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Discussion on improving the power of genome-wide association studies to identify candidate variants and genes
is generally centered on issues of maximizing sample size; less attention is given to the role of phenotype definition
and ascertainment. The authors used genome-wide data from patients infected with human immunodeficiency
virus type 1 (HIV-1) to assess whether differences in type of population (622 seroconverters vs. 636 seroprevalent
subjects) or the number of measurements available for defining the phenotype resulted in differences in the effect
sizes of associations between single nucleotide polymorphisms and the phenotype, HIV-1 viral load at set point.
The effect estimate for the top 100 single nucleotide polymorphisms was 0.092 (95% confidence interval: 0.074,
0.110) log10 viral load (log10 copies of HIV-1 per mL of blood) greater in seroconverters than in seroprevalent
subjects. The difference was even larger when the authors focused on chromosome 6 variants (0.153 log10 viral
load) or on variants that achieved genome-wide significance (0.232 log10 viral load). The estimates of the genetic
effects tended to be slightly larger when more viral load measurements were available, particularly among sero-
converters and for variants that achieved genome-wide significance. Differences in phenotype definition and
ascertainment may affect the estimated magnitude of genetic effects and should be considered in optimizing
power for discovering new associations.

genome-wide association study; HIV seropositivity; HIV seroprevalence; phenotype; seroepidemiologic studies

Abbreviations: CCR2, C-C chemokine receptor type 2; CCR5, C-C chemokine receptor type 5; CHAVI, Center for HIV/AIDS
Vaccine Immunology; CI, confidence interval; GWA, genome-wide association; HCP5, human leukocyte antigen complex P5;
HIV-1, human immunodeficiency virus type 1; HLA-C, human leukocyte antigen C; SNP, single nucleotide polymorphism.

Genome-wide association (GWA) studies have discov-
ered many gene-phenotype associations with strong statis-
tical support (1, 2). Most of them represent small effects (3),
and one would like to ensure that statistical power in GWA
studies is optimized for the detection of such small effects.
In theory, power is better when the sample size is larger and
when the genetic effects to be detected are larger. One crit-
ical aspect in this regard is the definition and measurement
of study phenotype and eligibility criteria (4). Lenient def-
initions and relaxed eligibility criteria allow for more par-
ticipants to be eligible but may dilute genetic effects if the
phenotype measurements become imprecise (4, 5). More
stringent phenotype definitions and demanding eligibility

criteria avoid this dilution but may also drastically reduce
the available sample size.

This dilemma is crucial in human immunodeficiency vi-
rus type 1 (HIV-1) infection, where it is typically easier to
accumulate large numbers of samples from patients who are
seroprevalent (patients whose time of infection is unknown)
than to accumulate data from seroconverters (patients whose
date of infection is known). Moreover, for precision of the
viral load set point, phenotype may depend on how many
measurements are available.

Here, we aimed to explore empirically the estimated
changes in the effect sizes of discovered risk alleles when
phenotypes of HIV-1 viral load were defined and measured
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under different criteria in the setting of GWA studies. We
used study populations with differences in the stringency of
eligibility criteria, and we evaluated their performance in
GWA studies aiming to identify genetic determinants of
viral load set point in HIV-1 infection. Specifically, we
assessed whether the observed genetic effects differed
between seroconverters and seroprevalent subjects and
whether results were also influenced by the number of avail-
able viral load measurements used to define the set point.

MATERIALS AND METHODS

Data

We included participants from the Center for HIV/AIDS
Vaccine Immunology (CHAVI) EuroCHAVI Consortium,
which was established by the US National Institute of Al-
lergy and Infectious Diseases in 2006 to study the major
determinants of host control of HIV-1. The data set com-
prised 9 cohorts/studies whose investigators agreed to par-
ticipate in the Host Genetics Core of the EuroCHAVI
Consortium. The participating cohorts are: the Swiss HIV
Cohort Study; the I.CO.Na Cohort, Italy; the San Raffaele
del Monte Tabor Foundation, Italy; Royal Perth Hospital,
Australia; IrsiCaixa, Spain; Guy’s, King’s and St. Thomas’
Hospitals, United Kingdom; the Danish Cohort, Denmark;
the Modena Cohort, Italy; and the Hospital Clinic of Barce-
lona, Spain. All participants included in our study were of
European descent and were part of earlier studies of geno-
mic determinants of viral set point (6, 7).

The definitions of seroconverters and seroprevalent
subjects were similar to those used by Fellay et al. (7).
Seroconverters were defined on the basis of a valid serocon-
version date estimation proven by biologic markers: 1) a
documented positive test and a documented valid negative
testing documentation within 2 years before the first positive
test; and 2) 1 or more biologic criteria of primary infection:
incomplete Western blot and/or positive p24 antigen and/or
high viremia (>1 million copies of HIV-1 per mL of blood)
and a consistent dynamic pattern of the biologic parameters
(completion of Western blot, negativization of p24 antigen,
decrease of peak viremia); a compatible clinical syndrome
was considered supporting evidence. Seroprevalent persons,
on the other hand, lacked documentation of HIV-negative
serology; they were eligible if they had at least 3 viral load
results recorded over a period of at least 3 years, diverging
by no more than 0.5 log10 copies/mL.

Outcome

Longitudinal viral load data were individually inspected
by an experienced blind infectious-disease clinician who
eliminated measurements not reflecting the steady state
(6). Briefly, viral load results were discarded if they were
obtained during the initial peak of viremia observed during
primary HIV-1 infection (viral load> 0.25 log10 higher than
the average of subsequent viral load) and during the late
phase of the disease (part of a significantly ascending viral
load slope). In addition, viral load results were discarded
when they were obtained during the set point period but were

conflicting with other available results and possibly linked to
coincident infection, trauma, or vaccination, to laboratory
errors, or to data management mistakes (viral load > 0.5
log10 higher or lower than the average of all remaining
points). The set point was then calculated as the average of
all remaining log10-transformed viral load measurements.

Genotyping

All samples were genotyped on the Illumina Human-
Hap550 BeadChip (Illumina, Inc., San Diego, California)
with 555,352 single nucleotide polymorphisms (SNPs).
Quality control steps are described in detail elsewhere (6).
We directly genotyped the C-C chemokine receptor type 5
(CCR5) D32 gene variant, a validated allele influencing
HIV-1 disease (8) that is neither included nor tagged in
the genome chip.

Analysis

We considered an additive model wherein we assessed the
estimated effects of each SNP on viral load set point (in-
crease or decrease in log scale per allele) within each group
(seroconverters and seroprevalents) using a linear regression
analysis. For all comparisons, the common allele was con-
sidered the reference allele. Gender and age were included
as covariates in all analyses. We adjusted for population
stratification by using EIGENSTRAT values; 17 principal
component axes were found to be significant (P < 0.05) by
the Tracy-Widom test and were used in the model (6). The
EIGENSTRAT method derives the principal components of
the correlations among gene variants and corrects for those
correlations in the association tests (9).

In order to evaluate the differences between the results
obtained in the seroconverter and seroprevalent groups, we
examined a set of SNPs likely to show genuine associations
with viral load. Otherwise, for nongenuine associations, an
equal number of SNPs would be expected to have a stronger
effect versus a weaker effect in either group. We therefore
generated the list of the top 100 SNPs with the lowest P
values when the results from both groups were combined in
a stratified analysis (equivalent to fixed-effects calculations,
where each data set is weighted by the inverse of its variance
(10)). In a sensitivity analysis, we also examined the list of
top 100 SNPs with the lowest P values that were found in the
original publication (6) based on 486 seroconverters (the
‘‘discovery cohort’’) and then compared the results with
those for a separate set of seroconverters from a follow-up
publication (7). This last analysis compares 2 replication
data sets excluding the discovery set (6), and thus it corrob-
orates a scenario wherein one is using different cohorts with
different definitions to replicate the original top hits of
a GWA study. The effect sizes for a replication effort are
expected to be unbiased, while the effect sizes of the top 100
SNPs based on either the original GWA study (6) or the
combination of all seroconverter and seroprevalent values
are expected to be inflated on average in comparison with
the true effects due to the winner’s curse (11, 12).

We calculated the difference in effect sizes between se-
roconverter and seroprevalent groups for each of the 100
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SNPs according to each of these approaches. The differ-
ences were parameterized so as to be positive if the effect
observed in seroconverters was stronger in absolute
value—that is, regardless of whether the minor allele was
associated with higher or lower viral load. We then com-
bined these differences across all 100 SNPs to estimate an
average difference according to fixed- and random-effects
calculations. The DerSimonian and Laird random-effects
model (13) considers that the differences in the genetic ef-
fects in the 2 groups may vary across SNPs and introduces
an estimate, s2, of the between-SNP heterogeneity that
makes the confidence intervals larger. Specifically, the
standard error (SE) is

1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiX
wi

q
;

where the weights are given by wi ¼ 1=SEðhiÞ2 for the
fixed-effects models and wi ¼ 1=SEðhiÞ2 þ s2 for the
random-effects models. The between-SNP heterogeneity is
expressed with the I2 metric and its 95% confidence interval
(14, 15).

In further analyses, we limited the calculations to include
only SNPs among the top 100 that are located in the
major histocompatibility complex region on chromosome
6 or only SNPs that reached genome-wide significance
(P < 10�7)—subsets that are likely to include almost en-
tirely genuine associations.

To assess how the number of measurements used for cal-
culation of the viral load set point might affect the results,
we modeled the set point as a function of the genotype of
each variant (number of risk alleles), the number of viral
load measurements used to assess the set point, and their
interaction term. Coefficients were parameterized so as to
always correspond to a positive effect size (higher viral
load set point) for the risk allele. Then the coefficients of
the interaction terms for all 100 top SNPs were combined
with fixed- and random-effects models. A summary effect
greater than 0 means that the increase of the counts of the
viral load measurements is associated with a larger effect
estimate (a larger impact of the risk allele on the viral load
set point).

Stata, version 10 (Stata Corporation, College Station,
Texas), and PLINK (16) software were used for the
analyses.

RESULTS

Data sets

Clinical and genotyping data were available for 1,686
participants. We excluded 167 African participants and 14
participants with undefined ethnic origin from the study. A
total of 715 seroconverters were identified. Of those,
93 were excluded because they had a seroconversion win-
dow greater than 2 years. Finally, 622 seroconverters and
636 seroprevalent subjects were included in the study.
These persons were a subset of patients included in previous
studies (6, 7). Study participants’ characteristics appear in
Table 1. T
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Comparison of genetic effect sizes in seroconverters
versus seroprevalents

Analysis including all participants. Web Table 1, which
appears on the Journal’s Web site (http://aje.oxfordjournals.
org/), presents a list of the top 100 hits resulting from anal-
yses unadjusted and adjusted for the number of viral load
measurements. The P values of the associations ranged from
1.323 10�4 to 3.213 10�19 for the unadjusted analysis and
from 1.28 3 10�4 to 2 3 10�18 for the adjusted analysis.
Most SNPs mapped to chromosome 6 (n ¼ 57 and n ¼ 56,
respectively) (Web Table 1). Five and four SNPs reached
genome-wide significance (P < 10�7), respectively. When
analysis was limited to seroconverters, 5 and 3 SNPs
reached genome-wide significance, respectively, whereas
analysis limited to seroprevalent subjects did not reveal
any genome-wide significant finding.

Seroconverters showed larger genetic effects than did
seroprevalents (Figure 1). For 76 SNPs, the genetic
association was stronger in seroconverters, and for 29 of
those the difference was nominally significant (P < 0.05),
including the top 2 SNPs that were reported as genome-
wide significant in the original discovery cohort (6).
Conversely, the difference was nominally significant in
only 1 of the 24 associations for which seroprevalents
showed a stronger association. Most of these 24 SNPs
had relatively modest P values, and the best P value was
8.3 3 10�5, thus suggesting limited credibility for a genu-
ine association. Analysis adjusted for viral load counts

showed comparable results: 31 differences vs. 1 difference
were nominally statistically significant in the seroconvert-
ers versus seroprevalents.

The summary difference between the genetic effect
estimates in seroconverters and seroprevalents was 0.092
(95% confidence interval (CI): 0.074, 0.110) log10 viral
load by fixed-effects calculations, and there was moderate
heterogeneity in the differences across the 100 SNPs (I2 ¼
37%, 95% CI: 19, 50) (Web Figure 1); random-effects
summary results were quite similar (Table 2). The sum-
mary difference between the effects was comparable when
results were adjusted for the number of available viral load
measurements (Table 2). The top 2 hits in the combined
data—rs2395029, localized in the human leukocyte anti-
gen complex P5 gene (HCP5), and rs9264942, located 35
kilobases upstream of the human leukocyte antigen C gene
(HLA-C) on chromosome 6—were the same as previously
described (6, 7).

When the analysis was limited to chromosome 6, the
summary difference in the effect sizes between seroconvert-
ers and seroprevalents increased to 0.153 (95% CI: 0.129,
0.177) log10 viral load, with consistent results across SNPs
(I2 ¼ 0%, 95% CI: 0, 31) (Table 2). The difference was even
more prominent when only the 5 genome-wide significant
hits were considered: 0.232 (95% CI: 0.145, 0.318) log10
viral load, with limited estimated heterogeneity across SNPs
(I2 ¼ 4%, 95% CI: 0, 80). The 5 genome-wide significant
hits, which were not in high linkage disequilibrium (r2< 0.65

Figure 1. Effect sizes of associations between single nucleotide polymorphisms and human immunodeficiency virus type 1 viral load for
seroconverters versus seroprevalent subjects in an analysis that included all participants, EuroCHAVI Consortium, 2006. The effect sizes are
parameterized to always reflect a positive difference. The solid line represents the points at which seroconverters and seroprevalent subjects have
equal effect sizes. (CHAVI, Center for HIV/AIDS Vaccine Immunology; GWS, genome-wide significance).
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for all comparisons), showed comparable estimates of the
differences between seroconverters and seroprevalents (Web
Figure 1). Random-effects analyses and analyses adjusted
for number of viral load measurements yielded similar re-
sults (Table 2).

Analysis excluding the discovery cohort. The associa-
tions observed when the discovery cohort was removed
from the analysis were more conservative. The P values of
the top 100 SNPs ranged from 0.97 to 4.83 3 10�8 for the
unadjusted analysis and from 0.97 to 2.59 3 10�7 for the
adjusted analysis. Thus, the comparative picture remained
similar, with larger effects on average in seroconverters than
in seroprevalents. For 75 SNPs, seroconverters showed
larger effects, and 4 of the differences were nominally sta-
tistically significant. None of the 25 SNPs for which larger
effects were observed in seroprevalents were nominally sta-
tistically significant. Adjusting for the number of viral load
measurements yielded almost identical results: 79 SNPs
versus 21 SNPs, with 4 versus 0 differences being nominally
statistically significant.

The summary difference between the effect estimates
in seroconverters and seroprevalents was 0.095 (95%
CI: 0.065, 0.125) for the unadjusted analysis, and the esti-
mated between-SNP heterogeneity was limited (I2 ¼ 0%,
95% CI: 0, 26); results were almost identical for
analyses adjusting for the number of viral load measure-
ments (Table 2).

For the 42 SNPs on chromosome 6, the summary effect
difference was 0.104 (95% CI: 0.057, 0.151), with no het-
erogeneity (I2 ¼ 0%, 95% CI: 0, 38) (Table 2).

Impact of the number of viral load measurements

Among seroconverters, the magnitude of the estimated
genetic effect for 65 SNPs tended to be larger when a greater

number of viral load counts was available, and for 35 SNPs
the opposite trend was observed. Only 5 of these interaction
terms were nominally significant (2 suggesting a larger es-
timate of the genetic effect and 3 suggesting a smaller esti-
mate of the genetic effect when a larger number of viral load
counts was available). The summary effect of the interaction
coefficients suggested that the genetic effect estimate in-
creased by 0.005 (95% CI: 0.002, 0.008) log10 viral load
per each additional viral load measurement, with overall
consistent results across SNPs (I2 ¼ 0%, 95% CI: 0, 24).
For the SNPs that reached genome-wide significance, the
summary effect of the interaction coefficients was 0.017
(95% CI: 0.003, 0.032), with overall consistent results
across SNPs (I2 ¼ 0%, 95% CI: 0, 79).

Among seroprevalents, the estimated genetic effect for 59
SNPs tended to be larger when a larger number of viral load
measurements was available, and for 41 SNPs the opposite
trend was observed. Ten interaction coefficients were nom-
inally significant. The summary effect of the interaction co-
efficient was not nominally significant (0.002 log10 viral
load, 95% CI: �0.001, 0.005), with small heterogeneity
being observed (I2 ¼ 22%, 95% CI: 0, 39). The summary
effect of the interaction coefficients was 0.021 (95% CI:
0.006, 0.036) for the SNPs that reached genome-wide sig-
nificance, with consistent results across SNPs (I2 ¼ 0%,
95% CI: 0, 79).

CCR5 D32 variant

For CCR5 D32, the genetic effect estimates showed dif-
ferences of –0.22 and –0.20 log10 viral load per allele for
seroconverters and seroprevalents, respectively (P ¼ 0.9).
The number of viral load measurements did not significantly
affect the estimate of the genetic effect (interaction coeffi-
cient ¼ 0.003, P ¼ 0.24).

Table 2. Summary Effect Estimates of the Differences in Genetic Effect Sizes (in Log10 Viral Load Per Copy of the Risk Allele) Between

Seroconverters and Seroprevalent Subjects, EuroCHAVI Consortium, 2006a

Unadjusted for No. of Viral Load Counts Adjusted for No. of Viral Load Counts

Fixed Effects Random Effects Fixed Effects Random Effects

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

Top 100 single nucleotide
polymorphisms

SC vs. SP 0.092 0.074, 0.110 0.095 0.071, 0.118 0.093 0.075, 0.111 0.095 0.071, 0.119

SCr vs. SP 0.095 0.065, 0.125 0.095 0.065, 0.125 0.111 0.080, 0.142 0.111 0.080, 0.142

Chromosome 6 subset

SC vs. SP 0.153 0.129, 0.177 0.153 0.129, 0.178 0.157 0.132, 0.181 0.157 0.132, 0.183

SCr vs. SP 0.104 0.057, 0.151 0.104 0.057, 0.151 0.111 0.063, 0.159 0.111 0.063, 0.159

Genome-wide significant
variants

SC vs. SP 0.232 0.145, 0.318 0.232 0.145, 0.322 0.247 0.148, 0.347 0.264 0.137, 0.391

SCr vs. SP 0.111 �0.096, 0.318 0.111 �0.096, 0.318 0.111 �0.103, 0.325 0.111 �0.103, 0.325

Abbreviations: CHAVI, Center for HIV/AIDS Vaccine Immunology; CI, confidence interval; SC, seroconverters; SCr, seroconverters used as

replicating datab; SP, seroprevalent subjects.
a All analyses were adjusted for age, gender, and population stratification axes.
b Excluding the seroconverters of the original discovery data (4).
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DISCUSSION

We have shown that analyses of HIV-1 seroconverters
tend to estimate stronger genetic effects of SNPs on the viral
load set point than analyses of seroprevalent subjects. The
difference was in the range of 0.1 log10 viral load, on
average, among the top 100 SNPs emerging from a ge-
nome-wide analysis in 1,258 HIV-1-infected patients. The
difference was more prominent when we considered only
the chromosome 6 SNPs (average ¼ 0.15 log10 viral load),
which have higher chances of reflecting true associations,
and even more prominent among the SNPs that reached
genome-wide significance (average ¼ 0.23 log10 viral load),
representing associations with robust credibility. Differ-
ences were slightly smaller when we excluded the original
discovery data from the comparison. This latter analysis has
the benefit of avoiding the winner’s curse (11, 12).

Genetic effects may be more accurately estimated in sero-
converters because of the more stringent definition, the
greater stability of HIV-1 viral load during the first years of
infection (17), and the increasing confounding role played by
comorbidity during progressive HIV-1 disease. This may ex-
plain in part why genetic effect estimates tend to be larger in
seroconverters than in seroprevalent subjects. Another possi-
ble explanation is that some genetic factors may act mostly
early in the course of the disease, a period that is only partly
and inconsistently captured for seroprevalent cohorts, in
which the date of infection is not known and a variable seg-
ment of the early years after seroconversion is missing.
Survival bias could also enrich or dilute genetic associations.
Some data suggest that the impact of the CCR5 D32 and C-C
chemokine receptor type 2 (CCR2) 64I variants may indeed
differ in early and later stages of HIV-1 disease (18). Different
human leukocyte antigen alleles may also alter the rate of
progression to acquired immunodeficiency syndrome at
distinct intervals after infection (19).

The impact of the number of viral load measurements on
the estimate of genetic effects was less prominent, but still
discernible. On average, each additional viral load measure-
ment increased the estimate of the genetic effect by 0.005
log10, and the impact was larger when only genome-wide
significant SNPs were considered. However, most partici-
pants had a relatively limited number of viral load measure-
ments (the interquartile ranges were 3–6 and 3–7 in
seroconverters and seroprevalent subjects, respectively).
Therefore, although more measurements lead to improved
precision for measuring viral load, the benefit is likely to be
small. Viral load is currently measured with quite high ac-
curacy (20, 21), and thus even 1 measurement may often
give a substantially precise picture of the viral load set point.

Our findings have implications for the choice of popula-
tions in studying genetic associations in HIV-1 disease.
Restriction of eligibility based on number of viral load mea-
surements is probably unnecessary. Conversely, restriction
to seroconverter cohorts may be appropriate for maximizing
power of discovery. High-throughput genetic studies in se-
roprevalent cohorts may produce a much higher proportion
of false-negative genetic associations and may suggest non-
replication of otherwise genuine associations that have
emerged in seroconverter studies (22). In the typical range

of allele frequencies of common variants, when the genetic
effect is halved, one needs a sample size approximately 4
times larger to have the same power to detect it (23). The
decreases in the effect size estimates seen in seroprevalent
groups could well be in the range of halving the genetic
effect. In our analysis, the data from seroprevalent subjects
did not reveal any variant with genome-wide significance,
while seroconverters alone sufficed to reach genome-wide
significance for all 5 variants that were genome-wide sig-
nificant in the combined analysis. Importantly, one should
be cautious when claiming that lack of replication of an
effect in these 2 types of populations means that an associ-
ation is not genuine. Our observations and considerations
about the influence of phenotype definition and precision
are of relevance for other studies dealing with different
phenotypes in HIV-1 disease.

Finally, one can also apply a similar approach to GWA
studies of other diseases and traits to empirically test the
impact of restrictive or lenient inclusion criteria on the es-
timates of genetic effects. GWA studies have probably had
less success for diseases where phenotypes have been more
difficult to define and standardize, such as cognitive traits
and mental health-related diseases (24), behavioral traits
(25), or osteoarthritis (26). Some evidence from other fields,
such as obesity, also suggests that the establishment of as-
sociations may be dependent on phenotype definition (27),
and variability in definitions may cause heterogeneity in
effect sizes or even spurious associations (28).

Moreover, the extent of available choices in defining phe-
notypes differs across fields. Some fields have highly stan-
dardized definitions of phenotypes, while others have very
disparate practices of defining phenotypes across different
teams. In some cases, harmonization of different phenotypes
to a common denominator is possible, while in other fields
this may not be feasible. When information is available,
analyzing multiple phenotypes in the same data set may
offer useful biologic insights (29). Moreover, when multiple
different definitions and inclusion criteria can be applied to
the same data set, empirical analyses may help one identify
the most informative definitions that would maximize power
for future studies.
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