
Segmentation of Infant Hippocampus Using Common Feature 
Representations Learned for Multimodal Longitudinal Data

Yanrong Guo1, Guorong Wu1, Pew-Thian Yap1, Valerie Jewells2, Weili Lin1, and Dinggang 
Shen1

Dinggang Shen: dgshen@med.unc.edu
1Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA

2Department of Radiology, University of North Carolina at Chapel Hill, NC, USA

Abstract

Aberrant development of the human brain during the first year after birth is known to cause 

critical implications in later stages of life. In particular, neuropsychiatric disorders, such as 

attention deficit hyperactivity disorder (ADHD), have been linked with abnormal early 

development of the hippocampus. Despite its known importance, studying the hippocampus in 

infant subjects is very challenging due to the significantly smaller brain size, dynamically varying 

image contrast, and large across-subject variation. In this paper, we present a novel method for 

effective hippocampus segmentation by using a multi-atlas approach that integrates the 

complementary multimodal information from longitudinal T1 and T2 MR images. In particular, 

considering the highly heterogeneous nature of the longitudinal data, we propose to learn their 

common feature representations by using hierarchical multi-set kernel canonical correlation 

analysis (CCA). Specifically, we will learn (1) within-time-point common features by projecting 

different modality features of each time point to its own modality-free common space, and (2) 

across-time-point common features by mapping all time-point-specific common features to a 

global common space for all time points. These final features are then employed in patch matching 

across different modalities and time points for hippocampus segmentation, via label propagation 

and fusion. Experimental results demonstrate the improved performance of our method over the 

state-of-the-art methods.

1 Introduction

Effective automated segmentation of the hippocampus is highly desirable, as neuroscientists 

are actively seeking hippocampal imaging biomarkers for early detection of 

neurodevelopment disorders, such as autism and attention deficit hyperactivity disorder 

(ADHD) [1, 2]. Due to rapid maturation and myelination of brain tissues in the first year of 

life [3], the contrast between gray and white matter on T1 and T2 images undergo drastic 

changes, which poses great challenges to hippocampus segmentation.

Multi-atlas approaches with patch-based label fusion have demonstrated effective 

performance for medical image segmentation [4–8]. This is mainly due to their ability to 
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account for inter-subject anatomical variation during segmentation. However, infant brain 

segmentation introduces new challenges that need extra consideration before multi-atlas 

segmentation can be applied. First, using either T1 or T2 images alone is insufficient to 

provide an effective tissue contrast for segmentation throughout the first year. As shown in 

Fig. 1, the T1 image has very poor tissue contrast between white matter (WM) and gray 

matter (GM) in the first three months (such as the 2-week image shown in the left panel), as 

WM and GM become distinguishable only after the first year (such as the 12-month image 

shown in the right panel). However, the T2 image has better WM/GM contrast than the T1 

image in the first few months. Second, some time periods (around the 6-month age as shown 

in the middle panel of Fig. 1) are more challenging to decipher because of very similar WM 

and GM intensity ranges (as shown by green and blue curves in Fig. 1) as partial 

myelination occurs.

Since the infant brain undergoes drastic changes in the first year of life, across-time-point 

feature learning is significant to help normalize cross-distribution differences and to borrow 

information between subjects at different time points for effective segmentation. Therefore, 

we propose to combine information from multiple modalities (T1 and T2) and different time 

points together via a patch matching mechanism to improve the label propagation in tissue 

segmentation. Specifically, to overcome the issue of significant tissue contrast change across 

different time points, we propose a hierarchical approach to learn a common feature 

representation. First, we learn the common features for the T1 and T2 images at each time 

point by using the classic kernel CCA [9, 10] to estimate the highly nonlinear feature 

mapping between the two modalities. Then, we further map all these within-time-point 

common features to a global common space to all different time points by applying the 

multi-set kernel CCA [11, 12]. Finally, we utilize the learned common features for guiding 

patch matching and propagating atlas labels to the target image (at each time point) for 

hippocampus segmentation, via a sparse patch-based labeling [13]. Qualitative and 

quantitative experimental results of our method on multimodal infant MR images acquired 

from 2-week-old to 6-month-old infants confirm more accurate hippocampus segmentation.

2 Method

2.1 Hierarchical Learning of Common Feature Representations

Suppose our training set consists of the longitudinal data including S subjects, each with T 

time points and two modalities (1: T1; 2: T2), denoted as 

. Is,t denotes the intensity image for subject s at 

time point t. We first register each training image  to a template image by 

deformable registration [14]1, thus producing a registered image . We then gather the 

images into 2 × T groups, one for each modality m and time point t, consisting of S 

1For the training images, we used our in-house joint registration-segmentation tool to accurately segment the intensity image into 
WM, GM, and cerebrospinal fluid (CSF). Therefore, the impact of the dynamic change in image contrast is minimized for the 
deformable registration. The diffeomorphic Demons is set with the smoothing sigma for updating field as 2.0 and the number of 
iterations as 15, 10, and 5 in low-, mid-, and high-resolution, respectively.
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registered images , as shown in the left panel of Fig. 2. The 

patches from Q randomly sampled locations V = {vq|q = 1, …, Q} in the template domain 

are similarly organized into 2 × T image patch groups , where 

 is a matrix for each patch group with N = Q × 

S columns of patches sampled from . Each patch  is rearranged as a column 

vector in . For simplicity, we omit the location v and denote the i-th column of  as 

, i = 1, …, N. In the following, we describe the hie erarchical feature learning in two 

steps as illustrated in Fig. 2.

Step 1: Learning Within-Time-Point Common Features—Learning a common 

feature representation for all patch groups P simultaneously is challenging, since features 

vary significantly across groups. To overcome this problem, we first determine the common 

feature representation across modalities by employing the kernel CCA to learn the non-

linear mappings of  and  for each time point t.

Specifically, we apply the Gaussian kernel ϕ(·,·) to measure similarity of any pair of image 

patches in  and obtain a N × N kernel matrix 

. Similarly, we can obtain a N × N kernel 

matrix  for group . Then, kernel CCA aims to find two sets of linear transforms 

 for  and , 

respectively, such that the correlation between mapped features  and mapped 

features  is maximized in the common space:

(1)

where . The denominator of Eq. (1) requires that the 

distribution of the mapped features should be as compact as possible within each group. 

Partial Gram-Schmidt orthogonalization method [9] can be sequentially used to find the 

optimal  and  in Eq. (1), where the rth pair of  and  are 

orthogonal to all previous pairs and also maximize Eq. (1). By transforming  and 

with  and , respectively, we obtain a common-space feature representation at time 

point t as  and .
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Step 2: Learning Across-Time-Point Common Features—After concatenating the 

features obtained in Step 1 as , the N × N kernel matrix K̂
t can 

be computed for each Ft̂. We then estimate the feature transformations Zt = [zt(1), … zt(g), 

…, zt(G)]N×G for each F̂
t, which maximize the correlations of all the transformed features in 

a global common space with G = mint rank(K̂
t). This can be solved using the multi-set 

kernel CCA [11, 12], which maximizes the correlations of multiple transformed features 

between each pair of time points t and t′:

(2)

By transforming F̂
t with Zt, we can obtain a common-space feature representation across 

different time points as D̂
t = (Zt)TK̂

t.

2.2 Patch-Based Label Fusion for Hippocampus Segmentation

Hierarchical Feature Representation—Before adopting the segmentation algorithm, 

each original intensity patch from both target images and atlas images is mapped into an 

across-time-point common space by our proposed hierarchical feature learning method in 

Section 2.1. Specifically, for segmenting a target subject  at time point t, 

where we use “0” for representing the current target subject, we first align its T1 image with 

T2 image and then linearly register H atlas subjects 

 to them. Here, Lh,t indicates the respective 

hippocampus mask. Instead of simply using the original T1 and T2 intensity patches 

 as the features at location v in the target image (h = 0) or atlas images (h 

=1, …, H), we apply the following steps to map all these original image patches to the 

across-time-point common space: (1) obtain the within-time-point features by 

, m = 1,2, where Gaussian kernel ϕ(·,·) measures the 

similarity between  and all patches in  (defined in Section 2.1); (2) concatenate 

 and  to form a within-time-point feature f̂h,t(v); and (3) obtain the feature in 

the across-time-point common space by d̂
h,t(v) = (Zt)T(f̂h,t(v), F̂

t), where d̂
h,t(v) is the final 

learned feature vector for target image (h = 0) or atlas images (h =1, …, H) at location v.

Patch-Based Label Fusion—To determine the label l0,t(u) at each target image point u, 

we collect a set of candidate multi-modality patches along with their corresponding bels 

 in a certain search 

neighborhood Ω(u) from H aligned atlases. After mapping all candidate atlas image patches 

for obtaining the common feature representations {d̂h,t(v), t = 1, …, T; h =1, …, H; v ∈ 

Ω(u)} across H atlas subjects at different time t, we can construct a dictionary matrix 𝓓 (u) 
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by arranging {d̂
h,t(v)} column by column. Since each atlas patch bears the anatomical label 

(“1” for hippocampus and “−1” for non-hippocampus), we can also construct a label vector 

l(u) from the labels of candidate atlas patches {lh,t(v), t = 1, …, T; h =1, …, H; v ∈ Ω(u)} by 

following the same order of 𝓓 (u), where each element lh,t(v) is the atlas label at v ∈ Ω(u). 

Then, the label fusion can be formulated as a sparse representation problem as:

(3)

where λ controls the strength of sparsity constraint. ξ is the weighting vector where each 

element is associated with one atlas patch in the dictionary and a larger value in ξ indicates 

the high similarity between the target image patch and the associated atlas patch. SLEP [15] 

is used to solve the above sparse representation problem. Finally, the label at the target 

image point u can be determined by l0,t(u) = sign(ξT(u)l(u)).

3 Experimental Results

We evaluate the proposed method on infant MR brain images of twenty subjects, where each 

subject has both T1 and T2 MR images acquired at 2 weeks, 3 months, and 6 months of age. 

Standard image pre-processing steps, including resampling, skull stripping, bias-field 

correction and histogram matching, are applied to each MR images. We fix the patch size to 

9 × 9 × 9 and the weight λ in Eq. (3) to 0.002. FLIRT in the FSL software package [16] with 

12 DOF and correlation as the similarity metric is used to linearly align all atlas images to 

the target image. The twenty subjects are divided into two groups for training and testing, 

respectively.

Discriminative Power of Learned Common Features—Fig. 3 compares the sample 

distribution represented by the four different features: T1 intensities, T2 intensities, within-

time-point features given by kernel CCA features, and across-time-point features by multi-

set kernel CCA features. Based on the projected feature distribution (reduced to three 

dimensions for visualization) shown in Fig. 3, kernel CCA and multi-set kernel CCA can 

better separate hippocampus from non-hippocampus samples.

In Fig. 4, we further show the similarity maps resulting from different feature matching 

between a key point (red cross) on the boundary of the hippocampus (white contours) in the 

target image (a1) and all points in each of the two atlas images (b1 & b2), respectively. Four 

feature representation methods: T1 (c1 & c2), T2 (d1 & d2), kernel CCA (e1 & e2), and 

multi-set kernel CCA (f1 & f2) are compared. For the first row, the target and atlas images 

are from the same time point. The results demonstrate the effectiveness of the within-time-

point common features. For the second row, the target and atlas images are from different 

time points. The results demonstrate the effectiveness of the across-time-point common 

features.

Quantitative Evaluation on Hippocampus Segmentation—The mean and standard 

deviation of the Dice ratios and the average symmetric surface distance (ASSD) of the 

segmentation results based on the four feature representations are listed in Table 1. The best 

results are marked in bold. Our feature learning method based on multi-set kernel CCA 
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achieves significant improvement over all other methods in terms of overall Dice ratio 

(paired t-test, p<0.014) and ASSD (paired t-test, p<0.049). It is worth noting that, although 

segmenting the 6-month images seems to be the most challenging among all time points, all 

comparison methods achieve their longitudinally highest segmentation accuracy at 6 

months. This is partially due to the large increase of hippocampus volume during early brain 

development (i.e., average around 20% growth rate of hippocampus volume from 2-week-

old to 6-month-old infants), making large hippocampus volumes in the 6-month-olds 

relatively easy to segment. Besides, the Dice ratios for combined T1 and T2 are 59.3%, 

67.2%, and 70.2%, respectively, for 2-week, 3-month, and 6-month images, which are 5.9%, 

3.1%, and 2.4% lower than our proposed method. To test consistency in hippocampal 

volume measured by different raters, an overall inter-rater reliability ICC (intra-class 

correlation coefficient) between segmentation techniques for each rater is calculated for 

hippocampal volumes. The inter-rater ICC is 79.4% for the manual segmentations. Fig. 5 

further shows some typical results of surface distances between automatic segmentations 

and manual segmentations by the four feature representation methods. Our proposed 

hierarchical feature learning achieves the best performance.

4 Conclusion

In this paper, we proposed a multi-atlas patch-based label propagation and fusion method for 

the hippocampus segmentation of infant brain MR images acquired from the first year of 

life. To deal with dynamic change in tissue contrast, we proposed a hierarchical feature 

learning approach to obtain common feature representations for multi-modal and 

longitudinal imaging data. These features resulted in better patch matching, which allowed 

for better hippocampus segmentation accuracy. In the future, we will evaluate the proposed 

method using more time points from infant data.
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Fig. 1. 
Typical T1 (top) and T2 (bottom) brain MR images acquired from an infant at the 2 weeks, 

6 months and 12 months, with the zoom-in views of local regions of hippocampi (green and 

red areas) shown at the bottom of T1 images. The WM and GM intensity distributions of T1 

and T2 images on these local regions are also given to the right of each image.
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Fig. 2. 
Schematic diagram of the proposed hierarchical feature learning method.
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Fig. 3. 
Distributions of voxel samples with four types of features, respectively. Red crosses and 

green circles denote hippocampus and non-hippocampus voxel samples, respectively.
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Fig. 4. 
Comparison of similarity maps for four different feature representations between a key point 

(red cross) in the target image (a1) and all points in the two atlas images (b1 & b2). (b1) An 

atlas from the same time point as (a1); (b2) An atlas from a different time point as (a1).
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Fig. 5. 
Visualization of surface distance (in mm) for hippocampus segmentation results.
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