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Preserving b-cell function during the development of obe-
sity and insulin resistance would limit the worldwide epi-
demic of type 2 diabetes. Endoplasmic reticulum (ER)
calcium (Ca2+) depletion induced by saturated free fatty
acids and cytokines causes b-cell ER stress and apoptosis,
but the molecular mechanisms behind these phenomena
are still poorly understood. Here, we demonstrate that
palmitate-induced sorcin downregulation and subsequent
increases in glucose-6-phosphatase catalytic subunit-2
(G6PC2) levels contribute to lipotoxicity. Sorcin is a calcium
sensor protein involved in maintaining ER Ca2+ by inhibiting
ryanodine receptor activity and playing a role in terminating
Ca2+-induced Ca2+ release. G6PC2, a genome-wide asso-
ciation study gene associated with fasting blood glucose, is
a negative regulator of glucose-stimulated insulin secretion
(GSIS). High-fat feeding in mice and chronic exposure of
human islets to palmitate decreases endogenous sorcin
expression while levels of G6PC2 mRNA increase. Sorcin-
null mice are glucose intolerant, with markedly impaired
GSIS and increased expression of G6pc2. Under high-fat
diet, mice overexpressing sorcin in the b-cell display im-
proved glucose tolerance, fasting blood glucose, and GSIS,
whereas G6PC2 levels are decreased and cytosolic and ER
Ca2+ are increased in transgenic islets. Sorcin may thus
provide a target for intervention in type 2 diabetes.

Pancreatic b-cell dysfunction is central to the pathogene-
sis of type 2 diabetes. During the progression of obesity

and insulin resistance, pancreatic islets of Langerhans ini-
tially increase b-cell mass and overproduce insulin (1).
The increase in biosynthetic demand induced by chronic
hyperglycemia activates the unfolded protein response
(UPR), while increases in circulating free fatty acids and
cytokines lower endoplasmic reticulum (ER) calcium (Ca2+)
stores (2,3), triggering ER stress and apoptosis if pro-
longed (4). The molecular mechanisms linking lipotoxicity
and associated inflammation (5) to ER Ca2+ stores are
largely unknown. Sorcin (gene name SRI) is a 22-kDa mem-
ber of the penta-EF-hand family of calcium binding pro-
teins that undergoes Ca2+-dependent conformational
changes (6–10). Sorcin is highly conserved among mam-
mals and strongly expressed in primary mouse islets (11).
In extrapancreatic cells, notably cardiac myocytes, sorcin
associates with the ryanodine receptor (RyR) (12), the
pore-forming a1 subunit of voltage-dependent L-type Ca2+

channels (L-type VDCC) (13), and sarcoendoplasmic re-
ticulum Ca2+ ATPase (SERCA) pumps (14) to modulate
excitation-contraction coupling through changes in intra-
cellular Ca2+ homeostasis (12). Sorcin inhibits RyR activity
(15) and plays a role in terminating Ca2+-induced Ca2+ re-
lease (12), an inherently self-sustaining mechanism that, if
unchecked, may deplete intracellular Ca2+ stores (16).

We have recently shown that siRNA-mediated knock-
down of sorcin in MIN6 insulinoma b-cells resulted in an
apparent reduction in ER Ca2+ stores, as judged by stimu-
lation with an inositol 1,4,5-triphosphate (IP3) mobilizing
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agonist, and an inhibition of glucose-stimulated insulin
secretion (GSIS) (17). These data indicated that sorcin
may be required to maintain intracellular Ca2+ stores, pos-
sibly through its known capacity to inhibit RyRs (15) and
activate SERCA pumps (14).

Since we and others have demonstrated that elevated
palmitate (2) and cytokine levels (18,19) cause ER stress and
apoptosis in pancreatic b-cells at least in part by decreasing
ER Ca2+ stores (3), it follows that sorcin overexpression
might protect against ER stress induced by inflammation
and lipotoxicity. Indeed, recent data regarding human islets
showed a decrease in sorcin expression induced by TNFa (20).

In the present report, we test this hypothesis using
1) mice bearing null alleles of the sorcin gene (Sri2/2),
2) transgenic mouse lines overexpressing sorcin in the
pancreatic b-cell, and 3) adenovirus-mediated overexpres-
sion of sorcin in isolated human and murine islets.

RESEARCH DESIGN AND METHODS

Generation of Transgenic Mice Overexpressing Sorcin
in Pancreatic b-Cells
Murine sorcin cDNA (17) was inserted in pBI-L vector
(PvuII-NotI sites), which contains a bidirectional Tet-
responsive promoter driving the expression of both
mSRI and firefly luciferase (21). After injection into
the pronucleus of 0.5-day-old pure C57BL/6 fertilized
oocytes (Embryonic Stem Cell and Transgenic Facility,
Medical Research Council, London, U.K.), two founders,
bearing 1 and 10 copies of the transgene (TetOn-Sri-1
and TetOn-Sri-10), were identified by PCR screening.
b-Cell selectivity was achieved using the Tet-on system
and RIP7-rtTA mice, which express the reverse tetracy-
cline transactivator (rtTA) under the control of the rat
insulin 2 promoter (21). Hemizygous TetOn-Sri-1 or -10
mice were crossed with homozygous RIP7-rtTA mice to
generate double hemizygous TetOn-Sri/RIP7-rtTA (hereaf-
ter named SRI-tg1 and SRI-tg10) and single hemizygous
RIP7-rtTA as littermate controls. Doxycycline (0.5 g/L in
drinking water) and a high-fat diet (HFD; 60% kcal as fat,
mainly saturated) were administered from 4 weeks of age
unless specified otherwise.

Generation of Sorcin Knockout Mice
Homozygous sorcin-null mice (Sri2/2) on a 129S1/SvImJ
genetic background were generated by homologous recom-
bination as previously described (22). In brief, the targeting
construct was generated by flanking exon 3, present in
both sorcin isoforms (accession no. NM_001080974.2
and NM_025618.3) with loxP sites for the Cre recombinase
and inserting a phosphoglycerol kinase promoter–driven
neomycin selection cassette flanked by an additional loxP
site in the intron between exons 3 and 4.

Intraperitoneal Glucose and Insulin Tolerance Tests
Mice were fasted overnight for 14 h. Glucose solution
(20% D-glucose/water, weight for volume, 1–3 g/kg body
weight) or human regular insulin solution (0.5 or 1 units/kg,
catalog no. 19278; Sigma-Aldrich) was administrated

intraperitoneally and blood glucose was measured from the
tail vein at 0, 15, 30, 60, 90, and 120 min using an ACCU-
CHECK Aviva glucometer (Roche). Plasma insulin levels
were measured using an ultrasensitive mouse insulin ELISA
kit (Crystal Chem, Downers Grove, IL), and plasma glucose
was assessed by Glucose Assay Kit (catalog no. 65333;
Abcam) when above the glucometer detection limit.

Plasmids and Adenoviral Vectors
Plasmid pGL3-hG6PC2(21075+124), containing the proximal
promoter of the human glucose-6-phosphatase catalytic
subunit-2 (G6PC2) gene upstream of luciferase reporter
gene, was generated by PCR using human genomic
DNA and the following primers: forward 59-ACACG
GTACCATCCTAGACACAATCCAGCTCTCT-39 and reverse 59-
ACACAAGCTTTAAATGAAAAAGATATTCCTGGGG-39. The
resulting 1,220-bp fragment was subcloned into pCR2.1
by TA cloning, digested by KpnI-XhoI, and subcloned into
pGL3basic. A nuclear factor of activated T-cells (NFAT)
luciferase reporter containing three tandem repeats of a
30-bp fragment of the IL-2 promoter for analysis of
NFAT activity was a gift from Dr. Toren Finkel (Laboratory
of Molecular Biology, National Heart, Lung, and Blood In-
stitute, National Institutes of Health) (23). p5xATF6-GL3,
containing five tandem repeats of ATF6 binding sites, was
a gift from Ron Prywes (Department of Biological Sciences,
Columbia University) (24). Plasmids pLKO.1-shSc (scrambled),
pLKO.1-shSRI144, and pLKO.1-shSRI457 were constructed
using the pLKO.1-TRC cloning vector from Addgene (plasmid
no. 10878, protocol http://www.addgene.org/tools/protocols/
plko/) and the oligonucleotides presented in Supplementary
Table 1. Plasmid pAd-hSRI was generated by subcloning
the human sorcin cDNA (pDNR-LIB-SRI) in pAdTrackCMV
(BglIII-HindIII sites). All the constructs were verified by
DNA sequencing. The adenovirus Ad-hSRI-GFP was subse-
quently produced as in Noordeen et al. (17). Ad-mSRI-GFP
encoding the murine sorcin cDNA and Ad-Null-GFP (empty
vector) were described in Noordeen et al. (17).

Cell Culture, Transfection, and Luciferase Assays
MIN6 b-cells were used between passages 24 and 39 as in
Noordeen et al. (17). Human and rat b-cell lines 1.1B4
and INS1(832/13) and HEK293 cells were cultured as in
Noordeen et al. (25). Cells were transfected using Lipo-
fectamine 2000 and Opti-Mem (Invitrogen), and lucifer-
ase assays were performed using a Dual-Luciferase
Reporter Assay System (Promega) according to the man-
ufacturer’s instructions.

Human and Mouse Islets of Langerhans Isolation and
Culture
Human islets from normoglycaemic donors were cultured
as in Hodson et al. (26). Donor characteristics are pre-
sented in Supplementary Table 2. Pancreatic mouse islets
were isolated and cultured as previously described (27).
Transgenic islets were cultured in the presence of
0.5 mg/mL doxycycline to sustain transgene expression.
Human and WT mouse islets (10-week-old C57BL/6 mice)
were transduced with Ad-hSRI-GFP, Ad-mSRI-GFP, or
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Ad-Null-GFP adenovirus at a multiplicity of infection of
100 for 48 h prior to total RNA extraction, GSIS, or in-
tracellular Ca2+ imaging.

RNA Extraction, cDNA Synthesis, and Quantitative
PCR Analysis
Total RNA was extracted, reversed transcribed, and analyzed
as described in Sun et al. (28). Primers for SYBR Green assays
are presented in Supplementary Table 3. Expression of each
gene was normalized to b-actin and fold change in mRNA
expression versus controls calculated using the 22DCT method.

Microarray Analysis
Total RNA isolated from islets from 8-week-old, HFD-fed six
SRI-tg10 male mice and six RIP7rtTA (littermate controls)
was sent to the High Throughput Genomics Facility, Well-
come Trust Centre for Human Genetics, University of
Oxford, and analyzed on Illumina MouseWG-6 v2 Expres-
sion BeadChips.

Ex Vivo Glucose–Stimulated Insulin Secretion
Insulin secretion assays on murine and human islets were
performed as previously described in Leclerc et al. (29).
Secreted and total insulin contents were quantified using
a homogenous time-resolved fluorescence kit (HTRF) insu-
lin kit (Cisbio).

Palmitate Treatment
Human islets were cultured for 72 h with either BSA or
0.5 mmol/L BSA-palmitate in 5.5 mmol/L glucose RPMI, and
MIN6 cells were transduced with Ad-mSRI-GFP or Ad-Null-
GFP adenoviruses for 24 h, prior to 48 h treatment with
BSA or 0.5 mmol/L BSA-palmitate in 25 mmol/L glucose
DMEM before total RNA extraction and qRT-PCR analysis.

Protein Extraction and Western Blotting
Western blotting was performed as in Leclerc et al. (29)
using mouse monoclonal anti-sorcin (1:300, 25B3; Invi-
trogen) and mouse monoclonal anti–a-tubulin (1:10,000–
20,000, catalog no. T5168; Sigma-Aldrich) antibodies.

Cytosolic Calcium Imaging
Imaging of free cytosolic Ca2+ concentration ([Ca2+]cyt) in
isolated islets was performed using the trappable intracel-
lular fluorescent Ca2+ dye Fura-2-AM (Invitrogen) (27).
Imaging data were analyzed with ImageJ software using
an in-house macro, and the fluorescence emission ratios
were derived after subtracting background fluorescence.

ER Calcium Imaging
Clusters of isolated islets were transduced for 48 h with
an adenovirus encoding the low-Ca2+-affinity sensor D4
addressed to the ER, Ad-RIP-D4ER, as in Ravier et al. (30).
Prior to acquisitions, cells were preincubated in Krebs-
Ringer bicarbonate HEPES (KRBH) media (17) containing
3 mmol/L glucose for 1 h at 37°C and were perifused with
KRBH supplemented with 17 mmol/L glucose and 250
mmol/L diazoxide (Diaz) (catalog no. D9035; Sigma-
Aldrich) with the subsequent consecutive additions of
100 mmol/L acetyl-choline (catalog no. A2661; Sigma-Aldrich)

and 1 mmol/L thapsigargin (catalog no. 586005; Calbio-
chem). Image analysis was performed as above.

Immunohistochemistry and Immunofluorescence
Quantification of b– and a-Cell Mass
Analyses were performed as described in Sun et al. (28).

Statistical Analysis
Data are presented as means 6 SEM. Significance was
assessed by appropriate unpaired or paired two-tailed
Student t tests or one- or two-way ANOVA as indicated,
using GraphPad Prism 6.0 or Microsoft Excel. P , 0.05
was considered significant.

Study Approval
Studies involving human islets were approved by the
National Research Ethics Committee London as detailed
in Hodson et al. (26). All procedures involving animals
received ethical approval and were compliant with the
U.K. Animals (Scientific Procedures) Act 1986 or approved
by the University Committee on Use and Care of Animals
(University of Michigan, Ann Arbor, MI). Animals were
housed two to five per individually ventilated cage in a
pathogen-free facility with a 12-h light-dark cycle and had
free access to food and water.

RESULTS

Sorcin Is Necessary for Normal Glucose Tolerance
and Protects Against Lipotoxicity In Vivo
We previously reported that sorcin silencing in MIN6 cells
leads to a complete abolition of ATP-evoked Ca2+ release
from intracellular stores and an inhibition of GSIS (17).
These findings prompted us to investigate the roles of
sorcin in b-cell pathophysiology provoked by lipotoxicity,
a condition known to trigger ER stress and b-cell failure (2).

In line with our findings in cell lines (17), sorcin-null
mice (Sri2/2, standard chow [SD] fed) displayed decreased glu-
cose tolerance compared with sex-, weight-, and age-matched
wild-type (WT) controls during intraperitoneal glucose tol-
erance tests (IPGTTs) (area under the curve [AUC], arbitrary
units, WT vs. Sri 2/2, 2 months old: 43.5 6 1.64 vs.
48.0 6 1.1, n = 6–10, P , 0.05; 9 months old: 39.2 6
2.5 vs. 49.1 6 1.9, n = 4–7, P , 0.01) (Fig. 1A and B).

To determine whether sorcin overexpression might be
protective against b-cell stress, we generated transgenic mice
overexpressing sorcin in the pancreatic b-cell on the C57BL/6
genetic background, since males of this strain become glucose
intolerant and insulin resistant under an HFD (31). Sorcin
mRNA and protein levels were increased by at least twofold
in isolated islets from SRI-tg1 and SRI-tg10 mice compared
with those from littermate controls (Supplementary Fig. 1).

Glucose tolerance was improved in HFD-fed SRI-tg1
and SRI-tg10 male mice compared with their littermate
controls during IPGTTs (AUC, arbitrary units, controls vs.
SRI-tg1: 128.7 6 6.1 vs. 101.2 6 8.1, n = 7–8, P , 0.05;
controls vs. SRI-tg10: 95.8 6 5.4 vs. 73.0 6 2.4, n = 9–13,
P , 0.001) (Fig. 1C and D), despite similar insulin sensi-
tivity as assessed by intraperitoneal insulin tolerance
tests (IPITTs) (Fig. 1E and F, left panels) and body
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weights (Fig. 1E and F, right panels). Remarkably, the
above phenotype was not apparent in vivo in the ab-
sence of b-cell stress, i.e., during normal chow feeding
(Supplementary Fig. 2).
Sorcin Enhances GSIS Without Increasing Pancreatic
b-Cell Mass
We next investigated whether the changes in glucose toler-
ance observed in SRI-tg and Sri2/2 mice were secondary to
changes in insulin secretion. In vivo glucose-stimulated insulin
release was assessed in SRI-tg10 and Sri2/2 mice by IPGTTs
(3 g glucose/kg body weight). As shown in Fig. 2A (top panel),
plasma insulin concentrations were significantly higher at 30
min in SRI-tg10 compared with controls (plasma insulin,
ng/mL, SRI-tg10 vs. controls, 30 min: 0.60 6 0.06 vs.

0.43 6 0.05, P , 0.05, n = 5–7), despite similar concomitant
blood glucose values (Fig. 2A, bottom panel). Conversely,
Sri2/2 males showed a marked impairment of GSIS com-
pared with WT controls, with plasma insulin concentra-
tions barely rising during IPGTT (AUC insulin, WT vs.
Sri2/2, arbitrary units: 1.01 6 0.23 vs. 0.53 6 0.10, n =
4–6, P, 0.05) (Fig. 2B, top panel), despite robust increases
in associated blood glucose values (Fig. 2B bottom panel).

We next explored whether the enhanced GSIS observed
in SRI-tg10 islets might be secondary to an increase in
b-cell mass. As shown in Fig. 2C–E, there were no signifi-
cant changes in mean pancreas surface, islet size, individual
b-cell or a-cell mass, although there was a significant de-
crease in b-cell to a-cell ratio.

Figure 1—Sorcin deletion impairs glucose tolerance whereas sorcin overexpression in b-cells improves glucose tolerance during HFD.
IPGTTs (1 g glucose/kg) were performed in SD-fed 2-month-old (A) and 9-month-old (B) Sri2/2 male mice and sex-, weight-, and aged-
matched WT controls (n = 4–10). IPGTTs (1 g glucose/kg) were performed in HFD-fed SRI-tg1 (n = 8–9, 16 weeks old) (C ) and SRI-tg10
(n = 9–11, 8 weeks old) (D) male mice and littermate controls. Right panels represent AUC of blood glucose concentration during
IPGTTs. IPITTs were performed in HFD-fed SRI-tg1 (n = 8–9, 17 weeks old, 1 unit insulin/kg) (E ) and SRI-tg10 (n = 9–11, 9 weeks old,
0.5 units insulin/kg) (F ) male mice and littermate controls. Right panels represent body weights for each group at the time of IPITTs.
Values are means 6 SEM. *P < 0.05; **P < 0.01; ***P < 0.001 (two-way ANOVA). CTRL, control.
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Figure 2—Sorcin overexpression enhances GSIS without expansion of b-cell mass, whereas sorcin deletion impairs GSIS. Plasma insulin
concentration during 3 g glucose/kg IPGTTs were assessed in HFD-fed SRI-tg10 male mice (n = 5–7, 11 weeks old) (A) and SD-fed Sri2/2

male mice (n = 4–6, 9 months old) (B) and their respective controls. Top left panels represent plasma insulin values and bottom panels
represent corresponding blood glucose measurements. Top right panels represent AUC of plasma insulin concentrations. C–F: Pancreatic
b-cell mass was evaluated in HFD-fed SRI-10 mice. Five consecutive pancreatic sections from 9-week-old SRI-tg10 and littermate control
mice (n = 3–4) were immunostained for insulin, glucagon, and DAPI (scale bars = 50 mm) (C ) to quantify for mean pancreas and islet size (D),
and individual b-cell and a-cell area and b-cell to a-cell ratio as described in RESEARCH DESIGN AND METHODS (E). Ex vivo insulin secretion
assays were performed in response to 3 or 17 mmol/L glucose (G3; G17) on isolated islets from HFD-fed transgenic (TG) SRI-tg10 male
mice (n = 3, 27 weeks old) (F ), human cadaveric donors (n = 3, see Supplementary Table 2 for donors characteristics) (G), and SD-fed WT
C57BL/6 mice (n = 4–5, 10 weeks old) (H) transduced with an adenovirus encoding sorcin-GFP or GFP only as indicated. *P < 0.05 (in vivo
GSIS/IPGTT: two-way ANOVA; b-cell mass and ex vivo GSIS: two-tailed Student t tests). CTRL, control.
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The sorcin-induced improvement in in vivo GSIS was also
observed ex vivo in islets isolated from SRI-tg1/10 mice and
from human and mouse islets transduced for 48 h with an
adenovirus encoding sorcin. Indeed, when stimulated with 17
mmol/L glucose, SRI-tg10 islets secreted 55% more insulin
compared with control islets (insulin, percent of total, controls
vs. SRI-tg10: 0.3726 0.02 vs. 0.5776 0.07, n = 3, P, 0.05),
without any changes in insulin secretion at 3 mmol/L glucose
(Fig. 2F), whereas SRI-tg1 islets secreted 68% more insulin at
high glucose than controls (Supplementary Fig. 3). Adenovirus-
mediated overexpression of sorcin consistently increased GSIS
in human (Fig. 2G) and mouse (Fig. 2H) islets at 17 mmol/L
glucose compared with islets transduced with a null-GFP virus.

Sorcin Improves Cytosolic Ca2+ Fluxes and Increases
ER Ca2+ Stores
We next assessed whether the enhanced GSIS observed
after sorcin overexpression was associated with changes

in intracellular Ca2+ dynamics. Islets isolated from
HFD-fed SRI-tg1 and SRI-tg10 mice were loaded with
Fura-2 and perifused sequentially with low (3 mmol/L)
and elevated (17 mmol/L) glucose concentrations. High
glucose elicited a greater [Ca2+]cyt response in sorcin-
overexpressing islets compared with controls (AUC, arbitrary
units, controls vs. SRI-tg1: 100.06 5.0 vs. 120.16 5.0, n = 3,
P , 0.05 [Fig. 3A]; controls vs. SRI-tg10: 100.0 6 17.80 vs.
149.9 6 16.2, n = 3, P , 0.05 [Fig. 3B]). Likewise, trans-
duction of dissociated human (Supplementary Fig. 4) or
mouse (not shown) islets in vitro with sorcin-encoding
adenoviruses significantly increased the number of islets
displaying strong and high-amplitude [Ca2+]cyt oscillations
in response to 17 mmol/L glucose.

Free Ca2+ in the ER ([Ca2+]ER) was measured in clusters of
isolated islets from HFD-fed SRI-tg1, SRI-tg10, and their
littermate controls, transduced for 48 h with an adenovirus
encoding the low-Ca2+-affinity sensor D4 addressed to the

Figure 3—Sorcin overexpression increases intracellular Ca2+ fluxes and ER Ca2+ stores. Cytosolic Ca2+ levels ([Ca2+]c) were measured in
isolated and dissociated islets loaded with Fura-2 from HFD-fed SRI-tg1 (n = 3–4, 14 weeks old) (A) and SRI-tg10 (n = 3, 9 weeks old) (B)
male mice incubated sequentially with low (3 mmol/L, G3) and high (17 mmol/L, G17) glucose concentrations as indicated. Right panels re-
present AUC of [Ca2+]c. Acetylcholine (Ach)-induced ER Ca2+ release was measured in clusters of dissociated islets from HFD-fed SRI-tg1 (n = 4,
14 weeks old) (C) and SRI-tg10 (n = 3, 9 weeks old) (D) male mice transduced with Ad-RIP-D4ER adenovirus to measure [Ca2+]ER as stated in
RESEARCHDESIGNANDMETHODS. The islets were incubated in 17 mmol/L glucose in the presence of Diaz (Dz; 250 mmol/L) to prevent extracellular Ca2+

influx. Left panels, representative calcium traces; right panels, quantification of the amplitude (Δ) of ER Ca2+ depletion after treatment with Ach.
*P < 0.05; **P < 0.01; ***P < 0.001 ([Ca2+]c: two-way ANOVA; [Ca2+]ER Δ: two-tailed Student t tests). au, arbitrary units; CTRL, control.
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ER under the control of the insulin promoter Ad-RIP-D4ER
(30), and incubated in 17 mmol/L glucose with the addition
of 250 mmol/L Diaz to fully open ATP-sensitive K+ channels
and prevent extracellular Ca2+ influx (30). After acetylcho-
line-induced ER Ca2+ release, transgenic islets experienced a
larger fall in [Ca2+]ER than control islets, indicating a higher
initial [Ca2+]ER content (Fig. 3C and D). We next fully de-
pleted the ER Ca2+ stores in islets isolated from HFD-fed
SRI-tg10 male mice and littermate controls using the SERCA
pump inhibitor cyclopiazonic acid (32,33) before measuring
[Ca2+]cyt in response to 17 mmol/L glucose. Under these
conditions, the subsequent increase in [Ca2+]cyt induced by
high glucose was no longer significantly different between
sorcin-overexpressing islets and control islets (AUC [Ca2+]cyt,

arbitrary units, controls vs. SRI-tg10: 100.0 6 13.5 vs.
104.6 6 10.3, n = 3, NS) (Supplementary Fig. 5). Taken
together, these results are consistent with a positive role
for sorcin in GSIS and intracellular Ca2+ homeostasis, corrob-
orating our in vitro data in MIN6 insulinoma cells (17).

Sorcin Regulates G6PC2 Expression Levels and
Reduces Fasting Blood Glucose
To further explore the underlying mechanisms behind
sorcin’s actions, we performed a transcriptomic analysis of
islets from HFD-fed SRI-tg10 mice and controls using oli-
gonucleotide microarrays (GEO accession no. GSE72719)
(Ingenuity Pathway Analysis presented in Supplementary
Table 4). Interestingly, G6pc2, one of the most highly

Figure 4—Sorcin regulates G6pc2 expression and decreases fasting blood glucose in vivo. Quantitative RT-PCR analysis of Sri (A–C) and
G6pc2 (D–F) expression was performed in isolated islets from HFD-fed SRI-tg1 male (n = 3 mice/genotype, 27 weeks old) (A and D), SRI-
tg10 male (n = 5 mice/genotype, 8 weeks old) (B and E), and SD-fed SRI2/2 male (n = 4–7 mice/genotype, 9 months old) (C and F ) mice and
their respective controls.G: Fasting blood glucose levels were measured in HFD-fed SRI-tg10 male and their littermate control mice aged 8,
16, and 24 weeks, as indicated (n = 9–11 mice per group, HFD from 4 weeks old). *P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed Student
t tests). CTRL, control.
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expressed genes in b-cells (9), was strongly repressed in
islets from SRI-tg10 mice. Subsequent qRT-PCR analysis
in isolated islets from SRI-tg10, SRI-tg1, and Sri2/2 mice
confirmed the inverse relationship between Sri and G6pc2
expression levels (Fig. 4A–F). Indeed, islets from SRI-tg1
and SRI-tg10 mice displayed 35 and 56% decreases, respec-
tively, in G6pc2 mRNA levels (Fig. 4D and E), whereas Sri
mRNA levels were increased 20- and 42-fold, respectively
(Fig. 4A and B). In islets from Sri2/2 mice, sorcin expression
was reduced by .90% and there was a 3.6-fold increase in
G6pc2 expression (Fig. 4C and F). G6PC2 is an islet-specific
isoform of glucose-6-phosphatase, which negatively regu-
lates basal GSIS (9). G6PC2 is also a major determinant of
fasting blood glucose in humans as revealed by genome-
wide association studies (34). Accordingly, HFD-fed
SRI-tg10 mice displayed lower fasting blood glucose
throughout the study compared with controls (Fig. 4G).

Lipotoxic Conditions Decrease Endogenous Sorcin
Expression in Mouse and Human Islets While
Increasing G6PC2 and ER Stress Markers
We next overexpressed sorcin in human islets with an
adenoviral vector and likewise observed a reduction in
G6PC2 mRNA levels, and in the levels of mRNA encoding
the ER stress markers C/EBP homologous protein (CHOP)
and glucose-regulated protein 78/binding immunoglobu-
lin protein (GRP78/BiP) (Fig. 5A).

Given the apparent protection conferred by sorcin
overexpression under lipotoxic conditions, we next in-
vestigated the regulation of endogenous sorcin during
HFD in vivo and in human islets and MIN6 cells cultured
in the presence of palmitate. Sorcin expression was
downregulated in islets from HFD-fed C57BL/6 (Fig. 5B)
and DBA2J mice (Supplementary Fig. 6) compared with
chow-fed mice. Furthermore, human islets incubated for

Figure 5—Lipotoxicity decreases endogeneous sorcin expression whereas sorcin overexpression prevents palmitate-induced G6PC2 and
ER stress marker induction. A: Quantitative RT-PCR analysis of SRI, G6PC2, CHOP, and GRP78/BiP expression was performed on human
islets (n = 3 donors) transduced for 48 h with either sorcin (GFP-SRI) or null (GFP) adenoviruses, as indicated. B: Quantitative RT-PCR
analysis of Sri expression was performed in isolated islets from chow or HFD-fed WT mice (n = 4–5, 19-week-old females, HFD from
5 weeks old). Quantitative RT-PCR analysis of SRI, G6PC2, CHOP, and/or GRP78/BiP expression was performed on human islets (n = 3
donors) treated for 72 h with 0.5 mmol/L BSA-conjugated palmitate or BSA only (C) or on MIN6 b-cells transduced for 24 h with an
adenovirus encoding GFP or sorcin-GFP followed by 48 h treatment with 0.5 mmol/L BSA-conjugated palmitate or BSA only (D and E).
Values are mean 6 SEM. *P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed Student t tests).
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72 h in the presence of palmitate and 5.5 mmol/L glucose
showed a significant reduction in sorcin expression and
an increase in G6PC2 and CHOP expression (Fig. 5C).
Similarly, lipotoxicity experiments in MIN6 cells also
demonstrated a profound suppression of sorcin ex-
pression accompanied by a robust increase in G6pc2,
Chop, and Grp78/BiP mRNA after exposure to palmi-
tate (Fig. 5D). Remarkably, adenovirus-mediated over-
expression of sorcin during lipotoxic conditions in
MIN6 cells prevented the increase in G6pc2, Chop,
and Grp78/BiP expression (Fig. 5E).

Sorcin Represses G6PC2 Promoter Activity Through
NFAT Activation
We next determined whether the repressive effect of
sorcin on G6PC2 expression was transcriptionally me-
diated. As shown in Fig. 6A (DMSO, gray bar), over-
expressed sorcin repressed the activity of a 1.2-kb
proximal fragment of the human G6PC2 promoter
(hG6PC2p) in MIN6 cells. Conversely, the activity of a
reporter containing three tandem repeats of an NFAT
binding site (3xNFATr) was significantly stimulated by
sorcin (Fig. 6B, DMSO, gray bar), consistent with the in-
crease in cytosolic [Ca2+] induced by sorcin (35). In order
to confirm the roles of NFAT and [Ca2+]cyt in mediating
the inhibitory effect of sorcin on G6PC2 expression,
we showed that NFAT cDNA cotransfection repressed
hG6PC2p activity while robustly stimulating 3xNFATr
(Fig. 6A and B, DMSO, black bars). In silico TRANSFAC
analysis revealed three putative NFAT binding sites on
G6PC2 promoter (not shown). We next added Diaz (100
mmol/L, inhibiting Ca2+ influx) and cyclosporine A (CsA,
0.2 mmol/L, inhibiting NFAT nuclear translocation) in the
culture medium. As expected, both agents prevented the
inhibitory and stimulatory effects of sorcin on hG6PC2p

and 3xNFATr, respectively (Fig. 6A and B, Diaz and CsA,
gray bars). Moreover, the addition of CsA stimulated the
activity of hG6PC2p compared with DMSO, whereas Diaz
inhibited it (Supplementary Fig. 7), confirming the repres-
sive contribution of the NFAT signaling pathway. The
suppressive effect of Diaz, however, implies additional
[Ca2+]cyt-dependent stimulatory pathways. Intriguingly,
the addition of Diaz and CsA (up 1 mmol/L, not shown)
did not prevent the inhibitory effects of NFAT on
hG6PC2p but prevented the stimulatory effect of NFAT
on 3xNFATr (Fig. 6A and B, Diaz and CsA, black bars).

Sorcin Activates ATF6 Transcriptional Activity
The inverse relationship between sorcin expression and
the ER stress markers CHOP and GRP78/BiP prompted us
to investigate the effect of sorcin on the UPR. To study
the ATF6 branch (36), we chose a reporter assay contain-
ing five tandem repeats of ATF6 binding sites (24), since
ATF6 is cleaved in the Golgi in response to ER stress
before translocating to the nucleus (37). The activity of
the ATF6 luciferase reporter was reproducibly stimulated
by tunicamycin and thapsigargin, two ER stress inducers,
and inhibited by the chemical chaperone 4-PBA, confirm-
ing its sensitivity to ER stress (Fig. 7A–D). Sorcin cotrans-
fection increased the activity of the ATF6 luciferase
reporter in three b-cell lines, i.e., MIN6, 1.1B4, and
INS1 (832/13), as well as in HEK293 cells, in basal
(DMSO) and stimulated (thapsigargin and tunicamycin)
conditions, but not in the presence of 4-PBA, compared
with cotransfection with GFP (Fig. 7A–D). Conversely, sor-
cin silencing in MIN6 cells by short hairpin RNA decreased
the activity of the ATF6 reporter (Fig. 7E and F). Sorcin
overexpression did not affect XBP-1 splicing, used as a
surrogate of the IRE-1 branch, either in basal conditions
or after thapsigargin treatment of MIN6 (Fig. 7G and H)

Figure 6—Sorcin inhibits G6PC2 promoter activity. Promoter luciferase reporter studies were performed in MIN6 b-cells cotransfected with
either GFP (control), sorcin (SRI), or NFAT-GFP cDNAs and21075+124hG6PC2-Luci (A) or three tandem repeats of NFAT binding sites (33
NFAT-Luci) and pRL-CMV (B) and treated with DMSO (0.1%), Diaz (100 mmol/L), or CsA (0.2 mmol/L) for an additional 24 h before cell lysis,
as indicated (n = 3–4 independent experiments). Values are mean 6 SEM. *P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed Student t tests).
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Figure 7—Sorcin (SRI) activates ATF6 transcriptional activity. Promoter luciferase reporter studies were performed in clonal b-cell lines
MIN6 (A), 1.1B4 (B), INS1(832/13) (C), and human embryonic kidney HEK cells (D). Cells were cotransfected with an artificial promoter
containing five ATF6 binding sites (p5xATF6-GL3), pRL-CMV, and either GFP or SRI cDNA for 24 h and treated with DMSO (1%), 4-PBA
(10 mmol/L), tunicamycin (10 mg/mL), or thapsigargin (10 mmol/L) for an additional 16–20 h before cell lysis and luciferase assay. a, P <
0.005 for the effect of treatment vs. DMSO; b, P< 0.05 for the effect of SRI overexpression (unpaired two-tailed Student t tests). E: Western
blot showing the efficiency of two different SRI short hairpin RNA constructs (shSRI-144 and shSRI-457) after 3 and 5 days in culture in
MIN6 cells. Cells were transfected with either pLKO.1-shScrambled, -shSRI144, or -shSRI457 and incubated with 1 mg/mL puromycin for
3 or 5 days before cell lysis and Western blotting using polyclonal anti-SRI (1:300) and monoclonal anti-tubulin (1:10,000). Dashed vertical
white lines have been added for clarity. F: SRI silencing reduces the activity of an artificial promoter containing five ATF6 binding sites in
MIN6 cells. MIN6 were cotransfected with p5xATF6-GL3, pRL-CMV, and either pLKO.1-shScrambled, -shSRI144, or -shSRI457 for 48 or
72 h before cell lysis and luciferase assay. Results are expressed as mean6 SEM; n = 3 independent experiments. *P < 0.005, paired two-
tailed Student t tests. Quantitative RT-PCR analysis of Sri (G) and spliced Xbp1:total Xbp1 (H) was performed in MIN6 cells transduced for
24 h with adenoviruses encoding SRI-GFP or GFP only and treated with DMSO (0.1%) or thapsigargin (Thaps, 100 mmol/L) for an additional
24 h. Results are expressed as mean 6 SEM; n = 3 independent experiments. *P < 0.05; ***P < 0.005 (paired two-tailed Student t tests).
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or HEK293 (not shown) cells, whereas CHOP repression
indicated repression of the PERK branch.

DISCUSSION

The findings herein indicate that sorcin lies on a pathway
linking b-cell lipotoxicity to ER calcium and ER stress,
representing a mechanism for dysregulation of b-cell func-
tion under conditions of metabolic stress (Fig. 8). Thus, we
show that sorcin is downregulated in pancreatic b-cells
under conditions of lipotoxic stress (Fig. 5), whereas over-
expression of sorcin is sufficient to protect against b-cell
failure and glucose intolerance during HFD (Fig. 1).

Interestingly, in the absence of b-cell stress, i.e., during
normal chow feeding, the role of sorcin in pancreatic
b-cells was less prominent. Nonetheless, forced sorcin
expression enhanced GSIS and [Ca2+]cyt oscillations in hu-
man islets from normoglycemic donors as well as in islets
from young chow-fed mice (Fig. 2 and Supplementary
Fig. 4). Importantly, the observed increase in GSIS in our
transgenic models was not due to an increase in b-cell mass.
Rather, we observed a decrease in the b-cell to a-cell ratio
(Fig. 2), suggesting that the sorcin-overexpressing islets
display enhanced function, and a possible resistance
to HFD-induced hyperplasia (38). The improved GSIS
observed in our HFD-fed SRI-tg1/10 mice is most likely
secondary to the increases in glucose-induced intracellular
Ca2+ fluxes (Fig. 3 and Supplementary Fig. 4). Although

not tested here, the combined effects of RyR inhibition
and SERCA activation by sorcin described in cardiomyo-
cytes (14,15) might thus explain the increased capacity of
ER Ca2+ stores in SRI-tg1/10 islets (Fig. 3). In the rat
heart, sorcin overexpression is associated with an increase
in Ca2+ transients and enhanced cardiac contractility, res-
cuing diabetic contractile dysfunction (39). In b-cells, a
role for RyR, in particular RyR2, has recently been sup-
ported by studies using “leaky” mutants, both in humans
and in mice, which display glucose intolerance, decreased
insulin secretion, and islet ER stress (40,41).

One intriguing finding of the current study was the
inverse relationship between sorcin and G6PC2 expression
in islets and b-cells. G6PC2 acts by hydrolyzing glucose-6-
phosphate (G6P) in the ER, thus opposing the action of the
glucokinase (9,42). Islets from G6pc22/2 mice display in-
creased cytosolic [Ca2+] and enhanced GSIS (9). This sug-
gests that an important mechanism of action of sorcin is
to regulate G6PC2 expression to influence calcium homeo-
stasis, GSIS, and ER stress. Interestingly, others have
found that glucose cycling and G6Pase activity were mark-
edly enhanced in pancreatic islets of HFD-fed obese hyper-
glycemic mice, impairing GSIS (43). However, it is possible
that G6PC2 also exerts effects beyond glucose cycling and
glycolytic flux (44) and earlier studies have linked G6pase
activity and G6P levels to cytosolic and ER Ca2+ concentra-
tions, both in the liver and in pancreatic b-cells (45,46).

Figure 8—Sorcin lies on a pathway linking b-cell lipotoxicity to ER calcium and ER stress, representing a mechanism for dysregulation of
b-cell function under conditions of metabolic stress. A: In pancreatic b-cells, sorcin is downregulated under conditions of lipotoxic stress
such as exposure to HFD and palmitate or proinflammatory cytokines, as shown by others (20). The inverse relationship between sorcin and
G6PC2 expression levels observed in islets suggests that an important mechanism of action of sorcin is to regulate G6PC2 expression to
influence both ER stress and GSIS. B: Sorcin overexpression is sufficient to protect against b-cell dysfunction during HFD. In stressed
b-cells, sorcin overexpression increases ER and cytosolic [Ca2+], decreasing G6PC2, through the NFAT signaling pathway, which would
stimulate GSIS. By maintaining a high concentration of Ca2+ in the ER lumen, sorcin prevents ER stress and maintains long-term capacities
for GSIS during HFD. FFA, free fatty acid.
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Our study highlights several beneficial effects of sorcin
in the b-cell. For example, sorcin-induced increase in in-
tracellular Ca2+ activates NFAT signaling, which is funda-
mental for maintaining the islet b-cell phenotype (47),
and whose inhibition is responsible for posttransplantation
diabetes caused by calcineurin inhibitors (48). Further-
more, sorcin overexpression under lipotoxic conditions
prevented the induction of the ER stress markers CHOP
and GRP78/BiP. Interestingly, ATF6 signaling was stimu-
lated by sorcin, a change that, unlike the other two branches
of the UPR, i.e., PERK and IRE-1, is not usually associated
with apoptosis but with favorable outcomes (36,49). We
note that our data may also have direct relevance for
b-cell failure in humans. Thus, analysis of unpublished
results from the IMIDIA consortium (M. Solimena,
A.M. Schulte, L. Marselli, F. Ehehalt, D. Richter, M. Rösler,
H. Mziaut, K.-P. Knoch, J.P., M. Bugliani, A. Siddiq, A. Jörns,
F. Burdet, R. Liechti, M. Suleiman, D. Margerie, F. Syed,
M. Distler, R. Grützmann, E. Petretto, A. Moreno, C. Wegbrod,
A. Sönmez, K. Pfriem, A. Friedrich, J. Meinel, C. Wollheim,
G. Baretton, R. Scharfmann, E. Nogoceke, E. Bonifacio,
D. Sturm, U. Boggi, H.-D. Saeger, F. Filipponi, M. Lesche,
P. Meda, A. Dahl, L. Wigger, I. Xenarios, M. Falchi, B.T.,
J. Weitz, K. Bokvist, S. Lenzen, G.A.R., P. Froguel, M. von
Bülow, M.I., P.M., unpublished data) from large sets of human
donor islets indicates a significant positive correlation between
SRI mRNA levels and GSIS in both diabetic and nondiabetic
islets, and a tendency toward lower sorcin levels in islets from
patients with type 2 diabetes versus healthy islets. Thus,
agents that increase sorcin expression or activity may increase
insulin secretion while protecting against b-cell exhaustion.
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