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Abstract

In recent years, breakthroughs in biomedical technology have led to a wealth of data in which the 

number of features (for instance, genes on which expression measurements are available) exceeds 

the number of observations (e.g. patients). Sometimes survival outcomes are also available for 

those same observations. In this case, one might be interested in (a) identifying features that are 

associated with survival (in a univariate sense), and (b) developing a multivariate model for the 

relationship between the features and survival that can be used to predict survival in a new 

observation. Due to the high dimensionality of this data, most classical statistical methods for 

survival analysis cannot be applied directly. Here, we review a number of methods from the 

literature that address these two problems.

1 Introduction

In the past decade, new experimental technologies in the field of genomics have led to an 

explosion of biomedical data. Gene expression and single nucleotide polymorphism (SNP) 

data have revolutionised our understanding of biological processes and diseases such as 

cancer. These new types of data share a common characteristic: the number of covariates or 

features (p) greatly exceeds the number of observations (n). We will refer to this setting as 

‘high dimensional’. As a result, many classical statistical methods cannot be applied to these 

data without substantial modifications.

When, in addition to genomic data, (possibly censored) survival times are available for each 

observation, two questions arise naturally:

1. Which of the features (e.g. genes or SNPs) in the genomic data are individually 

most associated with the survival outcome? The classical statistical approach 

involves testing the null hypothesis {H0: feature j is not associated with survival} 

for each feature j. In this article, we present alternatives that are better-suited to 

high-dimensional data.
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2. How can one predict survival based on the genomic data? A standard approach for 

predicting survival in the n > p framework is to fit a Cox proportional hazards 

model; however, this model cannot be applied directly in a high-dimensional 

setting and performs poorly when p ≈ n. In this article, we present some methods 

for adapting the proportional hazards model to high-dimensional problems.

In Section 2, we discuss examples of high-dimensional data in genomics, as well as the 

statistical considerations that arise in the analysis of high-dimensional data. Section 3 

contains a brief review of some classical methods for survival analysis. In Section 4, we 

present some methods for identification of features that are associated with a survival 

outcome. In Section 5, we present a number of methods for prediction of survival times in 

high-dimensional settings, and in Section 6 we discuss ways to evaluate the relative 

performances of the aforementioned prediction methods. Section 7 contains the Discussion. 

Throughout this article, we will consider for illustration the gene expression data set of Zhao 

et al.,1 which consists of measurements for 14,814 genes taken on 177 patients with renal 

cell carcinoma. For each patient, there is an associated survival outcome. In the original 

article, these patients are split into two groups: a training set of 88 cases, and a test set of 89 

cases.

2 High-dimensional data with a survival outcome

2.1 High-dimensional genomic data

In the past decade, new technologies have emerged that have changed the face of biomedical 

research. These methods have made it possible for biologists to perform experiments that 

once would have been many orders of magnitude too time consuming. It is now possible to 

measure the expression of tens of thousands of genes in a tissue sample in a single 

experiment and to determine the identities of half a million base-pairs of an individual’s 

DNA at once. In order to motivate the development of statistical methods for survival 

analysis in high-dimensional settings, we will discuss these two types of data in turn.

Genes are segments of an individual’s DNA sequence that encode proteins, which carry out 

the functions of the cell. In different tissues and disease states and between individuals, the 

same gene will have different levels of expression – that is, different amounts of mRNA (an 

intermediary along the way to protein production) will be present. Gene expression data has 

been successfully used to identify previously unknown cancer subtypes, to classify new 

patients into cancer subtypes, and to predict survival time; early articles in this area include 

Perou et al.,2 Golub et al.,3 Sorlie et al.,4 Hedenfalk et al.,5 van’t Veer et al.,6 and 

Ramaswamy et al.7 A typical gene expression data set involves measurements of expression 

of tens of thousands of genes for a single tissue sample; usually, between a couple dozen and 

a couple hundred samples are available. Often, in addition to this genetic or biological data, 

clinical data is also available. This clinical data might relate to the tissue sample itself: for 

instance, if tumour and normal tissue samples are extracted from the same individual, then 

the clinical data might be the tumour/normal labels for each sample. Alternatively, the 

clinical data could consist of a (possibly censored) survival time for the patient from which 

the tissue sample was extracted. In this situation, the clinical data can be considered the 
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outcome, and the genes are the variables. Allison et al.8 provide a review of issues related to 

gene expression data measured on microarrays.

A SNP is a DNA base-pair at which there is sequence variability in a population. SNPs are 

of interest in part because it is believed that they can determine predispositions to certain 

diseases (see, e.g. Hirschhorn and Daly,9 Duerr et al.,10 Rioux et al.,11 Samani et al.,12 and 

Sladek et al).13 It is now possible to assay many hundreds of thousands of SNPs for an 

individual at a given time. It is becoming increasingly common to collect SNP data and 

clinical data for a set of individuals in order to seek SNPs that are associated with the 

clinical outcome. While gene expression data involves continuous measurements for each 

gene, SNP data is discrete. An individual carries two copies of each chromosome, one from 

each parent; therefore, for each SNP, an individual can have no copies of the common 

variant, one copy of the common variant, or two copies of the common variant. (These 

possibilities are usually coded as 0, 1 and 2). In a SNP data set with an associated clinical 

measurement for each observation, the clinical data is considered the outcome, and the SNPs 

are the features. An overview of statistical methods for SNP (also known as genome-wide 

association) data is given in Balding.14

Most of the methods that we will discuss are applicable to gene expression data and SNP 

data, as well as many other types of high-dimensional data.

2.2 Statistical issues that arise in high dimensions

When the number of features p is very large, classical statistical methods for performing 

both of the goals mentioned in Section 1 cannot be applied directly.

Consider first the goal of identifying features that are associated with survival. The classical 

statistical approach is to perform a hypothesis test for each feature: one could test the 

hypothesis that in a Cox proportional hazards model for survival (explained in the next 

section) using that feature as a predictor, the coefficient β is zero. We would then consider to 

be associated with survival all features for which the p-value for that hypothesis test is 

small. When p is large, we expect some of the p hypothesis tests to have small p-values due 

to chance; correcting for multiple hypothesis testing gives poor results. This problem is 

discussed in e.g. Dudoit et al.15 A method of identifying important features that is better-

suited to a high-dimensional setting is required.

The problems that arise in building a prognostic model with p ≫ n are even more dire. 

Recall that in the case of linear regression, if the covariance matrix of the features is not full 

rank then the least squares regression coefficients are not unique. Some form of 

regularisation is required in order to reduce the dimensionality of the feature space. Even if 

regularisation is performed so that the regression coefficients are unique, overfitting is a 

major concern – one risks fitting not just the signal, but also the noise in the data, so that the 

model will not fit a new observation well. Much care is required in order to avoid 

overfitting, which can occur even if p < n. The same problems and considerations arise in 

the case of survival data.
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Moreover, in building a prognostic model that will be of use in evaluating future patients, an 

important consideration is the simplicity of the model. All else being equal, one would 

prefer a model that uses only a small subset of the features, rather than a model that uses all 

of the features. This is the case for several reasons. First, a smaller (or sparse) model will be 

more useful in predicting survival for future patients. It is much cheaper and easier for a 

doctor to measure expression of 30 genes for a new patient than it is to measure 30,000. In 

addition, a sparser model is simpler to interpret. It is easier for a biologist to understand the 

way in which 30 genes affect survival than it is to understand the way in which 30,000 genes 

affect survival. Also, if one believes that the true underlying biology that determines 

survival involves only a small number of genes, then a method that yields a sparse model 

might be more accurate. Therefore, when we present methods for prediction of survival in 

Section 5, we will make special note of whether each method results in sparsity.

3 Basic tools for survival analysis

We now briefly review a few basic tools in survival analysis, as they will arise repeatedly in 

the next sections. Kalbfleisch and Prentice16 provide a helpful overview of these methods 

and many others.

Let X denote an n × p data matrix, where n is the number of observations and p the number 

of covariates, or features. For each observation xi ∈ ℝp there is an associated survival time 

yi and censoring status δi, where δi = 1 if the observation is complete and δi = 0 if it is 

censored. In other words, if δi = 1, then individual i failed at time yi, and if δi = 0, then 

individual i survived until at least time yi. We assume that censoring is non-informative and 

that given xi, yi and δi are independent. Let t1 < t2 < ⋯ < tk denote the failure times.

To estimate a survivor function P(y > t) we can use the product limit estimate or Kaplan–

Meier estimate, which is

(1)

where dj is the number of failures at time tj and nj is the number of observations at risk just 

prior to time tj. A plot of the Kaplan–Meier estimate yields the Kaplan–Meier survival 

curve; this is a popular tool for visualizing survival data. Examples of Kaplan–Meier 

survival curves can be seen in Figures 2 and 3. A log-rank test can be used to determine if 

two or more samples could have arisen from the same survivor function.

The Cox proportional hazards model is commonly used to model survival data. It is non-

parametric in that the baseline hazard function can take an arbitrary form. The model is as 

follows:

(2)
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where λ(t|xi) is the hazard at time t for observation xi, and β ∈ ℝp is a vector of regression 

coefficients. λ0(t) is the unspecified hazard function. The partial likelihood for β can be 

written as

(3)

where D is the set of indices of the events (deaths), and Rr is the set of the individuals at risk 

at time tr − 0.

To fit the model in Equation (2), we maximise the partial likelihood in Equation (3). When n 

< p, this can be done by using iteratively re-weighted least squares (IRLS) to implement the 

Newton–Raphson method. Let l(β) denote the log partial likelihood. We wish to solve

(4)

given an initial estimate β, we can obtain an update β* by solving

(5)

This update is repeated until convergence. Letting η = Xβ and , Equation (5) can 

be re-written as

(6)

which is simply a least squares problem.

However, in the case that p > n, this approach cannot be used to estimate β; in particular, 

note that β that maximises the partial likelihood is not even unique. In the context of the 

IRLS procedure, the matrix XTAX is singular. Thus, in high-dimensional settings, some type 

of dimension reduction is required in order to use the Cox proportional hazards model to 

predict survival times. Given that Equation (6) can be solved via least squares, it is clear that 

the problem that arises in high-dimensional survival problems is similar to the problem that 

arises in high-dimensional regression problems. Therefore, it is not surprising that many of 

the methods presented in Section 5 for prediction of survival in high dimensions are closely 

related to analogous high-dimensional regression methods.

4 Methods to identify features that are individually associated with survival

Consider a gene expression study involving patients with a given type of cancer, in which 

the researcher seeks genes that are associated with survival time. Such genes might be 

candidates for follow-up experiments in order to better understand the disease mechanism. 

In what follows, we will sometimes refer to genes truly associated with survival as 

‘significant’.
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The most straightforward way to identify features that are associated with survival is using 

univariate Cox scores, given in Equation (7). For each feature xj, a univariate Cox 

proportional hazards model is fit; the score statistic or Cox score for that model quantifies 

how well that feature predicts survival. The score statistic is

(7)

A large value of Sj suggests that feature j is associated with the survival outcome, i.e. that 

one can reject the null hypothesis. The sign of the Cox score indicates whether 

overexpression of that gene is associated with increased or decreased survival. Cox scores 

are used to identify significant genes in Beer et al.17 Note that instead of Cox scores, one 

could use Wald scores in order to quantify each feature’s significance; however, when the 

number of features is very large, this method has the disadvantage that computation of β̂
j 

requires iteratively fitting a Cox model for each j.

Tusher et al.18 propose the significance analysis of microarrays (SAM) procedure for the 

identification of significant features. It involves the use of a modified Cox score, obtained 

by adding a small constant d0 to the denominator of the Cox score in order to stabilise the 

variance, as follows:

(8)

Modified Cox scores generally perform better than Cox scores.

The lassoed principal components (LPC) method, proposed by Witten and Tibshirani,19 

seeks to ‘borrow strength’ by using information about all of the features in order to 

determine whether a given feature is significant. The motivation for this approach is that in a 

gene expression data set, sets of genes tend to have correlated expression. One might be 

more willing to believe that a given gene is associated with the survival outcome if it is 

correlated with a large set of genes that all appear to be associated with survival. Let T 
denote a vector of Cox or modified Cox scores, and let v1, …, vn ∈ ℝp denote the right 

singular vectors of X. Then the LPC scores T̂ are given by the equation , 

where

(9)

That is, T̂ are the fitted values obtained by regressing the Cox or modified Cox scores onto 

the eigenvectors of the data matrix, subject to an L1 penalty; this regression serves to de-

noise the scores for the features. The tuning parameter λ ≥ 0 is chosen adaptively.

Each of the three methods just mentioned – Cox scores, modified Cox scores, and LPC 

scores – is used to obtain a ranking for the significance of the features. The higher a 

Witten and Tibshirani Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature’s absolute score, the more significant it is believed to be. The top K features on this 

ranked list are suspected to be associated with survival; however, we need a way to choose 

K. More generally, we require some way to evaluate the level of significance of the features 

at the top of this ranking. In classical statistics, one would assess significance by testing, for 

each feature j, the null hypothesis of no association with survival. Features corresponding to 

a sufficiently small p-value for the hypothesis test would be deemed significant. But in the 

context of high-dimensional genomic data, the number of features is extremely large, and 

necessary correction of the p-values for multiple testing often leads to disappointing results. 

Moreover, in the case of gene expression or SNP data, a researcher may be willing to accept 

a list of candidate features that contains some small number of false positives. Therefore, a 

false discovery rate (FDR) approach is preferred. That is, we are interested in estimating the 

expected fraction of features at the top of our ranked list that truly are associated with 

survival; the complement of this fraction is the FDR. Table 1 displays the possible outcomes 

from p hypothesis tests of a set of features and the connection to FDR; more detailed 

discussions of FDR can be found in Benjamini and Hochberg20 and Storey and Tibshirani.21 

In the case of Cox and modified Cox scores, where each feature’s significance is assessed 

based only on the measurements for that feature, FDRs can be easily estimated by permuting 

the survival outcomes for the n observations. The procedure is as follows:

1. Compute scores for each feature, where the score for feature j is denoted Sj = f (xj, 

y, δ), to indicate that it is a function of that feature, the vector of survival times, and 

the vector of censoring statuses.

2. For i ∈ 1, …, M where M is large (for instance, 1000):

a. Permute the pairs (y1, δ1), (y2, δ2), …, (yn, δn); let (y*, δ*) denote the vectors 

of permuted values.

b. Compute feature scores for the permuted data, .

3. To estimate the FDR at a given threshold c, compute the ratio

(10)

where 1(·) is an indicator variable. The numerator is the expected number of 

features that exceed the threshold under the null hypothesis, and the denominator is 

the observed number of features that exceed the threshold.

This is done in the SAM procedure and is a ‘plug-in’ estimate of FDR: see Tusher et al.,18 

and Storey and Tibshirani.21 Because the LPC score for a given feature is a function of all of 

the features, estimation of FDR for LPC is more involved. A discussion is given in Witten 

and Tibshirani.19 In the context of gene expression data, often genes with FDR less than 

some fixed cut-off (say, 0.1 or 0.2) are reported.

The estimated FDRs for Cox scores, modified Cox scores, and LPC scores for the renal cell 

carcinoma data set of Zhao et al.1 are shown in Figure 1. In this example, the use of 
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modified Cox scores results in a slight improvement in FDR over ordinary Cox scores. LPC 

provides an additional improvement.

While there are a great number of methods in the literature for identification of significant 

genes in a microarray experiment with a two-class outcome (see e.g. Lonnstedt and Speed,22 

Cui and Churchill,23 Cui et al.,24 Storey et al.25), the topic of identification of significant 

genes with a survival outcome is still relatively unexplored.

5 Methods for prediction of survival time

As previously discussed, a Cox proportional hazards model cannot be fit to the data when p 

≫ n. For this reason, many methods have been developed that are better suited for 

prediction in high-dimensional settings. We separate the methods presented here into four 

types: methods that involve discrete feature selection (Section 5.1), shrinkage-based 

methods (Section 5.2), methods that involve clustering the data (Section 5.3) and methods 

that involve a variance criterion (Section 5.4). Most of these methods involve one or more 

tuning parameters for which values must be chosen; we will take care in the descriptions 

below to point these out. For simplicity, we will assume that the columns of X have been 

standardised to have mean zero and standard deviation one.

5.1 Methods that involve discrete feature selection

5.1.1 Univariate selection—The simplest method for selecting a subset of features for 

use in a proportional hazards model is univariate selection. This method involves computing 

Cox scores (7) for each feature; the K < n features with the highest Cox scores are then used 

as features in a Cox proportional hazards model. In this method,K is a tuning parameter. 

(Analogously, modified Cox scores or LPC scores could be used to determine which 

features to include in the model.)

The obvious drawback of univariate feature selection is that while each of the features 

included in the multivariate model will be predictive of survival (at least in the training set), 

there is no guarantee that the multivariate model predicts survival substantially better than 

the features with highest Cox scores do individually. In particular, if the features with 

highest Cox scores are very highly correlated with each other (as is often the case for gene 

expression data) then the multivariate model may not provide much information beyond 

what is present in the univariate models. In this case, it is clear that another method for 

feature selection is preferable.

5.1.2 Stepwise selection—Stepwise selection for survival models is the exact analog of 

stepwise selection for linear regression. It is similar to univariate selection, but the 

correlation between the features is taken into account. Forward stepwise selection is 

performed as follows: first, Cox scores are computed for each feature, and a model is created 

using only the feature with the highest absolute Cox score. Then, a local score test is used to 

determine which of the remaining p − 1 features will lead to the greatest improvement if 

added to the model. This process is continued until K features have been included. Note that 

stepwise methods find local optima; that is, they do not yield the best model with K features. 
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The tuning parameter K must be selected in order to use stepwise selection (or a p-value 

threshold for the local score test can be used).

5.2 Shrinkage-based methods

5.2.1 Lp shrinkage of coefficients—The methods presented thus for have involved 

making a discrete decision for each feature: whether or not to include it in the model. An 

alternative to this all-or-nothing approach is to use a more continuous method for 

regularisation, with shrunken coefficients for each feature.

Consider the case of linear regression, with y a n-vector of outcome measurements, and X as 

defined earlier. Assume that y has been centred. Linear regression seeks to minimise

(11)

As mentioned earlier, if p > n, then some type of regularisation or shrinkage of the β vector 

is required. This can be done by penalizing the magnitudes of the elements of β. Using an L2 

penalty yields ridge regression26

(12)

whereas an L1 penalty gives the lasso27

(13)

Ridge regression results in elements of β̂ that are small (relative to their values in the 

absence of the ridge penalty) but, in general, non-zero. Therefore, the resulting model solves 

the p > n problem and can avoid overfitting, but it involves all of the features. On the other 

hand, the lasso results in (for an appropriate choice of λ) a vector β̂ that is sparse – that is, 

some of its elements are zero. Depending on the context, and whether one seeks a model that 

is sparse in the features, one might choose to use an L1 or an L2 penalty.

These Lp shrinkage methods can be extended directly to the survival framework. Recall 

from Section 3 that the Cox proportional hazards model is fit by maximizing Equation (3). If 

we again let l(β) denote the log partial likelihood, then we can instead maximise

(14)

or

(15)

these are presented in Verweij and van Houwelingen28 and Tibshirani,29 respectively. This 

is done by replacing Equation (6) with a penalised least squares procedure. As in the linear 
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regression case, Equation (14) results in p non-zero but shrunken coefficients and Equation 

(15) results in the selection of a subset of the coefficients for an appropriate range of λ. Gui 

and Li30 and Park and Hastie31 present efficient algorithms for estimating β in the L1 case. 

For L1 and L2 regularisation, λ is a tuning parameter that must be chosen based on the data.

Tibshirani32 presents a variation on the Cox proportional hazards model with an L1 penalty. 

Consider the form of the log partial likelihood in Equation (3); note that (exp(βTxr)/ ∑i∈Rr 
exp(βTxi)) is the probability that individual r fails when it does, given the observations in the 

risk set and their feature vectors. The Cox univariate shrinkage method assumes that the 

features are independent of each other, both marginally and conditionally on each risk set. 

Therefore, the partial likelihood factors,

(16)

An L1 penalty is added to the resulting log partial likelihood, as in (15), in order to obtain a 

shrunken and sparse estimate of β. This very simple method is the analog of univariate soft 

thresholding (described in e.g. Zou and Hastie33) in the regression case.

As in the regression case, Lp-penalised proportional hazards models perform well in 

practice. In addition to the L1 and L2 penalties discussed here, other penalties exist; for 

instance, the elastic net penalty33 can be extended to the survival setting. Candes and Tao34 

present the Dantzig selector, an attractive method for regression in high-dimensional settings 

that is closely related to L1-regularised regression. It is extended to the Cox proportional 

hazards model in Antoniadis et al.35 Lp regularisation is a flexible framework for coping 

with the p > n problem.

5.2.2 Lp shrinkage of inverse covariance matrix—In Section 5.2.1, we presented 

methods that shrink the coefficients for each feature via an Lp penalty on the log partial 

likelihood in the Cox model. Witten and Tibshirani36 propose a different approach to 

shrinkage of the coefficients. We first explain this method in the regression setting. Rather 

than applying an Lp penalty to the sum of squared errors as in Equations (12) and (13), we 

can instead estimate the inverse covariance matrix of the data, under a multivariate normal 

model, subject to an Lp penalty on its elements. More specifically, if we assume that y has 

been centered, then β̂ is derived via this two-step procedure, called covariance-regularised 

regression:

1.
. The p × p matrix Θ̂ is a 

regularised estimate of the inverse of the population covariance matrix of X under a 

multivariate normal model.

2.
.

Here, λ1, λ2 ≥ 0 are tuning parameters. It is clear that if λ1 = 0, then this method reduces to 

the form of the Lp coefficient shrinkage methods of Section 5.2.1; however, with λ1 > 0, 

shrinkage of the inverse covariance matrix also takes place. Whenp1 = 1, the elements of Θ̂ 
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are sparse. When p2 = 1, the method results in sparse regression coefficients. This method 

can be extended to the Cox proportional hazards model by replacing the linear regression 

step in the Newton–Raphson procedure with a covariance-regularised regression. This 

method is also called the scout, and the choice of p1 and p2 can be indicated with the 

notation Scout(p1, p2).

5.3 Clustering-based methods

The methods described thus far have been supervised: the dimensionality of the data was 

reduced using knowledge about the survival time for each observation. However, some 

methods for predicting survival from gene expression data involve an unsupervised 

approach: first, the dimension of the gene expression data is reduced without using the 

outcome, and then the reduced version of the data is used in conjunction with survival times 

to build a predictive model of survival. The canonical unsupervised method for data analysis 

is clustering: using some metric of distance, the pairwise distances between the observations 

or features can be computed. Then, sets of observations or features with small pairwise 

distances form clusters.

Hierarchical clustering37 of the observations has been used to identify cancer subtypes 

associated with survival in a number of studies, including Alizadeh et al.38 and Zhao et al.1 

In these studies, the clustering dendrograms were used to define subgroups of patients, 

which were then found to differ in terms of survival. The drawback of this approach is that, 

in general, the subgroups obtained by clustering may not differ in terms of survival, even if 

some of the features present in the original (unclustered) data set are strong predictors of 

survival.

We illustrate this method on the renal cell carcinoma data set of Zhao et al.1 We cluster the 

patients using correlation-based distance, average linkage, and only the25%of genes with 

highest variance. The clustering dendrogram and the Kaplan–Meier survival curves for the 

two largest subgroups that result from this clustering are shown in Figure 2; the p-value for 

the log rank test is 0.0102.

A more sophisticated method that uses hierarchical clustering to predict survival is the tree 

harvesting approach of Hastie et al.39 The p features are clustered hierarchically; this results 

in a total of 2p − 1 clusters (one cluster contains all of the features, p clusters contain one 

feature each, and the remaining p − 2 clusters contain between 2 and p − 1 features each). 

Let x̅Ck denote the n-vector corresponding to the average expression of the features in 

cluster Ck. Now, the vectors xC1, …, xC2p−1 are treated as possible features in a Cox 

proportional hazards model (with interaction terms) to predict survival. The features to be 

included are selected via stepwise selection (described previously), with a slight 

modification such that the inclusion of larger clusters in the model is favoured. This method 

is linear and possibly sparse in the original features (depending on the clusters included).

5.4 Variance-based methods

We now discuss methods that involve the selection of features using a criterion based on the 

variance: that is, these methods seek features that capture much of the variation present in 
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the data. Some of these methods create new features in a supervised way, and others do so in 

an unsupervised way.

5.4.1 Methods based on principal components analysis—Principal components 

analysis (PCA) is an important unsupervised statistical method for dimension reduction. The 

first principal component v1 of the data matrix X is the unit vector such that Xv1 has greatest 

variance. The subsequent principal components vj maximise the variance of Xvj, subject to 

being orthogonal to the previous ones:

(17)

It turns out that the principal components vj are given by the columns of the matrix V in the 

singular value decomposition of X:

(18)

where D is diagonal and U and V have orthonormal columns.

In many data sets, much of the variability in X is contained in the first few principal 

component directions, and so projecting X onto the first principal components does not lead 

to much loss of information. Suppose that much of the variation in the data is contained in 

the first K principal components, and that y is a centered quantitative outcome. Then, rather 

than performing ordinary least squares regression (which minimises Equation (11)), one can 

instead regress y onto Xv1, …, Xvk:

(19)

If one chooses K < rank(X), then this can solve the multicollinearity problem that arises in 

regression if p > n. This method is known as principal components regression (PC 

regression).40 An analogous approach to PC regression can be taken in the case of survival 

data, using Xvj as predictors in a Cox proportional hazards model. Even for K small, PC 

regression is not sparse in the features, since vj is in general non-zero for each feature.

Bair and Tibshirani41 and Bair et al.42 point out a drawback of the use of principal 

components for regression and survival models: while the first few principal components 

may summarise a large proportion of the variance present in the data, there is no guarantee 

that these principal components are associated with the outcome of interest. The problem is 

that the principal components are computed in an unsupervised manner. Thus, Bair and 

Tibshirani41 and Bair et al.42 propose a semi-supervised approach, which they call 

supervised principal components (SPC). In the survival case, the method proceeds as 

follows. First, univariate Cox scores are computed for each feature. Let X̃ denote the n × K 

matrix consisting of the K < p features with highest absolute Cox scores, and let X̃ = Ũ D̃ ṼT 

denote the SVD of this matrix. Then, one can fit a Cox proportional hazards model with the 

first few columns of X̃Ṽ, termed ‘supervised principal components’, as predictors. This 

model can be written in terms of the original data X, and can also be used to obtain 
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predictions for a future observation. The number of supervised principal components used, 

and the number of features K included in the reduced data matrix, are tuning parameters for 

the supervised principal components method. (For simplicity and to avoid having to select 

two tuning parameters, often only the first supervised principal component is used). 

Supervised principal components results in a sparse model that involves only K of the 

features.

To illustrate PC regression and SPC on the renal cell carcinoma data set, we used cross-

validation (discussed in Section 6) on the training set in order to select tuning parameter 

values for the two methods. Cross-validation selected 10 principal components for PC 

regression, and 39 genes for SPC. We then assessed how well Xtest β̂
train predicts survival 

on the test set (see Section 6); PC regression and SPC resulted in p-values of 0.003 and 

0.0005, respectively. The predictor Xtest β̂
train was then discretised based on the tertile to 

which each element belonged. This new categorical variable defined three groups on the test 

set, for which Kaplan–Meier survival curves and p-values are shown in Figure 3. In this 

example, both PC regression and SPC perform quite well.

Li and Li43 propose combining principal component regression with an additional 

dimension reduction technique, sliced inverse regression (SIR). The SIR method, proposed 

in Li,44 involves the model

(20)

where d < n, ε; is independent of X, γj are unknown column vectors, and f is an arbitrary 

unknown function on ℝd+1. Equivalently, the underlying assumption is that the conditional 

distribution of y given X depends on X only through (Xγ1, …, Xγd). The goal is to reduce 

the dimension of the data X by estimating the vectors γj. Roughly speaking, the SIR 

procedure is as follows, after standardizing the data:

1. The range of y is divided into H slices.

2. Compute mh, the mean of the observations corresponding to the yi in slice h.

3. The principal components of (m1, …, mH) are computed, after weighting the mh by 

the proportion of yi that fall in slice h.

4. A linear transformation of the first d principal components gives (γ1, …, γd).

The value of d is chosen by hypothesis testing. In many applications, d will be quite small, 

leading to a significant reduction in model complexity. The method of Li and Li43 is as 

follows: since SIR requires that the covariance matrix of the data have full rank, they 

compute the first K principal components of the data in order to achieve dimension 

reduction. They then apply a version of SIR that is modified for survival outcomes,45 using 

the principal components as the features. The resulting d-dimensional subspace can be fit to 

the outcome using a Cox proportional hazards model. For this method, K is a tuning 

parameter. The resulting model is linear in X and uses all of the features.

5.4.2 Methods based on partial least squares—Partial least squares (PLS) is a 

popular method for regression in high-dimensional settings. It is similar to PC regression, 

Witten and Tibshirani Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



except that while the principal components in PC regression are selected in an unsupervised 

way, PLS selects these features using the outcome variable for guidance. In the regression 

case, with y the centered outcome, we seek a matrix W with columns w1, …, wk that solve

(21)

Then, the columns of T = XW are used as the predictors in a regression model for y.46 A 

latent variable model underlies this approach. Comparing Equations (17) and (21), it is clear 

that PC regression and PLS are closely related. The number K of columns of T used in the 

regression model is a tuning parameter for the method; for K small, dimensionality reduction 

results. As with PC regression, PLS results in a model that is linear in X but not sparse in the 

features.

Many authors have extended the PLS method to the survival setting.47−49 The approach of 

Nguyen and Rocke47 is quite simple: it involves treating the survival time y (which may or 

may not be censored) as a regression outcome, and finds the PLS components as described 

above for the regression case. (In other words, they make no use of whether an observation 

was censored in reducing the dimensionality of the data.) These components are then used as 

predictors in a proportional hazards model.

On the other hand, Park et al.48 and Li and Gui49 adapt the PLS procedure to the survival 

setting. Park et al.48 do this by reformulating the failure time problem into a generalised 

linear model. Here, we focus instead on the simpler method of Li and Gui;49 their adaptation 

of PLS to survival data is called partial Cox regression (PCR). Their algorithm, which 

generalises to PLS when the Cox proportional hazards models in Step 2(a) are replaced with 

least squares regressions, is as follows:

1. V1 ← X.

2. For k ∈ 1, …, K:

a. Fit a Cox proportional hazards model for each j, using as features 

(column j of Vk) and (if k > 1) T1, …, Tk−1. Let β̂
kj denote the coefficient of 

.

b.
Let .

c. Vk+1 is the matrix of residuals obtained after regressing each column of Vk 

onto Tk.

3. Now, T1, …, TK are the features in a Cox proportional hazards model; the resulting 

model can be re-written in terms of X because Tk is linear in X for all k.

This method makes use of the censoring status of each observation.
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5.5 Other methods for prediction of survival

Most of the methods described for prediction of survival in previous sections have been 

linear in the features of X. Many non-linear models for prediction of survival in high-

dimensional settings also have been developed. We might wish to model the data as

(22)

where F(X) is not necessarily linear in X. Li and Luan50 propose the use of a boosting 

procedure with smoothing splines in order to model non-linear effects in the data. In 

addition, all of the aforementioned methods could be performed after transforming the 

features as desired.

Moreover, the methods that we have discussed thus far have involved the use of a Cox 

proportional hazards model. Other options exist; for instance, Ma et al.51 and Martinussen 

and Scheike52 propose the use of an additive risk model.

A summary of the methods discussed for prediction of survival is given in Table 2.

6 Evaluation of methods for prediction of survival time

In Section 5, we presented a number of methods for predicting survival time in high-

dimensional settings. However, two issues remain:

1. None of the aforementioned methods will dominate the others in every 

circumstance, so an approach is needed to determine which method is best for a 

given data set.

2. All of the methods described involve one or more tuning parameters. An approach 

for the selection of tuning parameter values is required.

These two tasks are closely related. In general, when one wishes to determine how well a 

model fits a given data set, one can split the observations in the data set into a training set 

and a test set. The model can then be fit on the training set and tested on the test set. In order 

to select the optimal value of a tuning parameter, cross-validation on the training set is 

commonly performed.

For both of these tasks, we require a method for evaluating the test set performance of a 

model developed on a training set. In the case of a quantitative outcome, one might use 

squared error to evaluate a model’s test set performance, and for a categorical outcome, 

misclassification error could be used. An analogous quantity is required for survival data, for 

which squared error is inappropriate due to censoring. In fact, as discussed in Graf et al.,53 

prognostic models for survival generally are not accurate at predicting time-to-event for a 

test observation. However, alternatives exist. Some possibilities for quantifying the 

performance of a model are as follows; these methods assume that the model is linear in the 

features.

1. Split the data into training and test sets; let the subscript ‘train’ denote the training 

data and ‘test’ denote the test data. In addition, let β̂
train denote the estimated 

coefficients based on Xtrain. Stratify Xtest β̂
train based on some quantiles of its 

Witten and Tibshirani Page 15

Stat Methods Med Res. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution. Then, a log-rank test can be used in order to determine whether there 

is a significant difference between the Kaplan–Meier survival curves for the 

resulting groups. This was done in Figure 3. This method has the drawback that 

information is lost in stratifying Xtest β̂
train, but it has the advantage that it results in 

interpretable figures.

2. A continuous version of the previous method is to treat Xtest β̂
train as a continuous 

predictor of test set survival in a univariate Cox proportional hazards model; a large 

log likelihood for the resulting model reflects a good fit.

3. The model’s test set performance can be quantified by evaluating the test set Cox 

log partial likelihood at β̂
train. This is done in e.g. Bovelstad et al.54 The difference 

between this method and the previous one is subtle but important. In this method, 

we are taking β̂
train and plugging it into the formula for the Cox partial likelihood 

on the test set (see Equation (3)), whereas in the previous method, we fit a new Cox 

proportional hazards model on the test data with Xtest β̂
train as the only predictor.

4. Let β−̂i denote the coefficients obtained from a given model when observation i is 

excluded, and again let xi denote observation i. Then the vector 

 can be used as a predictor in a Cox model with outcome (y, 

δ); a large value of the resulting log likelihood indicates a good fit to the new 

observations (and, therefore, a good model). This method was proposed in Verweij 

and Van Houwelingen,55 and does not require splitting the data into training and 

test sets. It can be interpreted as a form of leave-one-out cross-validation, and is 

closely related to the ‘pre-validation’ approach of Tibshirani and Efron.56 It is 

computationally expensive, since it requires fitting n models, each containing n − 1 

observations.

5. Another possibility proposed by Verweij and Van Houwelingen,55 is as follows: 

one can compute the quantity

(23)

where li(β) = l(β) − l(−i)(β) is the contribution of observation i to l(β), the Cox log 

partial likelihood of the full data set with coefficient vector β (l(−i)(β) is the log 

partial likelihood when observation i is left out). A large value of the quantity (23) 

indicates a model that fits new observations well. Again, the data need not be split 

into training and test sets in order to use this method, which is computationally 

expensive.

In addition, Heagerty et al.57 propose the use of ROC curves and Graf et al.53 propose time-

dependent measures of inaccuracy to assess predictive models for survival.

Bovelstad et al.54 provide a comprehensive comparison of seven methods for prediction of 

survival: univariate selection, forward stepwise selection, principal components regression, 

supervised principal components regression, PLS regression, L2 penalisation of the Cox 

partial likelihood and L1 penalisation of the Cox partial likelihood. Based on the 
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performance of these methods on three published gene expression data sets – Rosenwald et 

al.,58 Sorlie et al.,59 and van Houwelingen et al.60 – they determine that L2 penalisation of 

the partial likelihood yields the best predictions. However, as mentioned earlier, L2 

penalisation suffers from the major drawback that it does not result in a sparse model. 

Segal61 considers again the data set of Rosenwald et al.,58 and compares the L1-penalised 

proportional hazards model, SPC, and tree harvesting. The conclusion is that L1 penalisation 

performs best, although gene expression ‘delivers only modest predictions of … survival’. 

Schumacher et al.62 also consider the performance of three prediction methods - univariate 

selection, L1 shrinkage, and PCR - on the Rosenwald et al.58 data set, and also find that L1 

shrinkage gives the best performance.

We compare the performances of PC regression, SPC, L1 shrinkage, Scout(2, 1), and 

univariate feature selection on the 10% of genes with highest training set variance in the 

renal cell carcinoma data set of Zhao et al.1 The training set and test set defined in the 

original article were used; models fit on the training set were evaluated on the test set using 

the second method for evaluating models proposed above. Tuning parameter values were 

selected by cross-validation on the training set. Cross-validation plots for each method can 

be seen in Figure 4. Test set results are reported in Table 3.

7 Discussion

With the emergence of new, high-throughput biomedical technologies, statistical methods 

for the analysis of high-dimensional survival data have become increasingly important. We 

have presented a number of methods for survival analysis in high-dimensional settings, with 

a focus on identification of features that are associated with survival and construction of 

predictive models that perform well on independent test data.
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Figure 1. 
Estimated FDR for Cox scores, modified Cox scores, and LPC scores are shown for the 

renal cell carcinoma data set of Zhao et al.1
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Figure 2. 
Hierarchical clustering of the patients is shown on the left. Kaplan–Meier survival curves for 

the two largest subgroups defined by hierarchical clustering are shown on the right; the p-

value for the log-rank test is 0.0102.

Witten and Tibshirani Page 22

Stat Methods Med Res. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
For the Zhao et al.1 data, predictors obtained via PC regression and SPC on the training set 

were used to define three subgroups on the test set. For these subgroups, Kaplan–Meier 

survival curves and p-values for the log rank test statistic are shown.
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Figure 4. 
For the Zhao et al.1 data, the y-axes show the average value of 2(l(Xtest β̂

train, ytest, δtest)− 

l(0, ytest, δtest)) across cross-validation folds; a large value indicates a good fit on 

independent data. The notation l(γ, y, δ) indicates the log partial likelihood of the Cox model 

with outcome (y, δ) and predictor γ. Scout(2, 1) is not shown in this figure because it 

involves two tuning parameters.
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Table 1

Possible outcomes from p hypothesis tests for a set of features. The FDR is defined as . If the statistic 

used to test each hypothesis is a function of that feature only, then permutations can be used to estimate the 

FDR

Called not significant Called significant

Null U V

Non-null T S

Total p −R R
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Table 2

Summary of methods discussed for predicting survival

Method Sparsity Description Reference

Cox prop. hazards No Only applies if columns of X not multicollinear Kalbfleisch and Prentice16

Univariate selection Yes Does not find best multivariate model Klein and Moeschberger63

Stepwise selection Yes Computationally intensive; not global optimum Klein and Moeschberger63

L2 shrinkage No Resulting coefficients can be small, but non-zero Verweij and van Houwelingen28

L1 shrinkage Yes Dimension reduction and feature selection are integrated 
into one step

Tibshirani29

Covariance-regularised regression Yes Sparsity results if p2 = 1 Witten and Tibshirani36

Tree harvesting Maybe In general, not sparse; depends on clusters included in 
model

Hastie et al.39

Principal component regression No Outcome is regressed onto high-variance subspace of 
features

Massy40

SIR + PC No PC is followed by SIR44in order to reduce dimension 
before fitting survival model

Li and Li43

Supervised PC Yes PC is performed only on the features with highest Cox 
scores

Bair and Tibshirani41

PLS + Cox prop. hazards No PLS used to reduce dimension before fitting a survival 
model

Nguyen and Rocke47

PCR (PLS for Cox model) No PLS regression adapted to the survival setting Park et al.48
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Table 3

Five methods are compared on the data set of Zhao et al.1For each method, tuning parameter values were 

selected via cross-validation on the training set. Models were evaluated on the test set. The notation l(γ, y, δ) 

indicates the log partial likelihood of the Cox model with outcome (y, δ) and predictor γ. The predictors 

developed on the training set are highly significant on the test set

Method 2(l(Xtest β̂train, ytest, δtest) − l(0, ytest, δtest)) p-value Tuning parameter

PC regression 8.489 0.0037 2 PCs

SPC 12.70 0.00035 40 genes

L1-penalised Cox 4.402 0.0317 3 genes

Scout(2, 1) 11.307 0.0006 27 genes

Univar. feature selection 16.04 3.69 × 10−5 4 genes
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