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Glucose control, glucose variability (GV), and risk for hypoglycemia are intimately
related, and it is now evident that GV is important in both the physiology and
pathophysiology of diabetes. However, its quantitative assessment is complex
because blood glucose (BG) fluctuations are characterized by both amplitude and
timing. Additional numerical complications arise from the asymmetry of the BG
scale. In this Perspective, we focus on the acute manifestations of GV, particularly
on hypoglycemia, and review measures assessing the amplitude of GV from
routine self-monitored BG data, as well as its timing from continuous glucose
monitoring (CGM) data.With availability of CGM, the latter is not only possible but
also a requirementdwe can now assess rapid glucose fluctuations in real time and
relate their speed and magnitude to clinically relevant outcomes. Our primary
message is that diabetes control is all about optimization and balance between
two key markersdfrequency of hypoglycemia and HbA1c reflecting average BG
and primarily driven by the extent of hyperglycemia. GV is a primary barrier to this
optimization, including to automated technologies such as the “artificial pan-
creas.” Thus, it is time to standardize GV measurement and thereby streamline
the assessment of its two most important componentsdamplitude and timing.

Although reducing hyperglycemia and targeting HbA1c values of 7% or less result in
decreased risk of micro- and macrovascular complications (1–4), the risk for hypo-
glycemia increases with tightening glycemic control (5,6). Consequently, hypogly-
cemia has been implicated as the primary barrier to tight control (7,8). Thus,
patients with diabetes face a lifelong optimization problem: reducing average gly-
cemic levels and postprandial hyperglycemia while simultaneously avoiding hypo-
glycemia. A strategy for achieving such an optimization can only be successful if it
reduces glucose variability (GV). This is because bringing average glycemia down is
only possible if GV is constraineddotherwise blood glucose (BG) fluctuations would
inevitably enter the range of hypoglycemia (9). This numerical assertion was re-
cently reflected by a clinician’s Perspective stating: “The selection of a glycemic goal
in a person with diabetes is a compromise between the documented upside of
glycemic controldthe partial preventionor delay ofmicrovascular complicationsdand
the documented downside of glycemic controldthe recurrent morbidity and poten-
tial mortality of iatrogenic hypoglycemia” (8). Such a two-sided approach to the
assessment of glycemic control is necessary because HbA1c fails to capture GV and
the attendant risks associated with the extremes of hypo- and hyperglycemia. This
effect is illustrated in Fig. 1, which presents 15-day glucose traces of two subjects
who had identical HbA1c of 8.0%, but very different degrees of GV. As seen in
Fig. 1, subject 1 and subject 2 had similar average glucose throughout the course
of observation, but subject 1 (Fig. 1A) had visibly higher amplitude of glucose
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fluctuations, i.e., higher GV, which re-
sulted in seven episodes of moderate hy-
poglycemia (#50 mg/dL) and eight
episodes of moderate hyperglycemia
($350 mg/dL). In contrast, subject 2 had
no such hypo- or hyperglycemic episodes.
Thus, GV is a major determinant of a per-
son’s risk for hypoglycemia or hyperglyce-
mia, which in turn is reflected by the risk
for complications associated with ex-
treme glucose fluctuations (10).
Many studies, however, encountered a

purely analytical problemdhow to mea-
sure GV. A recent review argued that
“there are better markers to assess the
risk of diabetes than GV” (11). This argu-
ment depends heavily on the metrics
used to quantify GV, and it can be simi-
larly stated that there are better metrics
to assess GV that reflect more accurately
the risk of diabetes. The problem is that
different ways of glucose monitoring re-
sult in different resolutions of observa-
tion of GV. For example, HbA1c captures
only slow fluctuations in average glyce-
mia taking place over several months,
self-monitoring of BG (SMBG) a few
times a day can capture daily variation
in BG fluctuations, and contemporary
continuous glucose monitoring (CGM)
can take the GV monitoring resolution
to the scale of minutes. With this analyt-
ical peculiarity in mind, we now focus
on the causes, metrics, and clinical

manifestations of GV, with a special em-
phasis on measuring the amplitude and
the timing of glucose fluctuations and
their relevance to underlying physiology
and patient behavior.

CAUSES OF GV

In health, glucose metabolism is tightly
controlled by a hormonal network in-
cluding the gut, liver, pancreas, and
brain to ensure stable fasting BG levels
and transient postprandial glucose fluc-
tuations. In other words, BG fluctuations
in type 1 diabetes result from the activ-
ity of a complex metabolic system per-
turbed by behavioral challenges. The
frequency and extent of these chal-
lenges and the ability of the person’s
system to absorb them determine the
stability of glycemic control. The degree
of system destabilization depends on
each individual’s physiological parame-
ters of glucose–insulin kinetics, includ-
ing glucose appearance from food,
insulin secretion, insulin sensitivity,
and counterregulatory response. A ma-
jor source of GV is the rapid onset of hy-
perglycemia due to the consumption of
“high–glycemic index” foods. Moreover,
sustained hyperglycemia engendered by
foods with simple carbohydrates and
high fat (classically pizza) may challenge
therapy. Such foods often have hedonic
qualities (e.g., comfort foods) leading to

repeated challenges to glycemic stabil-
ity. There is strong evidence that feeding
behavior is abnormal in both uncon-
trolled diabetes and hypoglycemia and
that feeding signals within the brain
and hormones affecting feeding, such
as leptin and ghrelin, are implicated in
diabetes (12–14). Insulin secretion and
action vary with the type and duration
of diabetes. In type 1 diabetes, insulin
secretion is virtually absent, which de-
stroys the natural insulin–glucagon feed-
back loop and thereby diminishes the
dampening effect of glucagon on hypo-
glycemia. In addition, insulin is typically
administered subcutaneously, which
adds delays to insulin action and thereby
amplifies the amplitude of glucose fluc-
tuations. In type 2 diabetes, increased
insulin resistance and progressive loss of
b-cell function result in higher and pro-
longed postprandial glucose excursions.
Although observed in type 2 diabetes, im-
paired hypoglycemia counterregulation
and increased GV in the hypoglycemic
range are particularly relevant to type 1
diabetes: It has been shown that glucagon
response is impaired (15), and epineph-
rine response is typically attenuated as
well (16). Antecedent hypoglycemia shifts
down BG thresholds for autonomic and
cognitive responses, thereby further im-
pairing both the hormonal defenses and
the detection of hypoglycemia (17). Stud-
ies have established relationships be-
tween intensive therapy, hypoglycemia
unawareness, and impaired counterregu-
lation (16,18–20) and concluded that re-
current hypoglycemia spirals into a
“vicious cycle” known as hyperglycemia-
associated autonomic failure (HAAF) (21).
Our studies showed that increased GV
and the extent and frequency of low BG
are major contributors to hypoglycemia
and that such changes are detectable by
frequent BG measurement (22–25). In
addition, a study involving 34 subjects
with type 1 diabetes found that higher in-
sulin sensitivity and lower epinephrine re-
sponse during hypoglycemia measured
in a hospital setting were related to in-
creasedGVand risk for hypoglycemiamea-
sured in the field, irrespective of HbA1c and
other patient characteristics (26).

PRINCIPAL COMPONENTS OF
GLUCOSE FLUCTUATION:
AMPLITUDE AND TIMING

GV in diabetes is a process that develops
in time. Most traditional metrics of GV

Figure 1—Fifteen-day glucose traces of two subjects who had identical HbA1c of 8.0% but
different degrees of GV. High GV in subject 1 was reflected by numerous episodes of both
hypo- and hyperglycemia (A), whereas low GV in subject 2 resulted in no such episodes (B).
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focus on the amplitude of glucose fluc-
tuations and ignore their timing compo-
nent. Figure 2 presents the principal
components of GV: amplitude and
time (Fig. 2A). Amplitude is the projec-
tion of the BG data along the y-axis
(Fig. 2B) and presents the extent of
BG fluctuations without placing them
in time. Timing is the projection of
the data along the x-axis (Fig. 2C), which
is representative of the duration of var-
ious eventsdin our example, the dura-
tion of time spent below, within, and
above a predetermined BG target range
of 70–180 mg/dL.
Traditionally, the metrics of ampli-

tude of GV have relied on episodic BG
readings, e.g., SMBG data, whereas the
more contemporary metrics of the tim-
ing of GV rely on CGM. These distinc-
tions are clarified below.

MEASURING THE AMPLITUDE
OF GV

Metrics
The traditional statistical calculation of
BG includes standard deviation (SD)
(27), coefficient of variation (CV), or
other metrics, such as the M-value in-
troduced in 1965 (28), the mean ampli-
tude of glucose excursions (MAGE)
introduced in 1970 (29), the glycemic
lability index (30), or the mean absolute
glucose (MAG) change (31,32). As

recently shown, the multitude of GV
metrics introduced over the years can
be reduced to fewer representative in-
dices (33). Table 1 presents some of the
most widely used GV metrics with their
formulas.

Risk Analysis
The last three of these metricsdthe low
BG index (LBGI), high BG index (HBGI),
and average daily risk range (ADRR)d
are based on a transformation of the
BG measurement scale (f(x) in the for-
mulas in Table 1), which aims to correct
the substantial asymmetry of the BG
measurement scale. Numerically, the
hypoglycemic range (BG ,70 mg/dL) is
much narrower than that in the hyper-
glycemic range (BG .180 mg/dL) (34).
As a result, whereas SD, CV, MAGE, and
MAG are inherently biased toward hy-
perglycemia and have a relatively weak
association with hypoglycemia, the LBGI
and ADRR account well for the risk of
hypoglycemic excursions. The analytical
form of the scale transformation f(x)
was based on accepted clinical assump-
tions, not on a particular data set, and
was fixed 17 years ago, which made the
approach extendable to any data set
(34). On the basis of this transformation,
we have developed our theory of risk
analysis of BG data (35), defining a com-
putational risk space that proved to be

very suitable for quantifying the extent
and frequency of glucose excursions.
The utility of the risk analysis has been
repeatedly confirmed (9,25,36–38). We
first introduced the LBGI and HBGI,
which were specifically designed to be
sensitive only to the low and high end of
the BG scale, respectively, accounting
for hypo- and hyperglycemia without
overlap (24). Then in 2006, we intro-
duced the ADRR, a measure of GV that
is equally sensitive to hypo- and hy-
perglycemic excursions and is predic-
tive of extreme BG fluctuations (38).
Most recently, corrections were intro-
duced that allowed the LBGI and HBGI
to be computed from CGM data with
results directly comparable to SMBG
(39).

Graphs

Variability Grid Analysis

Besides glucose traces and histograms
showing the spread of BG data, there
are very few graphs specifically aimed
to visualize the amplitude of GV. One
such plot is the variability grid analysis
(VGA), a method visually presenting GV
at a population level (40,41). The VGA
is a minimum/maximum plot of the BG
readings for a subject taken over a cer-
tain observation period (e.g., 72 h). The
minimum BG (the lower 2.5th percen-
tile) is plotted on the x-axis, which is
inverse coded from 110 mg/dL to
,50 mg/dL. The maximum BG (the up-
per 2.5th percentile) is plotted on the
y-axis. Thus the difference (y 2 x) repre-
sents the BG range observed for a sub-
ject. The plot is split into zones. A point in
the A-zone (light green) indicates that
the subject was never below 90 mg/dL
and never above 180 mg/dL; i.e., the
control was optimal. B-zones (dark
green) indicate various degrees of sub-
optimal, but still acceptable, control;
the C-zones (yellow) indicate overcor-
rection of hypo- or hyperglycemia, result-
ing in either maximum above 300 mg/dL
orminimumbelow70mg/dL; the D-zones
(orange) indicate even a higher degree of
GV, whereas the E-zone (red) indicates
BG readings below 70 mg/dL and above
300 mg/dL within the same observation
period (Fig. 3).

The data points in Fig. 3 come from a
previously discussed data set containing
SMBG readings for 335 subjects with
type 1 (n = 254) and type 2 (n = 81) di-
abetes (38). Figure 3A presents subjects

Figure 2—Principal components of GV. Glucose fluctuations are a process in time that has
two dimensionsdamplitude and time (A). Projected along its amplitude axis, this process is
measured by metrics such as SD or MAGE (B). Projected along its time axis, this process is
assessed by temporal characteristics, such as time within target range and time spent in
hypo- or hyperglycemia (C).
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in good control with most of the data
points (70.4%) in the A- and B-zones.
Figure 3B presents subjects at poor control
with most of the data points (89.6%) in
the C-, D-, and E-zones. The subject split
was done along the median ADRR for
the population. The subjects presented
in panel A had a mean HbA1c of 7.6% and
mean ADRR of 22.9; these subjects re-
corded 0.54 BG episodes #39 mg/dL
and 3.27 BG episodes .400 mg/dL per
person in the subsequent 3 months. The
subjects presented in panel B had a
mean HbA1c of 8.2% and mean ADRR
of 48.0; these subjects recorded 3.32
BG episodes #39 mg/dL and 13.6 BG
episodes .400 mg/dL per person in the
subsequent 3months. Thus, the difference
in GV depicted by the VGA plots in Fig. 3
and quantified by the ADRR resulted in a
several-fold difference in subsequent ex-
treme hypo- and hyperglycemic episodes

recorded over 3 months of follow-up
observation (38).

MEASURING THE TIMING OF GV

Metrics
A recent review of GV (42) stated that
“to avoid distortion of variability to that
of glycemic exposure, its calculation
should be devoid of a time component,”
and a counterpoint presented in the
same issue of Diabetes argued that the
timing of BG fluctuations is important
(32). Indeed, the same amplitude of glu-
cose fluctuation can yield quite different
clinical results depending on the speed
of glucose transition. For example,
among the many criticisms of MAGE, it
was noted that MAGE was originally de-
veloped using 1-h data spacing but was
then used with 7-point glucose profiles
and with CGM data, both of which have
not been validated (43). As noted in the

previous section, oneof themetrics used to
measure GV amplitudedMAGdattempts
to capture this effect and includes a timing
component (DT in the denominator),
which accounts for the duration of time
overwhich BG fluctuations are observed.
As a result, the same fluctuation ampli-
tude over longer time would yield a
lower MAG. Although apparently useful,
considering time as an additional com-
ponent of GV adds an additional layer
of complexity, which so far has pre-
cluded widespread clinical use of time-
dependent GV metrics. Attempts to
focus on specific temporal characteris-
tics of the data, such as the variability
of periodic phenomena, brought about
the mean of daily differences (MODD),
which is designed to assess interday gly-
cemic variation and therefore circadian
periodicity (44). A generalization of this
approach to a finer-resolutionmeasure-
ment of GV was presented by the con-
tinuous overlapping net glycemic action
(CONGA) metric that calculates the dif-
ference between a current BG reading
and a reading taken (n) hours earlier
and then takes the SD of these differ-
ences (44). If the BG readings are more
frequent than (n) hours, CONGA will
take into its calculation overlapping
time windows. The order of CONGA
depends on clinical considerations:
CONGA1 (for n = 1) corresponds to
time period of 1 h, CONGA2 to 2 h, and
so forth (44). A straightforward version of
CONGA is the SD of the BG rate of change
(45), which can be considered a CONGA
of order 1 as long as the time interval
between the BG readings coincides
with the step of the CONGA procedure
(Table 2).

Graphs: Poincaré Plot of Glucose
Dynamics
Whereas in Fig. 2C we illustrated the
timing of glucose control with a tradi-
tional graph depicting a person’s time
within target range, here we will focus
on a plot used in nonlinear dynamics to
visualize the dynamics of the investi-
gated system. Such a representation be-
comes possible with the availability of
CGM time series data, a sequence of
frequent, equally spaced in time BG
determinations that capture a high-
resolution picture of the dynamics of
BG fluctuations (41,45). The plot (known
also as recurrence plot or lag plot) is
named after the French mathematician

Table 1—Metrics of the amplitude of GV

Metric Formula Meaning

SD

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ðxi 2 xÞ2

n2 1

s
Variation of BG fluctuations

around the mean

CV SD

Mean

Magnitude of variability
relative to the mean

MAGE MAGE ¼ ∑l
n, if l . SD,

where l is each BG increase
or decrease (absolute value)
exceeding SD

The MAGE exceeding the
SD of glucose variation

MAG
change MAG ¼ ∑jxi 2 xiþ1j

DT

Summed absolute differences
between sequential readings
divided by the time between
the first and last BG
measurement (MAG includes
a timing component and is
not a purely amplitude metric)

LBGI
LBGI ¼ ∑rlðxiÞ

n
, where

rlðxiÞ ¼ 22:77 z fðxiÞ2 if fðxiÞ,0;
and 0 otherwise;

fðxiÞ ¼ ðlnðxiÞ1:084 2 5:381Þ
for several BG readings x1,. . .,xn

Measure of frequency and
extent of hypoglycemia
designed to amplify
hypoglycemic excursions
and ignore hyperglycemia

HBGI
HBGI ¼ ∑rhðxiÞ

n
, where

rhðxiÞ ¼ 22:77 z fðxiÞ2 if fðxiÞ.0;
and 0 otherwise;

fðxiÞ ¼ ðlnðxiÞ1:084 2 5:381Þ
for several BG readings x1,. . .,xn

Measure of frequency and
extent of hyperglycemia
designed to scale
hyperglycemic excursions and
ignore hypoglycemia

ADRR

where LRj = max(r1(x1), . . .r1(xk))
and HRj = max(rh(x1),. . .rh(xk))
for several BG readings x1,. . .,xk
taken within day #j, j = 1,2. . .,M

Average of the maximal daily
amplitudes of glucose
excursions across several days,
designed to be equally sensitive
to hypo- and hyperglycemia

In all formulas, x = BG level.
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Jules Henri Poincaré (1854–1912) who
made fundamental contributions to
the mathematics and physics of dynam-
ical systems. The idea is straightfor-
ward: Given a series of BG readings,
BG(t1), BG(t2),. . ., BG(tn), taken at equally
spaced points in time, t1, t2, . . ., tn, each
point of the plot has coordinates BG(ti-1)
on the x-axis and BG(ti) on the y-axis (Fig.
4). Thus, the difference (y 2 x) of the
coordinates of each data point repre-
sents the BG change occurring between
times ti and ti-1. Intuitively, larger differ-
ences between the coordinates of

sequential BG points will signify faster
BG fluctuations, i.e., amore unstable glu-
coregulatory system. Alternatively, a
smaller, more concentrated plot would
indicate system stability. It is also worth
noting that a Poincaré plot can indicate
certain characteristics of system behav-
ior. For example, an elliptic plot would
indicate an oscillating system, such as
the perfect oscillation of BG values be-
tween 70 and 250mg/dL imagined in Fig.
4A. The boundaries of the plot are also
indicative of the minimum and maxi-
mum BG levels achieved during the

observation period, thereby visualizing
the risk for hypo- and hyperglycemia to
which the patient was exposed during
the observation period. Thus, a more
concentrated plot, such as the one in
Fig. 4C, indicates a stable patient,
whereas a more scattered Poincaré
plot, such as the one in Fig. 4B, indicates
system irregularity or poor glucose con-
trol. We should also note that nonstan-
dard applications of Poincaré-type plots
have been used as well; for example, the
time lag associated with CGM can be vi-
sually estimated by plotting the codynam-
ics of reference versus CGM readings at
different time lags (46).

CASE STUDIES ON GV

Example 1: Prediction of the Risk
for Extreme BG Fluctuations
In this example, we illustrate themetrics
of GV with respect to their ability to pre-
dict future extreme glucose fluctua-
tions, e.g., assess the risk for hypo- and
hyperglycemia, separately and in combi-
nation. In a large study of 335 patients
with type 1 and type 2 diabetes, we
compared the LBGI, HBGI, and ADRR to
established measures of GV, including
SD, MAGE, and others (38). All GV met-
rics were computed from a month of
SMBG data and were then fixed and
tested as predictors of low (BG ,40
mg/dL and BG ,70 mg/dL) and high
(BG .180 mg/dL and BG .400 mg/dL)
events in the subsequent 3months. Cor-
relations between GV metrics and sub-
sequent extreme glycemic events are
given in Table 3. Table 3 illustrates sev-
eral effects of GV measurement:

1. Metrics that are based on nonsym-
metrized BG readings are predictive
primarily of hyperglycemia and ac-
count poorly for future hypoglycemic
episodes (SDofBG,M-value, andMAGE).

2. The predictive power of these metrics
for future extreme hypoglycemia is sim-
ilar to that of average BG and HbA1c, a
finding consistent with the Diabetes
Control and Complications Trial (DCCT),
which concluded that only about 7% of
severe hypoglycemic episodes can be
accounted for by HbA1c (6).

3. The ADRR, which is based on symme-
trization of the BG scale, balances the
prediction of hypo- andhyperglycemia.

4. Separate independent assessments
of the risks for low and high BG ex-
tremes are provided by the LBGI and

Table 2—Metrics of the timing of GV

Metric Formula Meaning

SD of the BG
rate of change SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ðRi 2 RÞ2

n2 1

s
,

where Ri ¼ xðiÞ2 xði2 1Þ
Dt

is the BG rate of change
at time (i) and R is the
average BG rate of change

Variation of the speed of BG
fluctuation; particularly applicable
to BG readings that are equally spaced
in time, such as CGM data

MODD
∑
tk

t¼t1

jxðtÞ2 xðt2 24hÞj
k

,

where k is the number
of available data pairs
24-h apart

Intraday GV computed from all
24-h time intervals where paired
readings are available at the beginning
and at the end of 24 h

CONGA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
tk

t¼t1

ðDðtÞ2DÞ2
k2 1

s
,

where D(t) is the
difference between
BG at time t and BG
taken n hours earlier,
and D is the average of
these differences

MAGE exceeding the SD of GV

In all formulas, x = BG level.

Figure 3—VGA. A split of a population of 335 below the median ADRR (A) and above the median
ADRR (B) illustrated by the VGA. Each data point has BG coordinates (minimum, maximum) for a
subject during the observation period. Subjects in A are in good control with most of the data
points (70.4%) in the A- and B-zones; subjects in B are in poor control with most of the data
points (89.6%) in the C-, D-, and E-zones.
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HBGI, which is consistent with the
observation that “risks associated
with hypoglycemia are different from
those associated with hyperglycemia
in type, timing, and predictability,
and they have no interaction” (42).

Example 2: Effect of Islet
Transplantation on GV
To illustrate the effect of treatment ob-
served via CGM, we used previously
published 72-h glucose traces observed
before and 4 weeks after islet transplan-
tation (45). Analysis of the BG rate of
change (measured in mg/dL/min) de-
rived from CGM data was suggested
as a way to evaluate the dynamics of
BG fluctuations on the time scale of min-
utes (41,45). A larger variation of the BG

rate of change indicates rapid and more
pronounced BG fluctuations and there-
fore a less stable system. To illustrate
this point, Fig. 5A and B presents histo-
grams of the distribution of the BG rate
of change over 15 min. It is apparent
that the pretransplantation distribution
is more widespread than the distribu-
tion posttransplantation. Numerically,
this effect is reflected by the SD of the
BG rate of change, which was reduced
from 1.58 to 0.69 mg/dL/min, and by
19.3% of BG rates outside of the [-2, 2]
mg/dL/min range in Fig. 5A versus
only 0.6% BG rates outside that range
in Fig. 5B (45).

The same effect was also captured by
the Poincaré plots in Fig. 4B and C. These
plots present data for the same patient

before and after islet transplantation,
confirming that the surgical treatment
has stabilized the metabolic system of
this person (45).

Example 3: Effects of Medication
Treatment

Pramlintide

SMBG records were analyzed from a
randomized, double-blind, placebo-
controlled study of the effects of pram-
lintide on intensively treated patients
with type 1 diabetes. Two groupsd
pramlintide (n = 119) or placebo (n =
129)dwere matched by age, sex, and
baseline HbA1c. Compared with placebo,
pramlintide significantly attenuated the
preprandial to postprandial BG rate of
change (F = 83.8, P , 0.0001). Conse-
quently, in pramlintide-treated pa-
tients, both the average postmeal BG
(151.2 vs. 174.6 mg/dL) and the post-
prandial HBGI (4.8 vs. 7.1) were signif-
icantly lower than in the patients given
placebo (P, 0.0001). The reduction in
postprandial hyperglycemia in pram-
lintide-treated patients occurred with-
out increased risk for preprandial
hypoglycemia as quantified by the LBGI
(47).

Exenatide

In this study, variability analyses were
applied to SMBG data from patients
with type 2 diabetes suboptimally con-
trolled with oral therapy plus exenatide
or insulin glargine as a next therapeutic
step. Exenatide-treated (n = 282) and
insulin glargine–treated (n = 267)

Figure 4—Poincaré plot of BG fluctuations depicting system dynamics. A: Plot of perfectly cyclic glucose fluctuations, an unrealistic but illustrative
scenario. B: Plot of unstable BG fluctuations of a person in poor control. C: Plot of stable BG fluctuations of a person in good control.

Table 3—Correlations of variability measures with subsequent extreme glycemic
events

Metric of average glycemia and
GV computed from SMBG
during month 1 of study

Correlation of metric with the number of extreme
BG episodes observed during months 2–4 of study*

BG ,40 mg/dL BG .400 mg/dL

HBA1c (baseline laboratory
measurement) 20.04 0.58

Mean BG 20.15 0.58

SD of BG 0.15 0.58

M-value 0.16 0.68

MAGE 0.17 0.56

LBGI 0.59 20.06

HBGI 20.05 0.65

ADRR 0.44 0.45

*At this sample size, correlations above 0.4 were considered significant at P = 0.001, which was
an appropriate significance level accounting for themulticollinearity of the consideredmeasures
(39).
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patients were matched by age, HbA1c,
BMI, and duration of diabetes. GV was
reduced on exenatide compared with
glargine as indicated by the ADRR
(mean 6 SEM, 16.33 6 0.45 vs.
18.54 6 0.49, P = 0.001), LBGI, and
HBGI. The study concluded that al-
though average glycemic control was
similar for both treatment groups, exe-
natide minimized GV and the risk for
glycemic extremes to a greater degree
than glargine (48).

Lixisenatide

A recently presented analysis evaluated
the impact on GV of lixisenatide (LIXI)
versus placebo as an add-on to basal in-
sulin in type 2 diabetes. Data from 1,198
patients (665 LIXI, 533 placebo) indi-
cated significant GV decrease on LIXI: SD
decrease on LIXI was 28.28 mg/dL
versus 23.89 mg/dL on placebo, P =
0.003; MAG decreased 26.80 versus
21.48 mg/dL, P , 0.001; MAGE de-
creased 216.02 versus 27.02 mg/dL,
P = 0.003; and the HBGI decreased
23.65 versus 20.88, P , 0.001. The
LBGI remained unchanged, indicating
no increase in the risk for hypoglycemia
as a result from treatment. The study
concluded that when added to insulin
LIXI significantly reduced GV and post-
prandial glucose excursions without in-
creased risk of hypoglycemia (49).

CONCLUSIONS

Diabetes control is all about optimiza-
tion and a balance, or “trade-off,” be-
tween two key markers: frequency of

hypoglycemia and HbA1c, which reflects
average BG and is primarily driven by
the duration and the extent of hypergly-
cemia (8). As shown by several studies,
GV is a primary barrier to this optimiza-
tion. However, although GV has richer
information content than just average
glucose (HbA1c), its quantitative assess-
ment is not straightforward because
glucose fluctuations carry two compo-
nents: amplitude and timing.

The standard assessment of GV is
measuring amplitude. However, when
measuring amplitude we should be
mindful that deviations toward hypo-
glycemia are not equal to deviations
toward hyperglycemiada 20 mg/dL
decline in BG levels from 70 to 50 mg/dL
is clinically more important than a
20 mg/dL raise of BG from 160 to
180 mg/dL. We explained how to fix
that with a well-established rescaling of
theBGaxis introducedmore than15years
ago (34). For convenience and because
the risks for hypo- and hyperglycemia
are clinically independent (42), wewould
also suggest using two independent in-
dices that have been specifically de-
signed to account for the variation in
the low BG range (LBGI [22]) and high
BG range (HBGI [24]) (see example 2).

In addition, we should be mindful of
the timing of BG fluctuations. There
are a number of measures assessing
GV amplitude from routine SMBG, but
the timing of readings is frequently ig-
nored even if the information is avail-
able (42). Yet, contrary to widespread
belief, BG fluctuations are a process in

time and the speed of transition from
one BG state to another is of clinical
importance. With the availability of
CGM, the assessment of GV timing be-
came not only possible but also required
(32). Responding to this necessity, we
should keep in mind that the assess-
ment of temporal characteristics of GV
benefits from mathematical computa-
tions that go beyond basic arithmetic.
Thus, some assistance from the theory
and practice of time series and dynami-
cal systems analysis would be helpful.
Fortunately, these fields are highly de-
veloped, theoretically and computation-
ally, and have been used for decades in
other areas of science (e.g., engineering,
physics, meteorology, and environmen-
tal science, to mention a few). The com-
putational methods are standardized
and available in a number of software
products and should be used for the
assessment of GV.

We should emphasize that diabetes
research and clinical practice are no
strangers to, and have benefited from,
advanced mathematical modeling and
computing methods (50). For instance,
the minimal model of glucose–insulin
dynamics has been used for over 30
years to assess insulin sensitivity and
b-cell function (51). In this Perspective,
we argue that techniques known in
mathematics for decades can be very
beneficial to the understanding of glu-
cose metabolism in diabetes and in
health. There is no doubt that the timing
of glucose fluctuations is clinically im-
portant, but there is a price to pay for

Figure 5—Histograms of the BG rate of change before (A) and after (B) islet transplantation, illustrating increased system stability after the
procedure.
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its accurate assessmentda bit higher
level of mathematical complexity. This,
however, should not be a deterrent. Ap-
propriate techniques and expertise are
increasingly available in the diabetes
field, and these resources should be
used for the common good. Examples
3 and 4 illustrate the importance of tim-
ing components for the assessment of
diabetes treatments.
Last but not least, we should note

that a modern field of increased re-
search and industrial effortsdthe artifi-
cial pancreas or the closed-loop control
of diabetesdwould not be possible
without real-time assessment of GV
and real-time reaction to glucose fluctu-
ations. Thus, we should put to rest the
dispute of whether GV deserves atten-
tion and should focus on standardizing,
via scientific consensus, themethods for
the assessment of its most important
componentsdamplitude (Table 2) and
timing (Table 3).
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