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Abstract

Metabolic modeling of dynamic 13C labeling curves during infusion of 13C-labeled substrates 

allows quantitative measurements of metabolic rates in vivo. However metabolic modeling studies 

performed in the brain to date have only modeled time courses of total isotopic enrichment at 

individual carbon positions (positional enrichments), not taking advantage of the additional 

dynamic 13C isotopomer information available from fine-structure multiplets in 13C spectra. Here 

we introduce a new 13C metabolic modeling approach using the concept of bonded cumulative 

isotopomers, or bonded cumomers. The direct relationship between bonded cumomers and 13C 

multiplets enables fitting of the dynamic multiplet data. The potential of this new approach is 

demonstrated using Monte-Carlo simulations with a brain two-compartment neuronal-glial model. 

The precision of positional and cumomer approaches are compared for two different metabolic 

models (with and without glutamine dilution) and for different infusion protocols 

([1,6-13C2]glucose, [1,2-13C2]acetate, and double infusion [1,6-13C2]glucose + [1,2-13C2]acetate). 

In all cases, the bonded cumomer approach gives better precision than the positional approach. In 

addition, of the three different infusion protocols considered here, the double infusion protocol 

combined with dynamic bonded cumomer modeling appears the most robust for precise 

determination of all fluxes in the model. The concepts and simulations introduced in the present 

study set the foundation for taking full advantage of the available dynamic 13C multiplet data in 

metabolic modeling.
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Introduction

Carbon-13 NMR spectroscopy is a unique tool to quantitatively assess metabolic fluxes in 

vivo [1–3]. Measurements rely on infusion of a 13C-labeled substrate (e.g. glucose, acetate 

and other substrates) and on subsequent detection of 13C incorporation into metabolites 

using NMR spectroscopy. Analysis of these experimentally measured 13C labeling curves 

using metabolic models ultimately yields quantitative estimates of metabolic rates.

Two different families of metabolic models can be distinguished depending on the temporal 

dynamics of the input data: isotopic steady-state models versus isotopic dynamic models. In 

the first case, metabolic modeling using 13C enrichments at isotopic steady-state allows 

determination of metabolic flux ratios, but does not provide absolute flux values [4,5]. In 

contrast, dynamic metabolic models, which are based on the measurement of 

progressive 13C incorporation into metabolites (i.e. before isotopic steady state has been 

reached), can yield absolute values of metabolic rates.

Independently of the temporal dynamics, metabolic models also differ depending on the 

chemical specificity of the input data. Here again two main families can be distinguished: 

positional models versus isotopomer models. While positional models are based only on the 

total amount of label accumulated at each carbon position (yielding at most N independent 

isotopic time-courses or steady-state values for a metabolite with N different carbons), 

isotopomer models take full advantage of the biochemical information that can be assessed 

with NMR spectroscopy by considering all different isotopomers, i.e. all the different 

possible combinations of labeled and unlabeled carbons (yielding at most 2N−1 independent 

variables for a metabolite with N different carbons).

In principle, dynamic modeling of isotopomer time-courses should allow the derivation of 

metabolic fluxes with the highest achievable precision and accuracy by making optimal use 

of all the available data. However, such dynamic modeling of isotopomer time courses is 

still in its infancy. Although isotopomer modeling at isotopic steady-state is commonly used 

on microorganisms [6,7], it has only been rarely used to analyze in vivo data. Conversely, 

dynamic modeling in the brain in vivo has been performed using time courses of total 

positional enrichments (for review [1–3]) but not using time courses of 13C multiplets 

arising from isotopomers. To the best of our knowledge, dynamic analysis of 13C multiplet 

time courses has only been used to study heart metabolism ex vivo and indeed led to 

increased precision on the determination of metabolic fluxes [8,9]. Early seminal work in 

perfused heart with a one-compartment model also used time courses of isotopomer 

concentrations as variables in the model in order to simulate time courses of positional 

enrichment, but only positional enrichment curves were fitted [10].

The fact that so few in vivo metabolic modeling studies have taken advantage of the 

additional dynamic 13C isotopomer information available from 13C multiplets can be 

attributed to two factors. First, dynamic measurement of fine-structure multiplets in 13C 

spectra is difficult in vivo due to broader linewidth and limited sensitivity. However, it has 

been shown in the recent years that using high field NMR systems allowed the dynamic 

detection of 13C multiplets in the rat brain during an infusion of [1,6-13C]glucose [11] or 
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[U-13C]glucose [12]. The second reason is that no metabolic model is currently readily 

available to take this additional dynamic isotopomer information into account in the 

modeling.

In this context, the goal of the present paper is to introduce and assess a new metabolic 

modeling approach that allows analysis of time courses of individual 13C multiplets 

measured in the brain from 13C spectra, thereby taking full advantage of the information 

available in 13C spectra. Because not all possible isotopomers are detectable by NMR, a 

model including all possible isotopomers would be unnecessarily cumbersome. The concept 

of bonded cumulative isotopomers or bonded cumomers introduced in the present work 

leads to a reduced number of equations as well as a more simple derivation of equations 

compared to a model including all possible isotopomers, while retaining all the NMR-

measurable isotopomer information. As explained in the theory section below, there is a 

straightforward relationship between bonded cumomers and 13C multiplets observed in 13C 

NMR spectra. The concept of cumomer was used in early studies by Muzykantov and 

Shestov [13] and the term cumomer was first proposed by Wiechert et al. in 1999 [14]. After 

exposing the theory and the practical construction of a bonded cumomer model, we 

investigate the potential of the new approach for metabolic modeling of brain 

compartmentalized neuronal-glial metabolism. Monte-Carlo simulations are performed to 

compare the precision of the new approach using bonded cumomers with the precision of 

the standard positional modeling approach for different labeling strategies, namely for the 

infusion of either [1,6-13C2]glucose or [1,2-13C2]acetate or of both substrates 

simultaneously.

Theory

Definition and properties

Let us denote M{i} the isotopomer of a metabolite M, where {i} is a set of integers i1, i2…, 

in indicating the positions of all the labeled carbons. The isotopomer fraction [M{i}]/[M] of 

molecules M labeled exactly at positions i1, i2…, in will be referred to as m{i}. By definition, 

a cumulative isotopomer fraction (or cumomer fraction), noted πM{i}, is the sum of 

isotopomer fractions for all isotopomers labeled at least at positions i1, i2…, in, whatever the 

label at other positions. The size n of the set {i} will be referred to as the order of the π-

function. For example, assuming that M has a total of four carbons, the second order π-

function πM{1,3} can be expressed as:

(1)

The cumomer fraction πM{1,3} for cumomer M{1,3} can be interpreted as the probability 

that both first and third carbons are labeled.

By definition, cumomer fractions are always comprised between 0 and 1. It is also clear that, 

if set {i} is included in set {j}, then πM{i}≥πM{j}. For example set {1,2} is included in set 

{1,2,3} and consequently πM{1,2}≥πM{1,2,3} because the probability of M being labeled on 

carbons 1 and 2 (irrespective of carbon 3) is greater than the probability of M being labeled 
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on carbons 1, 2 and 3 simultaneously. Moreover, if the label input in the system is not 

decreasing, cumomers fractions are never decreasing (this is not the case with isotopomers). 

Finally, first-order cumomers fractions correspond to the positional enrichments as used in 

positional models.

By definition, bonded cumomers are cumomers whose indexes refer to adjacent carbons. 

For example, M{1,2} and M{1,2,3} are bonded cumomers, whereas M{1,3} and M{1,2,4} 

are not.

Bonded cumomers and fine structure of 13C NMR spectra (13C multiplets)

The fine structure of 1H-decoupled 13C NMR spectra exhibits spectral patterns characteristic 

of different isotopomers. Let us for example consider the 2nd carbon C2 of metabolite M, 

with two adjacent carbons C1 and C3 so that C2 is directly bound to C1 and C3. If C2 is 

a 13C isotope while C1 and C3 are 12C, the C2 resonance will appear as a singlet on 13C 

spectrum, whose intensity will be referred to as M2s (fig. 1A). If, in addition to C2, C1 is 

labeled but not C3, the carbon-carbon one-bond scalar coupling between C1 and C2 will 

result in the splitting of the C2 resonance into a doublet, which will be referred to as M2d12 

(fig. 1B). Symmetrically, if C3 is labeled but not C1, the C2 resonance is split into a doublet 

M2d23 (fig. 1C). Finally, if both C1 and C3 are labeled in addition to C2, the C2 resonance is 

split into a doublet of doublet (quartet), referred to as M2q (fig. 1D). At this point it is 

important to realize that the C2 NMR spectral pattern is only sensitive to the labeling of its 

two direct neighbors, and is not significantly affected by the labeling of further carbons such 

a C4, C5…, due to the fact that long-range scalar coupling is too small (a few Hz) to yield 

any further visible splitting in vivo [15]. Therefore, the 4 different splitting patterns possible 

for any carbon with two direct neighbors are very naturally expressed in terms of the 

“bonded” cumomers of order n≤3, i.e. π-functions whose indexes refer to 3 or less adjacent 

carbons, using the following transformation:

(2)

In the equation above, intensities are normalized so that the total signal M2total (which is 

the sum of all multiplet components M2s + M2d23 + M2d12 + M2q) is equal to the isotopic 

enrichment of the carbon at the C2 position. Furthermore, if the coupling is identical 

between C1 and C2 on one hand, and C2 and C3 and the other hand, then M2d12 and M2d23 

are undistinguishable (M2d), and the quartet M2q is actually a triplet (M2t). In this context, 

the above equation simplifies to:

(3)
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It should be mentioned that a labeled carbon can in principle be bound to more than 2 

labeled carbons, provided the carbon chain presents some branching. This would lead to 

some additional carbon-carbon coupling, and the corresponding additional spectral patterns 

would require π-functions of order n=4 for adequate representation. In the case of the two-

compartment neuronal-glial model considered in the present paper, the carbon chains of 

relevant metabolites have no branching, so that the above connection matrix between 

spectral pattern and bonded cumomers with n≤3 describes exhaustively the NMR fine 

structure discernable in vivo.

Writing the differential equations for bonded cumomers

Using the probabilistic interpretation of cumomers, writing the differential equations 

describing time-evolution of each bonded cumomer of order n≤3 in the model is achieved by 

tracing the provenance of carbon atoms in chemical reactions involving this particular 

cumomer. This is most conveniently done by using atom distribution matrices (ADM) 

[13,16]. An ADM describes how carbons are transferred between reactants and products for 

a given biochemical reaction, and is closely related to the concepts of atom mapping 

matrices [17], isotopomer mapping matrices [18] and transition matrices [19]. For example, 

let’s consider the reaction A+B↔C+D occurring at chemical equilibrium at the rate V (in 

moles per time unit) in both directions, as illustrated in figure 2a, with the transfer of carbon 

atoms as indicated by the arrows. The corresponding ADM (fig. 2b) for the forward reaction 

lists the carbon positions for the reactants A and B along its first dimension (rows), while it 

lists the carbon positions for products C and D along its second dimension (columns), with 

coefficients 1 in the ADM indicating how the corresponding source carbon is transferred to 

the products. From this ADM, writing the equations for the cumomers is straightforward, 

since the provenance of the label in the products is readily identified in the matrix. Let’s for 

example consider the formation of πC{2,3}. From the ADM of fig. 2b, one can trace the 

provenance of the 2nd carbon of C from the 2nd carbon of A, while the 3rd carbon of C 

comes from 1st carbon of B. Hence, for each individual reaction, the probability for the 

formed C molecule to be labeled at least at its 2nd and 3rd carbons is the probability that the 

substrate molecule A is labeled at its 2nd carbon (whatever the label for other carbons) and 

the substrate molecule B is labeled at least at its 1st carbon (whatever the label for other 

carbons), which by definition is the product πA{2}×πB{1}. For πC{1,2}, the ADM shows that 

the 1st and 2nd carbons of C come from the 1st and 2nd carbons of a single molecule A, so 

that the probability for the formed C molecule to be labeled at least at 1st and 2nd carbons is 

πA{1,2}.

Assuming that C is an NMR-observed metabolite, one can then derive the complete set of 

isotope balance equations for the bonded cumomer fractions of order n≤3. The variation of 

concentration of labeled molecule over time is equal to the amount of labeled molecule that 

enters the metabolic pool minus the amount of labeled molecule that leaves the metabolic 

pool. For the first order:
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(4)

For the second order:

(5)

For the third order:

(6)

Starting from the set of bonded π-functions for NMR-observed metabolites (e.g. first, 

second and third order π-functions for glutamate and glutamine), the system of equations is 

recursively extended, writing differential equations for all new π-functions that appear at 

each stage in the metabolic model. For example, in Eq (4), (5) and (6), writing the equation 

for C leads to new π-functions appearing for A and B; the next step would then be to write 

equations for each of these new π-functions, and so on. Note that some non-bonded π-

functions may be involved in the generation of bonded π-functions associated with NMR-

observed metabolites. For example in Eq (5) above πB{1,3} is a source for πC{3,4}, so that the 

differential equation for πB{1,3} has to be written. When the differential equations have been 

written for all intermediate π-functions appearing as input terms (except for metabolites 

corresponding to input of carbon inside the network), the time-evolution of the “observed” 

π-functions can be computed for any label input into the biochemical network by 

numerically solving the set of coupled differential equations. A particular case needs to be 

mentioned. In the case of a metabolite invariant by rotation (such as succinate HOOC-CH2-

CH2-COOH), the overall symmetry of the molecule implies that symmetric carbons are 

biochemically indistinguishable. This results in label scrambling between symmetric 

carbons, as it is traditionally recognized in 13C positional models. For example, the molecule 

succinate is left invariant by a 180° rotation, so that C1 is equivalent to C4, and C2 is 

equivalent to C3 (provided the consecutive carbons of the chain are consecutively labeled). 

In terms of cumomers, the following equalities can therefore be written for succinate:

(7)

Shestov et al. Page 6

Neurochem Res. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this case, although the ADM can be expressed in an arbitrary numeration for the succinate 

carbon chain, care must be taken when writing the differential equations to consider not only 

the input cumomers for the considered cumomer, but also for all its equivalents. Let’s 

assume that the ADM representation yields input fluxes of the following kind:

(8)

Here FSuc{1,2,3}
+ and FSuc{2,3,4}

+ are input functions depending on multiple input cumomers 

as derived from the ADM representation, and hence are likely to be different. The 

equivalence πSuc{1,2,3}=πSuc{2,3,4} is taken into account by summing the two previous 

equations, which immediately yields:

(9)

Conversely, if πSuc{2,3,4} appears as a source term in some differential equation (i.e. on the 

right side), it can simply be replaced by πSuc{1,2,3}, for which the differential equation is 

written.

Bonded cumomer versus isotopomer metabolic modeling

In most cases, the mathematical expression of a bonded cumomer model requires 

significantly less differential equations than a full isotopomer model that takes into account 

every possible isotopomer in the system.

A first reduction of the system arises from the fact that, in practice, π-functions of order n>3 

have no effect on the observable NMR fine structures and can therefore be eliminated from 

the system. Furthermore, since only bonded π-functions are associated to observable NMR 

fine structures, all π-functions of order n≤3 that are not implied in the production of bonded 

π-functions for the observed metabolites can also be discarded. In contrast, when using 

isotopomers as the basic “building block” to construct the model, equations have to be 

included for every possible isotopomer, which quickly leads to a very large number of 

equations.

Another simplification occurs for bonded cumomers in the case of a cleavage reaction. In 

this case, the system is reduced because the labeling state of carbons exiting the network has 

no effect on the labeling of metabolites belonging to the biochemical network. For example, 

let us consider the reaction A↔B+C at chemical equilibrium, where the 3-carbon molecule 

A loses its third carbon to yield the 2-carbon molecule B, at the rate V in both directions. 

The following system is obtained for the isotopomers of B:
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(10)

In contrast, the differential equations for the cumomers of B are:

(11)

The last set of equations only implies three π-functions associated to A (πA{1}, πA{2}, 

πA{1,2}), while the corresponding set of isotopomer equations implies six different 

isotopomer fractions of A: a{1}, a{2}, a{1,2}, a{1,3}, a{2,3}, a{1,2,3}.

In summary, a metabolic model based on bonded cumomers allows the reduction of the 

number of equations to the minimal number of variables required to describe the temporal 

evolution of NMR-detectable 13C-multiplets. Although the burden of solving the system is 

left to a computer, two advantages can be identified for reducing the number of equations: i) 

from a computational point of view, solving a reduced set of differential equations is faster, 

which becomes particularly advantageous when the system is extremely large, or when it 

has to be solved repeatedly thousands of times (for example in the case of Monte-Carlo 

simulations); ii) for a human operator, a reduced system of equations is much easier to 

assess, verify and understand.

Methods

Brain two-compartment neuronal-glial model: biochemical network and system of 
equations

The oxidative metabolism in neurons and astrocytes (glia), as well as the glutamate-

glutamine cycle between these two kinds of cells, associated to glutamatergic 

neurotransmission, play a central role in brain metabolism, and non-invasive measurement 

of these metabolic rates using neuronal-glial models has been the subject of continuous 

research efforts in the past 10 years. Here we derive the differential equations for bonded 

cumomers in the case of a neuronal-glial compartmentalized metabolic network similar to 

those recently published [4,20,21]. The specific model used in the present work is shown in 

Figure 3.

The model was constructed as follows. First, resonances of interest for metabolic modeling 

were identified, in this case the resonances most often detected in the brain in vivo 

(glutamate C4, C3, C2 and glutamine C4, C3, C2). Second, all bonded cumomers of order 

n≤3 corresponding to these detected resonances were identified. Third, the system of 

equations was recursively built by writing differential equations for all intermediates implied 
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in the generation of these cumomers (using ADM as described earlier in the theory section). 

Finally, the system was then simplified by eliminating unnecessary equations as described 

before. The final system describing the incorporation of 13C from labeled-glucose towards 

the bonded cumomers for glutamate and glutamine consisted in a total of 129 differential 

equations, after suppressing unnecessary equations. The biochemical network and the 

corresponding set of cumomer equations will be referred to as two-compartment dynamic 

bonded cumomer model. Note that the same biochemical network described in terms of 

isotopomers would consist in over 300 differential equations (2N−1 for each metabolite of 

length N, except for succinate which has 9 independent isotopomers).

Precision of positional versus cumomer models for different labeling strategies: Monte-
Carlo simulations

Three different infusion protocols were investigated by numerical simulation. In the first 

situation, the 13C time-courses were simulated for an infusion of [1,6-13C2]glucose enriched 

at 70%, which in terms of plasma glucose cumomers correspond to 

πGlc_pl{1}=πGlc_pl{6}=πGlc_pl{1,6}=0.7, the other plasma glucose cumomer corresponding to 

the 1.1% 13C natural abundance, where any carbon has a 1.1% chance to be labeled, 

independently from the labeling of its neighbors: πGlc_pl{k}=0.011 and 

πGlc_pl{1,k}=πGlc_pl{k,6}=πGlc_pl{1,k,6}=0.7×0.011 for 1<k<6; πGlc_pl{j,k}=0.0112 and 

πGlc_pl{1,j,k}=πGlc_pl{j,k,6}=0.7×0.0112 for 1<j<k<6; πGlc_pl{i,j,k}=0.0113 for 1<i<j<k<6. The 

second infusion protocol consisted in an infusion of 100% enriched [1,2-13C2]acetate 

(πAce_pl{1}=πAce_pl{2}=πAce_pl{1,2}=1, and here again the other cumomers corresponding to 

the natural 13C abundance). The third infusion protocol consisted in the simultaneous 

infusion of [1,6-13C2]glucose enriched at 70% and [1,2-13C2]acetate enriched at 100%. For 

the acetate infusion protocol and the double infusion protocols, acetate was assumed to be 

metabolized in glia only [22], with an acetate/glucose partition coefficient ϕ = 0.8 (i.e. 80% 

of astrocytic acetyl-CoA is synthesized from acetate and 20% from glucose) based on 

studies of acetate transport with similar acetate infusion rates [23].

For each infusion protocol, the system was solved in order to generate time-courses of 

bonded cumomers for glutamate and glutamine, using Matlab (The MathWorks Inc., Natick, 

MA) and the built-in function ode15s. As an illustration, the solution for an infusion of 

[1,6-13C2]glucose (modeled here as a step function being 0.011 for t<0 and 0.7 for t>0) is 

displayed on fig. 4 for glutamate C4 and C3. The values of the fluxes used for the simulation 

were based on metabolic rates representative of awake human brain metabolism or 

anesthetized rat brain metabolism: VTCA(N) = 1 μmol/g/min, VTCA(A) = 0.1 μmol/g/min, 

VNT = 0.3 μmol/g/min, VPC = 0.1 μmol/g/min, VX = 1.0 μmol/g/min, VOUT = 0.3 μmol/g/

min, and VDILGLN = 0.1 μmol/g/min (if included). Using the connection matrices introduced 

in Theory section, the cumomer time-courses of fig. 4A and 4B can be converted to the 

time-courses of NMR fine structures (fig. 4C and 4D). For example, eq. (2) was used to 

convert time courses of bonded cumomers for glutamate and glutamine C2 into time courses 

of the corresponding NMR multiplets.

The reliability of the flux values was first derived for the positional model (i.e. the cumomer 

model reduced to first order cumomers) using Monte-Carlo simulations. Briefly, for each 
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Monte-Carlo draw (at least 500 draws total), random Gaussian noise (standard deviation σ = 

0.2 μmol/g) was added to the time courses of total 13C concentration of glutamate and 

glutamine C4, C3, and C2 (six curves in total). Total 13C concentration was obtained by 

multiplying positional enrichments curves (i.e. first order cumomers) by total glutamate and 

glutamine concentrations ([Glu] = 10 mM, [Gln] = 4 mM). Then, for each draw, the noised 

time-courses (with a time-resolution of 7.5 min over 150 minutes, corresponding to 20 time 

points per curve) were fitted with the metabolic model using Simplex and/or BFGS 

algorithms. Proper convergence was confirmed by verifying that goodness-of-fit values were 

close to expected theoretical values. Stability of the simulation was further verified by 

ensuring that results did not depend on initial conditions for the fit. The six following fluxes 

were determined: neuronal TCA cycle VTCA(N), astroglial TCA cycle VTCA(A), pyruvate 

carboxylase VPC, exchange between glutamate and 2OG VX, glutamate-glutamine cycle 

VNT, and the lactate dilution flux VOUT. The effect of including an additional flux for 

dilution of glutamine (VDILGLN) was also investigated. Note that VOUT was not fitted for 

the acetate infusion, since acetate enters the TCA cycle after the pyruvate/lactate pool. From 

the flux distribution obtained during the Monte-Carlo simulation, the probability distribution 

and the standard deviation could be calculated for each flux.

The precision of the bonded cumomer model was assessed with an equivalent Monte-Carlo 

simulation, but here the noised time-courses (noise standard deviation σ = 0.2 μmol/g) were 

generated for every NMR-observable multiplet. These noised time-courses were then fitted 

using the bonded cumomer model. Positional labeling curves and all labeling curves for 

measurable multiplets at the glutamate and glutamine C4, C3 and C2 positions were 

included in the fit, with the exception of time courses of multiplets whose concentration 

remained low, because they may not be detectable experimentally with sufficient precision. 

Specifically, labeling curves that did not reach a 13C concentration of at least 1 mM at their 

maximum point were excluded from the fit. Because of this criterion, 13C labeling curves 

included in the fit were different for each infusion protocol. For example, with 

[1,6-13C2]glucose, all glutamate carbons (C4, C3, C2) reach high enrichment, so that Glu-

C3S intensity is low (most signal is in Glu-C3D and Glu-C3T). In contrast, with acetate 

infusion, glutamate enrichment is much smaller, so that Glu-C3S is proportionally higher. 

Therefore Glu-C3S was included for acetate infusion and not for glucose infusion.

For glucose infusion, the fitted time-courses were: GluC4total, GluC4S, GluC4D43, 

GluC3total, GluC3D, GluC3T, GluC2total, GluC2S, GluC2D23, GluC2Q, GlnC4total, 

GlnC4S, GlnC4D43, GlnC3total, GlnC3D, GlnC3T, GlnC2total, GlnC2S, GlnC2D21, 

GlnC2D23 (total 20 curves). For acetate infusion, the fitted time-courses were: GluC4total, 

GluC4D45, GluC4Q, GluC3total, GluC3S, GluC3D, GluC2total, GluC2S, GluC2D12, 

GlnC4total, GlnC4D45, GlnC4Q, GlnC3total, GlnC3S, GlnC2total, GlnC2D12 (total 16 

curves). For double infusion, fitted time courses were: GluC4total, GluC4S, GluC4D43, 

GluC4D45, GluC3total, GluC3D, GluC3T, GluC2total, GluC2S, GluC2D23, GluC2D21, 

GlnC4total, GlnC4S, GlnC4D43, GlnC4D45, GlnC3total, GlnC3D, GlnC3T, GlnC2total, 

GlnC2S, GlnC2D23, GlnC2D21 (total 22 curves).

Shestov et al. Page 10

Neurochem Res. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Figure 5 shows an example of probability density functions in the particular case of double 

infusion [1,6-13C2]glucose + [1,2-13C2]acetate and with no glutamine dilution included in 

the metabolic model. From these probability density functions, the relative standard 

deviations (s.d.) were determined for each metabolic flux in the model.

Results for the different simulated conditions are regrouped in Table 1. Three different 

infusion protocols where simulated: (i) ([1,6-13C2]glucose alone,. (ii) [2-13C]acetate alone, 

and (iii) double infusion of [1,6-13C2]glucose and [1,2-13C2]acetate. Each infusion protocol 

was simulated in the case without glutamine dilution (VDILGLN = 0, not iterated) and in the 

case with glutamine dilution (nominal VDILGLN = 0.1, iterated), and in each case the 

positional modeling approach was compared to the cumomer modeling approach.

Bonded cumomer vs. positional model

The main result emerging from Table 1 is that, regardless of the infusion protocol and 

whether glutamine dilution is present in the metabolic model or not, the cumomer model 

provided significantly improved precision on the determination of metabolic fluxes. The 

improvement in precision ranged from 3% to 77% depending on the metabolic flux and the 

conditions of the simulation (infusion protocol and inclusion or not of glutamine dilution). 

In the case without glutamine dilution, cumomer modeling led to an average 30% 

improvement in the precision of metabolic fluxes with [1,6-13C2]glucose, 39% improvement 

with [2-13C]acetate and 44% improvement with double infusion. Similarly, in the case with 

glutamine dilution, the average improvement was 32% with [1,6-13C2]glucose, 33% 

improvement with [2-13C]acetate and 45% improvement with double infusion.

Impact of glutamine dilution

Including glutamine dilution had a surprisingly large impact on the results of Monte-Carlo 

simulations. For example, the s.d. on VNT with [1,6-13C2]glucose and positional model was 

markedly improved when glutamine dilution was included in the model (going from 77% 

without glutamine dilution to 17% with glutamine dilution). In contrast, determination of 

metabolic fluxes with [2-13C]acetate and positional models degraded considerably when 

glutamine dilution was included in the model, presumably because the glutamine dilution 

flux itself was poorly determined in that case. Interestingly, for the double infusion protocol, 

the estimated precision of metabolic rates was similar whether glutamine dilution was 

included or not. This suggests that the cumulative metabolic information coming from two 

different substrates renders the precision on fitted metabolic fluxes less sensitive to changes 

in the metabolic model.

Overall, the impact of glutamine dilution on the results of MC simulations was much less 

significant when using the cumomer model than when using the positional model.

Comparison of infusion protocols. Positional model

The infusion protocol had a large impact on the estimated precision of metabolic fluxes as 

can be seen from Table 1. Using [1,6-13C2]glucose allowed excellent determination of 
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VTCA(N) even with positional models (with s.d. comprised between 5% and 7%). In contrast, 

the determination of VNT was less precise with positional models (s.d. ranging from 77% 

without glutamine dilution to 22% with glutamine dilution). Determination of VPC and VX 

was not as good as VTCA(N) (precision ranging from 12% to 20%). The determination of 

VTCA(A) was poor with [1,6-13C2]glucose (precision ranging from 52% to 61%. With 13C-

acetate, precision was improved most notably for VTCA(A) (which is not surprising because 

acetate is a glial-specific substrate) but the precision on other fluxes remained 

unsatisfactory, especially with glutamine dilution included in the model. Finally, the double 

infusion protocol with positional model broadly yielded similar precision to the 

[1,6-13C2]glucose protocol, except for VTCA(A) which was markedly more precise with the 

double infusion protocol (s.d. ranging from 52% to 61% with glucose only and 20% to 36% 

with double infusion).

Comparison of infusion protocols. Bonded cumomer model

As noted above, using the cumomer model led to an improvement in the precision of 

metabolic fluxes in all cases. However, there were still notable differences in precision 

depending on the metabolic fluxes of interest and on the infusion protocol used. Using 

[1,6-13C2]glucose alone with the cumomer model yielded satisfactory precision (5% to 17%) 

on all fluxes except VTCA(A) (which had a precision of 43% or 49% without and with 

glutamine dilution respectively). Using 13C-acetate led to an improvement in VTCA(A), but a 

degradation in the precision of most other fluxes in the model. With the double infusion 

model, however, the precision was excellent for all metabolic fluxes, ranging from 4% to 

9% (depending on the metabolic flux) when glutamine dilution was not included, and 

ranging from 5% to 12% when glutamine dilution was included. Of all the cases considered 

in this study, the best results were obtained with the double infusion protocol and the 

cumomer model.

Discussion

Dynamic 13C metabolic modeling using bonded cumomer

In the present study, we propose a new metabolic modeling approach for dynamic analysis 

of time courses of 13C multiplets measured by in vivo 13C MRS. The new framework, which 

uses bonded cumomers, opens the possibility to include dynamic information from 

individual 13C multiplets measured by 13C MRS into the metabolic modeling procedure. So 

far, nearly all dynamic metabolic modeling studies have focused on the analysis of time 

courses of positional enrichment. The new method sets the foundation for taking full 

advantage of the additional information available from 13C multiplets.

It is important to note that the use of cumomers by itself does not lead to a reduced number 

of equations compared to a complete isotopomer or cumomer model that includes every 

possible isotopomer or cumomer [14]. In order to achieve the desired reduction in the 

number of equations, the new concept of bonded cumomers is critical. Furthermore, in 

contrast to positional models, a bonded cumomer model retains all the information 

potentially available from 13C spectra. Therefore, the use of bonded cumomers results in a 

metabolic model that is optimal for both compactness and completeness.
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Our study builds on a large body of work in the field of chemical engineering. In that field 

of research, most studies are performed at isotopic steady-state, whereas our focus is 

decidedly on dynamic analysis of time courses, because one of the strengths of in vivo 13C 

NMR is the ability to measure dynamic data in intact tissue.

A closely related concept is the elementary metabolite unit (EMU) approach recently 

introduced by Antoniewicz et al. [24]. It consists in considering some sub-groups of atoms 

in molecular atomic chains, only a small fraction of which is sufficient to describe NMR-

detectable isotopic labeling. Therefore, the EMU approach, like the bonded cumomer 

approach that we propose here, leads to a considerable reduction in the number of equations. 

However, in the paper by Antoniewicz et al., in contrast to our approach, relevant EMUs are 

transformed to isotopomers, which are subsequently converted to NMR multiplets. In 

contrast, with bonded cumomers, it is possible to make a direct correspondence between 

bonded cumomers and 13C NMR multiplets. Although there are clearly several possible 

approaches to construct a model adapted to the analysis of dynamic 13C isotopomer data, the 

present work suggests that bonded cumomers are particularly well-suited for this purpose.

Superiority of bonded cumomer modeling compared to positional modeling

Monte-Carlo simulations show that metabolic modeling of dynamic time courses of 13C 

multiplets using the bonded cumomers model yields standard deviations on fitted metabolic 

rates which are systematically smaller than for positional modeling, whatever the infusion 

protocol considered. Two main reasons may be advanced to explain this increased precision. 

First, due to the larger number of measured time-courses, more information is used as input 

in the model (even though some of this information is obviously redundant). Second, the 

intensity of multiplets is in some cases more sensitive to flux variations than the intensity of 

total positional enrichment. This can be easily assessed by simulating multiplet time-courses 

for different flux values (not shown). In summary, metabolic modeling using bonded 

cumomers gives increased precision on fitted metabolic rates by making the best possible 

use of the metabolic information available in 13C spectra.

One possible limitation is that, depending on the infused substrate and the level of isotopic 

enrichment, some of the multiplets may not be measurable in vivo (due to lower signal-to-

noise). For example, when using [1-13C]glucose (as in most humans studies), 13C multiplets 

have proportionally much lower intensity than when using [1,6-13C2]glucose. However, 

measurement of time courses for at least some of the 13C multiplets should still be possible 

(perhaps with a lower temporal resolution). Fortunately, it is not necessary to include all 

possible multiplets in order to obtain improved precision on metabolic fluxes. For example, 

Monte-Carlo simulations with the double infusion protocol performed when fitting only 15 

dynamic curves of 13C multiplets in glutamate and glutamine leads to nearly the same 

precision as when fitting the entire set of 22 curves (data not shown). This can be explained 

by the fact that some of the information in 13C spectra is redundant. In this context, Monte-

Carlo simulations are the tool of choice to determine the expected precision on metabolic 

fluxes based on the available or anticipated experimental data that will be used for the 

metabolic modeling.
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Glutamine dilution

One of the surprising results of the present study is the large impact of the glutamine 

dilution flux on the determination of VNT, as pointed out in a recent study [25]. We 

previously reported that the determination of VNT was not very precise when using a 

positional two-compartment model with no glutamine dilution and using [1-13C]glucose as 

the infused substrate [26]. In that study, the standard deviation on VNT was very large 

(670%) when using [1-13C]glucose (noise level 0.2 μmol.g−1, 20 data points per curve, 6 

free parameters in the model, 7 curves fitted). In the present study, under similar simulated 

experimental conditions but with [1,6-13C2]glucose, the standard deviation on VNT was 

improved due to the increased isotopic enrichment in amino acids when using 

[1,6-13C2]glucose instead of [1-13C]glucose, but remained relatively high (77%). The 

precision of VNT was markedly improved (from 77% to 22%) with when glutamine dilution 

was included in the positional model (Table 1). In contrast, some fluxes were less well 

determined when glutamine dilution was included. For example, when using 13C-acetate as 

the infused substrate, the s.d. on metabolic fluxes was increased for most fluxes with 

glutamine dilution compared to without glutamine dilution (Table 1).

Therefore, the precision on specific metabolic fluxes is very dependent not only on the 

particular experimental conditions of the study (infused substrate(s), signal-to-noise of 13C 

data, number of 13C time courses measured, etc) but also on the specific metabolic network 

used. This underscores the necessity to carefully evaluate the precision of metabolic 

modeling as part of every study. In particular, the precision of a given two-compartment 

model cannot be assumed based on Monte-Carlo simulations performed with a different 

two-compartment model, even if the two models are very similar (eg differing only by the 

addition of a dilution flux). This is an important point because two-compartment models 

have been evolving constantly in the past 10 years. For example, initial two-compartment 

models did not include astrocytic TCA cycle or pyruvate carboxylase [27,28]. Similarly, 

glutamine dilution has been included in some studies (e.g. [29,30]) but not included in other 

studies (e.g. [20,31]). Although such changes have been made in two-compartment brain 

metabolic models over the years, the impact of these changes on the precision of fitted 

metabolic rates has not been systematically evaluated.

Interestingly, glutamine dilution had much less impact on the precision of metabolic fluxes 

when using the bonded cumomer model than when using the positional model. This suggests 

that taking the additional 13C multiplet data into account in the modeling makes the 

modeling less sensitive to assumptions or modifications in the metabolic model.

Usefulness of Monte-Carlo simulations

The current study illustrates the usefulness of Monte-Carlo simulations to evaluate the 

precision of metabolic models and determine the best experimental conditions for adequate 

precision on the metabolic fluxes of interest.

This precision on metabolic fluxes depends on a large number of factors. Experimental 

factors that can affect the precision of fitted fluxes include: signal-to-noise of 13C data, 

duration of 13C time courses, number of data points per curve, infused substrate, infusion 
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protocol, etc. Other factors affecting the precision depend on how the metabolic modeling is 

performed: number of independent time courses fitted simultaneously, numbers of degrees 

of freedom (free parameters in the model), actual metabolic model used (with assumptions 

and constraints).

Finally, it is worth emphasizing that Monte-Carlo simulations provide only a lower bound 

for the precision on metabolic fluxes. Furthermore, they do not ensure that the determination 

of metabolic fluxes is accurate, since the data, the fitting procedure, or the model itself may 

be biased. In spite of these limitations, Monte-Carlo simulations are an irreplaceable tool to 

predict the best precision that can be achieved with a specific metabolic model and under 

specific experimental conditions.

Toward improved precision in the measurement of glutamatergic neurotransmission flux 
in vivo

Monte-Carlo simulations in the present study clearly show that cumomer dynamic metabolic 

modeling should lead to a large improvement in the precision of metabolic fluxes compared 

to position metabolic modeling.

Bonded cumomer metabolic modeling with [1,6-13C2]glucose only gives excellent precision 

on all metabolic fluxes except VTCA(A). The addition of [1,2-13C2]acetate allows 

simultaneous determination of VTCA(A) precisely in the same experiment.

The simulations in the present paper were performed assuming an acetate/glucose partition 

coefficient ϕ = 0.8 (i.e. 80% of astrocytic acetyl-CoA is synthesized from acetate and 20% 

from glucose), as estimated from rat studies. In humans, however, such a high partition 

coefficient is not realistic, because the infusion rate of acetate in humans is typically much 

lower than in rats for safety reasons. In addition, [1-13C]glucose is often used in humans 

rather than the much more expensive [1,6-13C2]glucose. Using [1-13C]glucose rather than 

[1,6-13C2]glucose greatly reduces the intensity of 13C-13C multiplets. Therefore, the results 

presented here may not be directly transposable to human studies.

The next step is to apply this new metabolic modeling approach to actual in vivo data. We 

previously reported measurement of dynamic 13C multiplet data during [1,6-13C2]glucose 

infusion [11] and during simultaneous infusion of [1,6-13C2]glucose and [1,2-13C2]acetate 

[32]. In a separate study, we characterized acetate transport in the brain for metabolic 

modeling of acetate [33]. The double infusion approach is attractive because, when infusing 

[1,6-13C2]glucose and [1,2-13C2]acetate simultaneously, glucose and acetate give rise to 

different isotopomer patterns that reflect predominantly neuronal and glial metabolism 

respectively, as demonstrated earlier on brain extracts [34]. Glucose is taken up primarily by 

neurons and gives rise to a singlet at Glu-C4S and Gln-C4S position, whereas acetate is 

taken by astrocytes and gives rise to doublets in GluC4-D45 and GlnC4-D45. The cumomer 

model is ideally suited to exploit this exquisite isotopomer information that directly reflects 

brain cellular compartmentation.
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Conclusion

In this work, a novel approach was proposed for 13C dynamic metabolic modeling. The 

concept of bonded cumomer was presented, which allows a complete description of NMR 

spectra fine structures, while retaining a minimal amount of variables and equations 

compared to isotopomer models. A dynamic bonded cumomer model was then derived for 

the neuron-glia two-compartment model. The reliability of the model was investigated using 

Monte-Carlo simulation, showing the systematic superiority of bonded cumomer modeling 

compared to positional modeling as classically performed for in vivo studies, irrespective the 

specific substrate(s) and infusion protocol used. In all cases, the precision obtained with 

cumomer modeling was much better than with positional modeling. Bonded cumomer 

modeling with [1,6-13C2]glucose led to a good precision on all fluxes except VTCA(A). 

Excellent precision was reached on all fluxes when using double infusion of 

[1,6-13C2]glucose and [1,2-13C2]acetate combined with bonded cumomer modeling. This 

raises the prospect of greatly increased precision for future metabolic modeling studies using 

multi-compartment models in the brain.
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Abbreviations used

MRS Magnetic Resonance Spectroscopy

ADM Atom Distribution Matrix

TCA cycle Tricarboxylic acid cycle

VNT Rate of glutamate-glutamine cycle

VTCA(N) Rate of neuronal TCA cycle

VTCA(A) Rate of astrocytic TCA cycle

VPC Rate of pyruvate carboxylase

VX rate of exchange between 2-oxoglutarate and glutamate

VOUT Rate of lactate dilution

VDILGLN Rate of glutamine dilution

Glu Glutamate

Gln Glutamine

Indices

N Neuronal

A Astrocytic
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Figure 1. 
NMR spectra fine structure and isotopomers. For a given 13C labeled carbon in the carbon 

chain of metabolite M (C2 in this example), the resonance fine structure depends on the 

labeling of the direct neighbors C1 and C3. (a) Unlabeled C1 and C3 correspond to the 

singlet M2s. (b) Labeled C1 and unlabeled C3 correspond to the doublet M2d12, the 

frequency gap between the two peaks being the scalar coupling constant between C1 and 

C2, JC1C2. (c) Unlabeled C1 and labeled C3 correspond to the doublet M2d23, the frequency 

gap being JC2C3. (d) Simultaneously labeled C1 and C3 correspond to the doublet of doublet 

M2q.
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Figure 2. 
(a) Example of a bi-molecular reaction A+B↔C+D. The gray arrows represent the way 

carbons are transferred during the reaction. (b) The corresponding Atom Distribution Matrix 

(ADM).
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Figure 3. 
A two-compartment metabolic model for brain energy metabolism and glu/gln 

neurotransmission. Metabolic fluxes: CMRglc-cerebral metabolic rate of glucose, VTCA(N), 

VTCA(A)- neuronal and glial TCA fluxes; VPC glial pyruvate carboxylase flux; VNT- glu/gln 

neurotransmission; VX- exchange flux between 2-OG and Glu and between OAA and Asp; 

VOUT - dilution of labeled lactate by unlabeled lactate; VDILGLN – dilution of labeled Gln by 

unlabeled glutamine.
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Figure 4. 
Example of 13C labeling time courses for glutamate C4 (top raw) and glutamate C3 (bottom 

row) simulated using the metabolic model shown in Figure 3 during an infusion of 70%-

enriched [1,6-13C2]glucose. (Left) Time evolution of π functions corresponding to bonded 

cumomers for glutamate C4 (A) and glutamate C3 (B). (Right) Time evolution of the 

associated spectral fine structure (13C multiplets) for glutamate C4 (C) and glutamate C3 

(D). There is a direct correspondence between the π functions computed by the model and 

the measured 13C multiplets signals measured by 13C NMR. All time courses were 

simulated with the metabolic model shown in Figure 3 and the following metabolic fluxes: 

VTCA(N) = 1 μmol/g/min, VTCA(A) = 0.1 μmol/g/min, VNT = 0.3 μmol/g/min, VPC = 0.1 

μmol/g/min, VX = 1.0 μmol/g/min, VOUT = 0.3 μmol/g/min, VDILGLN = 0. The glucose 

isotopic enrichment was simulated as a “square” function, increasing from 1.1% to 70% at t 

= 0.
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Figure 5. 
Example of probability density functions for metabolic fluxes estimated during a double 

infusion of 70% [1,6-13C2]glucose and 100% [1,2-13C2]acetate by MC simulation (500 

draws), with random noise (s.d.=0.2 μmol/g), human synthetic data set, 20 experimental 

time points per curve (150 min duration, with a 7.5 min time interval between experimental 

points). The bonded cumomer model improves the precision of all metabolic fluxes 

compared to the positional model (solid line). The specific model used for this figure did not 

include glutamine dilution (VDILGLN = 0). Bonded cumomers give a similar improvement in 

precision when glutamine dilution is included.
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