with 

the smallest |π̄
jk − ϕ| to the next patient i.

5. We repeat these steps until maximum sample size Nmax is reached.

2.3. Approach using a shrinkage logistic model (HHM)

Hirakawa et al. [21] developed a dose-finding method based on the shrinkage logistic 

model. Hirakawa et al. [21] first model the joint toxicity probability πi for patient i using an 

ordinary logistic regression model with a fixed intercept β0, as follows:

where xi1 and xi2 are the actual (or standardized) dose levels of agents A and B, respectively, 

and xi3 represents a variable of their interaction such that xi3 = xi1 × xi2 for patient i.

Using the maximum likelihood estimates (MLEs) for the parameters β̂
j (j = 1, 2, 3), 

Hirakawa et al. [21] proposed the shrunken predictive probability (SPP):

where the shrinkage multiplier 1 − δj (j = 1, 2, and 3) is a number between 0 and 1. 

Hirakawa et al. [21] also developed the estimation method of the shrinkage multipliers.
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2.3.1. Dose-finding algorithm in HHM—Hirakawa et al. [21] invoke the following 

start-up rule-based dose allocation algorithm with the cohort size of 3 until the MLE for 

each parameter is obtained. After obtaining the MLEs for the regression parameters, we 

calculate the SPP of toxicity for the current dose combination dc. We adopt the same 

restriction on skipping dose level proposed by the YYC method. Let c1 and c2 be the 

allowable bands from the target toxicity limit ϕ as MTDCs.

Start-up rule: 

1. The matrix of combinations is zoned according to its diagonals from the upper left 

entry to the lower right entry, as described in the WCO method.

2. The first cohort is allocated to the zone that includes the lowest dose combinations 

(A1, B1). If a prespecified stopping rule is met, we terminate the trial for safety. 

Otherwise, we would escalate to the next zone. If more than one dose combination 

is contained within a particular zone, we can sample without replacement from the 

dose combinations available, allocating the sampled dose combination to the next 

cohort. This sampling and allocation step is continued until all available dose 

combinations in that zone are tested.

3. During the aforementioned step, the existence of MLEs for the regression 

coefficients is checked for every cohort of three patients, although we do not show 

this procedure in detail in this paper. If we obtain the MLEs, the SPP of toxicity for 

each dose combination is calculated, and subsequently the following dose-finding 

algorithm is applied.

Following the start-up rule, Hirakawa et al. [21] proposed the following dose-finding 

algorithm:

1. If at the current dose combination dc, ϕ − c1 ⩽ π̃(dc) ⩽ ϕ + c2, the next cohort of 

patients continues to be allocated to the current dose combination.

2. Otherwise, the next cohort of patients is allocated to the dose combination with the 

SPP closest to ϕ among the adjacent or current dose combinations.

3. Once the maximum sample size Nmax is reached, then dose combination that should 

be assigned to the next cohort is selected as the MTDC. In addition, if we encounter 

the situation where dc = d1 and p̃(dc) > ϕ + c2, we terminate the trials for safety.

2.4. Design based on order restricted inference (CDP)

The method proposed by Conaway et al. [14] is based on the estimation procedure of 

Hwang and Peddada [26]. Parameter estimation subject to order restrictions is discussed in 

Hwang and Peddada [26] and Dunbar, Conaway, and Peddada [31]. The method of Hwang 

and Peddada [26] uses different estimation procedures for ‘nodal’ and ‘non-nodal’ 

parameters. For nodal parameters, estimation proceeds by establishing a simple order that is 

consistent with the partial order. This is performed by guessing the unknown inequalities 

and obtaining isotonic regression estimates of the nodal parameters πjk based on the pool 

adjacent violators algorithm (PAVA). In order to estimate the non-nodal parameters, Hwang 

and Peddada [26] eliminate the smallest number of parameters that make a non-nodal 
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parameter into a nodal parameter. For instance, in a J × K matrix of drug combinations, π12 

is a non-nodal parameter because it is unknown whether π12 < π21 or vice versa. Estimates 

of the non-nodal parameters can be obtained using a version of PAVA for simple orders that 

fix the nodal parameters at their previously estimated values. Hwang and Peddada [26] show 

that the resulting estimates satisfy the partial order. Conaway et al. [14] computed estimates 

of the parameters under all possible guesses and averaged them in order to eliminate the 

dependence of the estimates on a single guess at the ordering between non-nodal parameters.

The approach of Conaway et al. [14] is a two-stage design. The initial stage is designed to 

quickly escalate through treatment combinations that are non-toxic (in single patient cohorts 

until first DLT is observed), and the second stage implements the Hwang and Peddada [26] 

estimates. Throughout the second stage, the toxic response data for the (Aj, Bk) treatment 

combination is of the form Y = {Yjk; j = 1, …, J; k = 1, …, K} with Yjk equal to the number 

of observed toxicities from patients treated with combination (Aj, Bk). Let  denote the set 

of treatments that has been administered thus far in the trial such that  = {(j, k) : njk > 0}, 

where njk denotes the number of patients treated on each combination. Using a Beta(αjk, βjk) 

prior for the πjk, the DLT probabilities are updated only for (j, k) ∈ .

The estimation procedure of Dunbar et al. [31] is applied to the updated posterior means π̂
jk 

for (j, k) ∈ .

2.4.1. Prior specifications in CDP—If appropriate prior information is available to 

investigators, it is described through a prior distribution of the form πjk ~ Beta(αjk, βjk). The 

investigators specify the expected value of πjk and an upper limit ujk such that they are 95% 

certain that the toxicity probability will not exceed ujk. The equations

are solved in order to obtain prior specifications for αjk and βjk. Another prior specification 

for CDP is to choose a subset of possible dose-toxicity orders based on ordering the 

combinations by rows, columns, and diagonals of the drug combination matrix. Using the 

guidance of Wages and Conaway [32], we choose a subset of approximately 6 – 9 orderings. 

This provides an appropriate balance between choosing enough orderings so that we include 

adequate information to account for the uncertainty surrounding partially ordered dose-

toxicity curves, without increasing the dimension of the problem so much so that we 

diminish performance. Arrange orderings according to movements across rows, up columns, 

and along diagonals. Because, in a large matrix, there could be many ways to arrange 

combinations along a diagonal, restrict movements to only moving across rows, up columns, 

and up or down any diagonal.
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2.4.2. Dose-finding algorithm in CDP

Stage 1: The first patient is entered at the starting treatment, usually combination (A1, B1). 

The most appropriate treatment to which to escalate could possibly consist of more than one 

treatment combination. For example, in a matrix of combinations, the possible escalation 

treatments for (1, 1) are (1, 2) or (2, 1). Therefore, if no DLT is observed in (1, 1), then the 

next patient is treated with a combination chosen from among the ‘possible escalation 

treatments’. If no DLT is observed in this patient, the next patient is assigned a combination 

randomly chosen from the set of possible escalation treatments that have not yet been 

administered in the trial. Once a DLT is observed, stage 2 begins.

Stage 2: For all (j, k) ∈ , we compute the loss, L (π̂
jk, ϕ), associated with each 

combination. In this paper, as in Conaway et al. [14], we implement a symmetric loss 

function so that L (π̂
jk, ϕ) = |π̂jk − ϕ|.

1. Let lmin = {min(j,k)∈  Ljk (π̂
jk, ϕ)} and let  be the set of combinations with losses 

equal to the minimum observed loss,  = {(j, k) : Ljk(π̂
jk, ϕ) = lmin}.

2. If there is a single combination, c ∈ , then the suggested combination is c, with an 

estimated DLT probability of π̂
c.

3. If  contains more than one combination, then we randomly choose from among 

them according to the rules:

a. If π̂
c > ϕ ∀ c ∈ , we randomly choose from among the set  of candidate 

combinations.

b. If π̂
c ⩽ ϕ for at least one c ∈ , we choose randomly among the 

combinations in  that are candidate for having the ‘largest’ DLT 

probability.

4. If the suggested combination has an estimated DLT probability that is less than the 

target, a combination is chosen at random from among the ‘possible escalation 

treatments’ that have not yet been tested in the trial.

2.5. Partial ordering continual reassessment method (WCO)

The CRM for partial orders is based on utilizing a class of working models that corresponds 

to possible orderings of the toxicity probabilities for the combinations. Specifically, suppose 

there are M possible orderings being considered which are indexed by m. For a particular 

ordering, we model the true probability of toxicity, πjk, corresponding to combination Aj and 

Bk, via a power model

where the pjk(m) represents the skeleton of the model under ordering m. In an unpublished 

PhD thesis by Wages, the use of other working models common to the CRM class such as a 

hyperbolic tangent function or a logistic model was explored and found that there is little 

difference in the operating characteristics among the various choices of working model. We 

let the plausibility of each ordering under consideration be described by a set of prior 
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probabilities τ = {τ(1), …, τ(M)}, where τ(m) ⩾ 0 and Στ(m) = 1; m = 1, …, M. Using the 

accumulated data, Ωi, from i patients, the MLE β̂
m of the parameter βm can be computed for 

each of the m orderings, along with the value of the log-likelihood, ℒm (β̂
m | Ωi), at β̂

m. 

Wages et al. [19, 20] propose an escalation method that first chooses the ordering that 

maximizes the updated probability

before each patient inclusion. If we denote this ordering by m*, the authors use the estimate 

β̂
m* to estimate the toxicity probabilities for each combination under ordering m* so that π̂

jk 

≈ Fm* (djk, β̂
m*).

Prior specifications in WCO—As in CDP, a prior specification for WCO is to choose a 

subset of possible dose-toxicity orders. We again rely on the guidance of Wages and 

Conaway [32] and choose approximately 6 – 9 orderings based on ordering the 

combinations by rows, columns, and diagonals of the drug combination matrix. Another 

specification that needs to be made prior to beginning the study is a set of skeleton values 

pjk(m). We can rely on the algorithm of Lee and Cheung [33] to generate reasonable 

skeleton values using the function getprior in R package dfcrm. We simply need to specify 

skeleton values at each combination that are adequately spaced [34] and adjust them to 

correspond to each of the possible orderings, in order for WCO to have good performance in 

terms of identifying an MTDC. The location of these skeleton values can be adjusted to 

correspond to each of the possible orderings using the getwm function in R package pocrm 
[35].

2.5.1. Dose-finding algorithm in WCO—Within the framework of sequential likelihood 

estimation, an initial escalation scheme is needed, because the likelihood fails to have a 

solution on the interior of the parameter space unless some heterogeneity (i.e., at least one 

toxic and one non-toxic) in the responses has been observed.

Stage 1: In the first stage, WCO makes use of ‘zoning’ the matrix of combinations 

according to its diagonals. The trial begins in zone Z1 = {(A1, B1)}, and the first cohort of 

patients be enrolled on this ‘lowest’ combination. At the first observation of a toxicity in one 

of the patients, the first stage is closed, and the second (model-based) stage is opened. As 

long as no toxicities occur, cohorts of patients are examined at each dose within the 

currently occupied zone, before escalating to the next highest zone. If (A1, B1) was tried and 

deemed ‘safe’, the trial would escalate to zone Z2 = {(A1, B2), (A2, B1)}, similar to CDP. If 

more than one dose is contained within a particular zone, we can sample without 

replacement from the doses available within the zone. Therefore, the next cohort is enrolled 

on a dose that is chosen randomly from (A1, B2) and (A2, B1). The trial is not allowed to 

advance to zone Z3 in the first stage until a cohort of patients has been observed at both all 

combinations in Z2. This procedure continues until a toxicity is observed, or all available 

zones have been exhausted.
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Stage 2: Subsequent to a DLT being observed, the second stage of the trial begins.

1. Based on the accumulated data from i patients Ωi, the estimated toxicity 

probabilities π̂jk are obtained for all combinations being tested, based on the 

procedure described previously.

2. The next entered patient is then allocated to the dose combination with estimated 

toxicity probability closest to the target toxicity rate so that |π̂
jk − ϕ| is minimized.

3. There is no skipping restriction placed on escalation in the WCO method to allow 

for adequate exploration of the drug combination space.

4. For trials subject to partial orders, there may be more than one combination with 

DLT probability closest to the target. If there is a ‘tie’ between two or more 

combinations, the patient will be randomized to one of the combinations with DLT 

probability closest to the target. The trial stops once enough information 

accumulates about the MTD.

3. Simulation studies

3.1. Motivating examples

Our objective is to compare the five model-based dose-finding methods under the settings 

that we often encounter in practice. To accommodate this requirement, we describe 

examples used to illustrate the behavior of the competing methods in the simulation studies. 

Each of the motivating examples is at least partly based on combination studies that have 

been published [7] have recently been Food and Drug Administration (FDA)/Institutional 

Review Board (IRB) approved at an National Cancer Institute-designated cancer center or 

have involved initial study-planning discussions with clinicians for planning a study. 

Therefore, some of the dose-toxicity scenarios were taken from study protocols, so they are 

a representative of what was reviewed by the FDA and/or the IRB in approving the study. 

The simulation results will shed some light on comparative performance of competing 

methods in the event they had been used to design the motivating trials. It should be noted 

that each of these studies incorporated various stopping rules in order to terminate the trial 

once enough information about the MTD combination has been obtained, or in the presence 

of undesirable toxicity. It is very difficult to compare methods under various stopping 

criteria, so we chose to conduct our simulations using a fixed sample size, justification for 

which is given in each of the following examples.

Example 1—A single-arm, non-randomized, open-label dose escalation study was 

designed to determine the MTDC/appropriate phase II dose combination of two small 

molecule inhibitors (agents A and B) for refractory solid tumors and untreated metastatic 

disease. Agent A contained three doses (1.0, 1.5, and 2.0 mg/day), and agent B contained 

three doses (1000, 1250, and 1500 mg/day), for a total of nine (3 × 3) drug combinations. 

Dose escalation was to be conducted using the two-stage WCO [20] for dose finding with 

combinations of agents. Each stage treated patients in single patient cohorts, and the target 

DLT rate for determining the MTD combination was 30%. Because the design implemented 

a stopping rule, the sample size was estimated from the simulation results. Although the 

maximum accrual was set at 54 patients, on average across 1000 simulations, between 
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approximately n = 22 and 32 patients were required to complete the study, with most sample 

sizes ranging from 28 to 32 patients.

Example 2—The study described in Gandhi et al. [7] is a phase I trial of neratinib in 

combination with temsirolimus in patients with human epidermal growth factor receptor 2-

dependent and other solid tumors. Neratinib was given in four escalating doses (120, 160, 

200, and 240 mg), and four doses of temsirolimus were also tested (15, 25, 50, and 75mg), 

for a total of 16 (4 × 4) drug combinations. Two MTD’s (200 mg neratinib/25 mg 

temsirolimus and 160 mg neratinib/50 mg temsirolimus) were found using a non-parametric 

up-and-down algorithmic-based sequential design [3]. Again, our objective in this current 

work is to examine the behavior of model-based designs that aim to identify a single MTD 

combination, but this example provides us with a relevant study on which to investigate 

performance. The MTD contour was defined by combinations that achieve a DLT rate 

closest to but below 33%, and the simulations studies in the supplementary material to 

Gandhi et al. [7] were based on a sample size of n = 32 patients for the design [3] and, on 

average, n = 18.8 patients for the 3 + 3 design. In keeping things consistent with other 

examples, we chose to evaluate performance of competing methods in choosing a single 

combination closest to a target DLT rate of 30%, based on a fixed sample size of n = 30 

patients.

Example 3—An open-label, phase I trial is currently being designed at the University of 

Virginia Cancer Center. The trial will investigate the combination of two small molecule 

inhibitors (agents A and B) in patients with relapsed or refractory mantle cell lymphoma. 

The primary objective of the study is to determine the MTDC of two doses (200 and 400 

mg) of agent A and four doses (140, 280, 420, and 560 mg) of agent B. The two-staged 

design of Wages et al. [20] will be used to estimate the MTDC of the eight (2 × 4) drug 

combination matrix. Each stage will treat participants in single-patient cohorts. The target 

DLT rate for determining the MTDC is 30%. A maximum sample size of n = 48 patients 

with a stopping rule and a fixed sample size of n = 30 patients were both investigated in the 

protocol development stage. Our simulation studies will investigate operating characteristics 

for n = 30 eligible patients.

Example 4—The final example is a revised version of example 1, in which two lower 

doses of agent B were added because of safety concerns. Agent A contained three doses 

(1.0, 1.5, and 2.0 mg/day), and agent B contained five doses (500, 750, 1000, 1250, and 

1500 mg/day), for a total of 15 (3 × 5) drug combinations. The remainder of the information 

contained in example 1 holds for this example as well. This trial was FDA and IRB 

approved at the University of Virginia Cancer Center.

3.2. Simulation setting

3.2.1. Common settings—Motivated by the aforementioned examples, we compared the 

operating characteristics among the five methods by simulating 16 scenarios with 3 × 3, 4 × 

4, 2 × 4, and 3 × 5 dose combination matrices with different positions and number of true 

MTDCs, as shown in Table II. The target toxicity probability that is clinically allowed, ϕ, is 

set to 0.3. For each simulated trial, no stopping rule was specified so as to exhaust the pre-
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specified maximum sample size Nmax = 30. Each simulation study consisted of 1000 trials. 

The YYC and BW designs are based on Bayesian methods that require the proper elicitation 

of priors. We did our best to make the prior elicitations for these methods as comparable and 

as consistent as possible so as to not bias performance for a particular method.

3.2.2. Settings for YYC—We used the executable code released at http://

odin.mdacc.tmc.edu/~yyuan/index_code.html to perform the YYC method. The software 

contains default priors for the parameters, which cannot be changed by the user. Therefore, 

we assumed gamma(2, 2) as the prior distribution for α and β and gamma(0.1, 0.1) as the 

prior distribution for γ. Motivated by the description in Section 2.1, the values of pj are set to 

(0.15, 0.3) for J = 2, (0.1, 0.2, 0.3) for J = 3, (0.075, 0.15, 0.225, 0.3) for J = 4, and (0.06, 

0.12, 0.18, 0.24, 0.30) for J = 5, respectively. The same setting are made for qk. Each 

simulated trial used cohorts of size 3 to guide allocation. The fixed probability cut-offs for 

dose escalation and de-escalation are ce = 0.80 and cd = 0.45, respectively, which are also 

default values used by the software.

3.2.3. Settings for BW—We used the R code released at http://www-personal.umich.edu/

~tombraun/BraunWang/ to perform the BW method. The variance parameter σ2 is set to 3 in 

order to stabilize the implementation of the R package rjags. The BW method requires the 

investigator to have sufficient historical information regarding DLT probabilities of the 

doses of both agents, when combined with the lowest dose of the other agent. Because we 

are, in a sense, ‘retrospectively’ evaluating the performance of the BW method in designing 

the motivating examples, it is obviously impossible to utilize investigator information in 

prior elicitation. The prior probability of each dose combination is shown in Table III, in 

which it can be seen that a priori values pj1 and q1k are equal, or very close to, the a priori 

DLT rates for the YYC method. Each simulated trial used cohorts of size 1 to guide 

allocation.

3.2.4. Setting for HHM—We performed the HHM method using the SAS/IML in SAS 9.3 

(SAS Institute Inc., Cary, NC, USA). Although we can set the actual or standardized dose 

levels for x1 and x2 in planning an actual trial, we set them arithmetically in this simulation 

as in Hirakawa et al. (2013) [21], x1 = 1, 2, 3 and x2 = 1, 2, 3 for 3 × 3 dose combinations, x1 

= 1, 2, 3, 4 and x2 = 1, 2, 3, 4 for 4 × 4 dose combinations, x1 = 1, 2 and x2 = 1, 2, 3, 4 for 2 

× 4 dose combinations, and x1 = 1, 2, 3 and x2 = 1, 2, 3, 4, 5 for 3 × 5 dose combinations. 

Given the dose levels for x1 and x2, we fine-tuned the value of the fixed intercept β0 in a 

preliminary simulation experiment and set it to −3. Thus, we recommend to fine-tune β0 for 

the values of the dose levels we determined. Finally, c1 and c2 are commonly set to 0.05. 

Each simulated trial used cohorts of size 3 to guide allocation.

3.2.5. Setting for CDP—For CDP, we present results for a prior that set the prior mean 

equal to the target DLT rate and utilize a constant value across all combinations for the prior 

upper 95% limit. As in Conaway et al. [14], we take the prior mean to equal 0.30 and a prior 

upper 95% limit of 0.70 for all combinations. We utilized eight possible orderings in 

scenarios 1–8 and 13–16 and five possible orderings in scenarios 9–12. Both stages used 

cohorts of size 1.
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3.2.6. Setting for WCO—We utilized the same set of possible orderings as CDP. A 

uniform prior, τ, was placed on the orderings. The skeleton values, pjk(m), were generated 

according to the algorithm of Lee and Cheung [33] using the getprior function in Rpackage 

dfcrm. Specifically, for 3×3 combinations, we used getprior(0.05,0.30,4,9); for 4×4 

combinations, we used getprior(0.05,0.30,7,16); for 2×4 combinations, we used 

getprior(0.05,0.30,4,8); and for 3 × 5 combinations, we used getprior(0.05,0.30,7,15). All 

simulation results were carried out using the functions of pocrm with a cohort size of 1 in 

both stages.

3.3. Simulation results

3.3.1. Notable operating characteristics—Figures 1 and 2 show the operating 

characteristics of the five methods under 16 scenarios. Table summaries of these figures can 

be found in the supporting web materials. For scenarios 1 and 2, the CDP and WCO 

methods showed higher recommendation rates for true MTDCs than the YYC, BW, and 

HHM methods by 7–15%, while those were comparable among the YYC, BW, and HHM 

methods. The CDP and WCO methods also allocated, on average, more patients to true 

MTDCs. The recommendation rates for true MTDCs were similar among all the methods 

under scenario 3, with the WCO method being slightly higher than the other methods, while 

allocating the most patients on average to the MTDCs. The recommendation rates of the BW 

and HHM methods were higher than the other three methods under scenario 4, yet the BW 

allocated the most patients on average to the true MTDCs. The recommendation rates for the 

ODCs of the HHM and CDP methods were slightly lower than those of the BW and WCO 

methods in this scenario. In terms of recommending true MTDCs, similar relationships were 

observed between scenarios 1 and 5 and between scenarios 4 and 8, respectively. The HHM 

method outperformed the other four methods in scenario 6, although the other four methods 

allocated more patients on average to MTDCs. The CDP method outperformed the other 

methods in scenario 7 while also treating the most patients at MTDCs. The recommendation 

rates for true MTDCs of the CDP, HHM, and WCO methods in scenario 9, of the YYC, 

HHM, and WCO methods in scenario 10, of the CDP, BW, and WCO methods in scenario 

11, and of the CDP and WCO methods in scenario 12 were higher than the remaining 

methods, respectively. The difference of the recommendation rates between the methods 

was approximately 5–15%. The average number of patients allocated to true MTDCs of the 

CDP method in scenario 9, of the WCO method in scenario 10, of the CDP, BW, and WCO 

methods in scenario 11, and of the CDP and WCO methods in scenario 12 were higher than 

the other methods, respectively. The CDP or WCO method performed better than or as well 

as the other three methods under scenarios 9–12, and a similar tendency was observed under 

scenarios 13–16. The HHM method was competitive of the WCO method in scenarios 14 

and 15. In terms of recommending the ODCs, the CDP method was lowest among the five 

methods under scenarios 9 an 12, while HHM was lowest among the methods in scenarios 

10 and 13–16.

3.3.2. Average performance—Across the 16 scenarios, the YYC, CDP, BW, WCO, and 

HHM methods demonstrated averages 34%, 47%, 40%, 46%, and 42% recommendation 

rates for true MTDCs, respectively. The YYC, CDP, BW, WCO, and HHM methods 

demonstrated averages 41%, 30%, 33%, 32%, and 25% recommendation rates for ODCs, 

Hirakawa et al. Page 16

Stat Med. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. The average number of patients allocated to true MTDCs of the YYC, CDP, 

BW, WCO, and HHM methods were averages of 6, 11, 9, 10, and 8, respectively. The 

overall percentage of observed toxicities of the YYC, CDP, BW, WCO, and HHM methods 

were averages of 23%, 32%, 30%, 28%, and 20%, respectively. Average number of patients 

allocated to at a dose combination above the true MTDCs of the YYC, CDP, BW, WCO, 

and HHM methods were averages of 8, 12, 11, 9, and 5, respectively. In considering a 

benchmark for this summary measure, Cheung [36] considers the ideal situation in which all 

patients are treated at the true MTDC. In this case, we would expect a ϕ = 30% observed 

toxicity rate. Therefore, a design that results in roughly ϕ% toxicities on average per trial 

can be considered safe. The CDP, BW, and WCO methods yield the best performance with 

respect to an observed toxicity rate closest to the target toxicity rate. Cheung [36] also 

considers that the recommendation rates for true MTDCs are the most immediate index for 

accuracy, which can be used to compare different methods, while the entire distribution of 

selected dose combination does provide more detailed information than what the 

recommendation rates for true MTDCs alone suggests. Cheung [36] proposes to use the 

accuracy index, after n patients, defined as

where πjk is the true toxicity probability of dose combination (Aj, Bk) and ρjk is the 

probability of selecting dose combination (Aj, Bk). A large index indicates high accuracy, 

and the maximum value of the index is 1. Based on the accuracy index, the CDP methods 

showed the maximum value of 0.59, and the WCO method showed the second largest value 

of 0.57.

3.3.3. Operating characteristics for each representative setting—According to 

the results of simulation studies, we found that the operating characteristics of the dose-

finding method varied depending on (1) whether the dose combination matrix is square or 

not; (2) whether the true MTDCs exist within the same group consisting of the diagonals of 

the dose combination matrix; and (3) the number of true MTDCs. Table IV shows the 

average recommendation rates for true MTDCs and ODCs of the five methods with respect 

to each type of the dose combination matrix, and position and number of true MTDCs. In 

the cases of the square dose-combination matrix, the CDP method outperformed the YYC, 

BW, and HHM methods and was competitive with the WCO method when the true MTDCs 

exist along with the diagonals of the dose-combination matrix and the number of true 

MTDCs is more than or equal to 2, conclusions that held true for patient allocation as well. 

The CDP method provided a recommendation rate that was slightly better than the other 

four methods when the true MTDCs do not exist along with the diagonals of the dose-

combination matrix but the number of true MTDCs is more than or equal to 2. CDP method 

also allocated the highest number of patients to true MTDCs on average. The HHM methods 

demonstrated the highest recommendation rates for true MTDCs when the number of true 

MTDCs is one, while the CDP and BW methods allocated the most patients to true MTDCs. 
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Next, in the cases of the rectangle dose combination matrix, the CDP method outperformed 

the other four methods when the true MTDCs exist along with the diagonals of the dose-

combination matrix and the number of true MTDCs is more than or equal to 2. CDP and 

WCO outperform the other three methods when the number of true MTDCs is one, while the 

HHM and WCO methods did when the true MTDCs do not exist along with the diagonals of 

the dose-combination matrix but the number of true MTDCs is more than or equal to 2. In 

all three of these situations, either the WCO or the CDP allocated the most patients on 

average to true MTDCs. In terms of recommending the ODCs, the HHM method was 

superior to the other four methods when the true MTDCs exist along with the diagonals of 

the dose-combination matrix and the number of true MTDCs is more than or equal to 2. 

HHM demonstrated the lowest recommendation rates for the ODCs under most of the other 

configurations presented. The HHM method can be considered a more conservative method 

than the others evaluated in this work. While it recommends ODCs less than the other 

methods in most scenarios presented, it also demonstrates one of the lower numbers in terms 

of average patients allocated to true MTDCs, and it yields the lowest (and furthest from 

30%) observed toxicity rate among the methods considered. When this information is 

combined, it can be concluded that HHM tends to recommend combinations and treat more 

patients at combinations below the true MTDC than the other methods.

3.4. Some possible rationales for the observed performance difference

The method in group (1) (i.e., YYC, BW, and HHM) showed the best performance with 

respect to recommendation for true MTDC(s) under five scenarios, while that in group (2) 

(i.e., CDP and WCO) did under 10 scenarios. In scenario 14, the WCO and HHM methods 

yielded nearly identical performance. Accordingly, the underparameterized approaches may 

be more efficient than the approaches using flexible model with several parameters. This is 

because that parameter estimation generally does not work well under the practical sample 

size of 30, irrespective of whether frequentist and Bayesian approaches are employed. 

Additionally, the cohort size of trial may also impact on the difference between the methods 

in groups (1) and (2). To further examine this, we ran YYC using cohorts of size 1, but the 

results were very similar on average. There were differences within particular scenarios, 

with size 3 doing better in some cases and size 1 doing better in others. For instance, in 

scenario 8, YYC with size 3 yielded a recommendation percentage for true MTDC’s of 

4.6%. Using cohorts of size 1 increased this to 8.4%. Conversely, decreasing the cohort size 

from 3 to 1 decreased the recommendation percentage in scenario 6 from 44.3% to 38.4%. 

The average recommendation percentage for true MTDC across the 16 scenarios was 34% 

for size 3 and 35% for size 1.We also ran HHM using cohorts of size 1 and found that the 

average recommendation percentage for true MTDC across the 16 scenarios was 40% for 

size 1 and slightly smaller than that for size 3 (i.e., 42%). In the CDP and WCO methods 

using cohort size of 1, once a DLT being observed in stage 1, they can quickly move to 

stage 2 and obtain model-based estimates. This is a very attractive feature for model-based 

dose-finding methods. Although the restrictions on skipping dose levels between CDP and 

WCO are quite different, we could not observe its impact on the operating characteristics 

using the six evaluation indices. Among the methods in group (1), the superiority in terms of 

recommending true MTDC(s) were HHM, BW, and YYC in that order. The shrinkage 

logistic model includes the model parameters for agents A and B and its interaction but does 
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not need to specify the prior toxicity probability for each agent and hyperparameter for prior 

distribution as in YYC and BW. Furthermore, YYC and BW commonly specify the prior 

toxicity probability for each agent, but the number of hyperparameters for the prior 

distributions in BW (e.g., only σ2) is smaller than that of YYC (e.g., α, β, and γ). Similar 

results were observed in the accuracy index. Thus, our simulation studies suggested that the 

degree of assumption with regard to prior toxicity probability, hyperparameters, and dose-

toxicity model in the method may be associated with the average performances of selecting 

true MTDCs.

4. Discussions and conclusions

In this study, we revealed the operating characteristics of the model-based dose-finding 

methods using the practical sample size of 30 under the various toxicity scenarios, motivated 

by real phase I trial settings. Although there are certain scenarios in which each of the 

methods performs well and operating characteristics between methods are comparable, on 

average, the CDP (47%) and WCO (46%) methods yield the largest recommendation rates 

for true MTDC’s by at least 4% over the nearest competitor (HHM, 42%). These 

conclusions hold for patient allocation to true MTDC’s as well. This average performance is 

across 16 scenarios that encompass a wide variety of practical situations (i.e., dimension of 

combination matrix, location and number of true MTDC’s, etc.). In the supporting web 

materials, we considered additional scenarios in which there was no ‘perfect’ MTDC. That 

is, in each scenario, there are no combinations with true DLT rate exactly equal to the target. 

In these scenarios, we evaluated performance of each method in choosing, as the MTDC, 

combinations that have true DLT rates close to the target rate. The conclusions from the 

simulation studies above held, with CDP yielding the highest (38.3%) average 

recommendation percentage for combinations within 5% of the target rate and WCO with 

the second highest (37.1%).

The simulations studies indicated that the performances in terms of recommending true 

MTDCs among the five methods may be associated with the degree of assumption required 

in each method. Specifically, the uncertain assumptions (e.g., prior toxicity probability, 

hyperparameters, and specific dose-toxicity model) are less in order of CDP, WCO, HHM, 

BW, and YYC, and the performances in terms of recommending true MTDCs were on 

average better in this order. This tendency was also found in the accuracy index. Although 

the operating characteristic of a dose-finding method is influenced by many methodological 

characteristics, this hypothetical consideration would be one of the reasons for the 

performance differences among the five methods.

Within the context of the motivating examples shown in Section 3.1, it is important to 

consider what methods appear to be most appropriate for each example in terms of selecting 

true MTDCs. For example 1 with a 3 × 3 dose combination matrix, CDP would be favorable 

if we expect ⩾2 true MTDCs, while HHM may be favorable if we expect 1 true MTDC. In 

example 2, the two diagonal MTDCs have been identified among 4 × 4 dose combination 

matrix; therefore, CDP would be most appropriate in this setting if that is true. For examples 

3 and 4 with rectangular dose combination matrix, the methods of group (2) (i.e., CDP and 

WCO) would be suitable irrespective of the position and number of true MTDCs.
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Based on the results of simulation studies, we provide some recommendations in 

implementing each method in practice. The YYC and BW methods require the 

specifications for both the toxicity probabilities of two agents and hyperparameters of prior 

distributions; therefore, these methods would be most useful in the cases where the toxicity 

data are available from a previous phase I monotherapy trial for each agent. We need to pay 

particular attention to use the YYC method because its operating characteristics were greatly 

impacted by the toxicity scenarios. The performance of the BW method was intermediate 

between the HHM and YYC methods. In implementing BW, the prior value of σ2 should be 

fine-tuned, as the authors recommend. The HHM method can be employed without prior 

information on the two agents but requires the MLE for the three parameters in the 

shrinkage logistic model; therefore, the majority of the planned sample size enrolled into the 

stage of start-up rule, resulting in reduced recommendation rate for true MTDCs. If 

investigators desire to be a bit more conservative while still maintaining an adequate 

recommendation rate for true MTDCs, the HHM method can be recommended.

The CDP and WCO methods would be most useful in the practical setting of ordinary phase 

I combination trials because the prior considerations compared to those required by YYC 

and BW are considerably less. The escalation algorithm of CDP is complex and can be 

difficult and time-consuming to program. Conversely, the WCO method builds off of the 

well-known CRM and is likely to be more easily understood by clinicians and review 

boards. YYC, BW, and WCO all have available software on the web that can be used for 

simulating design-operating characteristics, whereas BW and WCO are the only methods of 

those studied that have available software for design implementation (i.e., obtaining a 

combination recommendation for the next entered cohort, given the data to that point in the 

trial).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of the operating characteristics of the five methods in all scenarios. MTD, 

maximum tolerated dose.
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Figure 2. 
Summary of the operating characteristics of the five methods in all scenarios. MTDC, 

maximum tolerated dose combination.
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Table I

Methodological characteristics of the five dose-finding methods we compared.

Method YYC CDP BW WCO HHM

Estimation Bayesian Hwang and 
Peddada 

[26]

Bayesian Likelihood Likelihood

Parametric dose-toxicity model Copula None Hierarchical Power Shrinkage

Prior toxicity probability specification Yes No Yes Yes No

Inclusion of interactive effect in the 
model

Yes No No No Yes

Cohort size used in the original paper 3 1 1 1 3

Restriction skipping on dose levels One dose level of 
change only and 
not allowing a 
simultaneous 

escalation or de-
escalation of both 

agents

Same as the 
YYC 

method

One dose level of 
change only but 

allowing a 
simultaneous 

escalation or de-
escalation of both 

agents

No skipping restriction Same as the 
YYC method

YYC, Yin and Yuan [17]; CDP, Conaway, Dunbar, and Peddada [14]; BW, Braun and Wang [18]; WCO, Wages, Conaway, and O’Quigley [20]; 
HHM, Hirakawa, Hamada, and Matsui [21].
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