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Abstract

In vivo mapping of transcription-factor binding to the transcriptional output of the regulated gene 

is hindered by probabilistic promoter occupancy, the presence of multiple gene copies, and cell-to-

cell variability. We demonstrate how to overcome these obstacles in the lysogeny maintenance 

promoter of bacteriophage lambda, PRM. We simultaneously measured the concentration of the 

lambda repressor CI and the number of mRNAs from PRM in individual E. coli cells, and used a 

theoretical model to identify the stochastic activity corresponding to different CI binding 

configurations. We found that switching between promoter configurations is faster than mRNA 

lifetime, and that individual gene copies within the same cell act independently. The simultaneous 

quantification of transcription factor and promoter activity, followed by stochastic theoretical 

analysis, provides a tool that can be applied to other genetic circuits.

Sequence-specific transcription factors drive the diversity of cell phenotypes in development 

and homeostasis (1). For each target gene, alternative transcription-factor binding 

configurations (by different transcription factors or by multiple copies of the same one) 

result in varied transcriptional outputs, in turn leading to alternative cell fates and behaviors 

(2, 3). Elucidating the relations between transcription-factor configurations (which can 

number in the hundreds (4–6)) and the resulting transcriptional activity remains a challenge. 

Application of traditional genetic and biochemical approaches usually requires a genetically 

modified system or assays of purified components in vitro (7). Ideally, however, one would 

like to map transcription-factor configuration to promoter activity inside the cell, with 

minimal perturbation to the endogenous system.
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Multiple factors hinder such direct measurement. First, individual cells vary in both 

transcription-factor concentration and the resulting transcriptional activity (8, 9); averaging 

over many cells thus filters out details of the regulatory relation. Second, even within the 

single cell, more than one copy of the regulated gene is typically present, with each copy 

individually regulated (10). Finally, even at the level of a single gene copy, multiple binding 

configurations are possible at a given transcription-factor concentration (11, 12). The relative 

probabilities of these different configurations and the rate of switching between them will 

define the stochastic activity of the regulated promoter (13).

We simultaneously measured, in individual cells, the concentration of a transcription factor 

and the number of mRNAs produced from the regulated gene. We also measured how the 

gene copy number changes through the cell cycle. We then analyzed the full single-cell data 

using a theoretical model, which allowed us to identify the contributions of different 

transcription-factor binding configurations to the stochastic activity of the promoter.

Specifically, we examined the lysogeny maintenance promoter of phage lambda, PRM. The 

regulation of this promoter by its own gene product, the lambda repressor (CI), is a 

paradigm for how alternative binding configurations drive transcriptional activity and the 

resulting cell fate—stable lysogeny or lytic induction resulting in cell death (7). The number 

of possible CI configurations is very large (>100 (4, 5)). Briefly, as CI concentration 

increases, CI dimers gradually occupy three proximal (OR1–3) and three distal (OL1–3) 

operator sites, leading first to activation, then repression, of PRM (Fig. 1A). Cooperative CI 

binding, and looping of DNA between the OR and OL sites, play important roles in shaping 

the PRM(CI) regulatory curve (14).

In a lysogen (a bacterium carrying a prophage), CI concentration is believed to be such that 

PRM fluctuates between the activated and repressed states (15) (Fig. 1A), and this has been 

suggested to stabilize the lysogenic state against random fluctuations in CI levels (14). 

However, the nature of the lysogenic “mixed state” (activated/repressed) is unknown: Are 

the promoter fluctuations slow enough, such that two distinct cell populations coexist, 

exhibiting high and low PRM expression respectively? Alternatively, are promoter 

fluctuations fast, such that all cells exhibit an intermediate, well-defined, level of PRM 

expression (Fig. 1B)?

To measure CI concentration in individual cells, we used antibody labeling 

(immunofluorescence). Lysogenic cells (see table S1) exhibited a strong CI signal whereas 

non-lysogenic (uninfected) cells showed only a weak background signal (Fig. 2A, fig. S1). 

To verify that the antibody signal reliably represents CI levels, we expressed a CI-yellow 

fluorescent protein (YFP) fusion protein (16) in non-lysogenic cells and compared the YFP 

fluorescence to the CI antibody signal in each cell. The two signals were linear with each 

other (fig. S2A), and single-molecule imaging revealed that most YFP molecules were 

colocalized with a CI antibody, as expected (fig S2B).

To convert the antibody signal to CI concentration in each cell, we needed to know the 

fluorescence value corresponding to a single antibody-labeled CI molecule (a CI dimer, 

which is the dominant species in the cell (17)). To obtain this calibration constant, we used 
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two methods (18) (Fig. 2, B and C): In the first method, we used automated image analysis 

to identify individual fluorescent particles (spots, fig. S3). These spots displayed a well-

defined intensity value, distinct from the corresponding signal found in negative samples 

(Fig. 2B). We identified the positive-sample spot intensity as corresponding to individual CI 

dimers (fig. S4A) (each one decorated by ~20 florescent dyes, due to the stoichiometry of 

antibody labeling, figs. S5), and used it to convert cell fluorescence to CI concentration. In 

the second method, we used the fact that the Poisson statistics of random protein positions 

within the cell lead to a linear relation between the fluorescence mean and the pixel-to-pixel 

variance within each cell (Fig. 2C, fig. S6). Measuring the slope of this line allowed us to 

identify the fluorescence corresponding to a single labeled protein (fig. S7). Using either 

method to estimate CI concentration in lysogens gave similar results (Fig. 2D and fig. S4B). 

These measured values also agreed with those reported in the literature (19–21)(Fig. 2D and 

table S2).

The two imaging-based methods allowed us to measure CI numbers in individual lysogenic 

cells (Fig. 2E). Fitting the CI distribution to a stochastic model of protein production (22) 

indicated that, on average, the ~200 CI monomers in the cell are produced in ~10 random 

bursts, of ~20 proteins each, during the 30-min cell cycle (table S3). The estimated burst 

frequency is consistent with a (more accurate) value that we obtained from cI mRNA 

statistics (Fig. 3). It is also consistent with the measured stability of the lysogenic state 

(which depends exponentially on the CI burst frequency (23)).

To measure the activity of the PRM promoter in individual lysogenic cells, we used single-

molecule fluorescence in situ hybridization (smFISH) (24, 25) to label and count cI mRNAs, 

produced from PRM (Fig. 3A). Fluorescent spots were identified using an automated 

algorithm (25) (fig. S3), and the fluorescence intensity corresponding to a single mRNA was 

identified (fig. S8). We used this intensity to convert the total spot intensity in each cell to 

the number of cI mRNAs (25). The copy-number distribution of cI mRNA in a lysogen (Fig. 

3A) represents the combined contribution from multiple copies of the PRM-cI gene in each 

cell (26). To identify the contribution of a single gene copy, we first examined how the cI 
gene copy number varies during the cell cycle. We engineered an array of 140 Tet operators 

(tetO) (27) into the gal locus of E. coli (~16 kb away from the lambda integration site). The 

gene locus was detected through the binding of a Tet repressor (TetR)-YFP fusion (27) (Fig. 

3B). We used automated image analysis to count the number of YFP foci in each cell. 

Gating the cell population by length, we found that newborn cells had on average 2.1 ± 0.1 

(mean ± SEM) foci per cell. Cells about to divide had 4.0 ± 0.1 foci per cell (Fig. 3B). These 

values are in good agreement with the expected copy number of the cI locus under our 

experimental conditions (26). We used these measured copy numbers to delineate the 

transcriptional activity of individual gene copies. If the stochastic activity of each copy is 

independent of the other copies in the same cell, then the cI mRNA distribution for cells 

having two gene copies will be given by the auto-convolution of the distribution for a single 

gene copy (a distribution that we cannot measure directly). Similarly, the mRNA distribution 

for 4-copy cells will be equal to the 1-copy distribution taken to the 4th convolution power. 

The experimental histograms agreed well with these predictions (Fig. 3C and fig. S9). 

Furthermore, knowing the fraction of cells in the population that have 2 and 4 copies 
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allowed us to then predict the cI mRNA distribution for the whole population. The predicted 

distribution agreed well with the experimentally measured one (Fig. 3A).

Analyzing the single-gene mRNA distribution (Fig. 3D) revealed that a single copy of PRM 

produces a burst of cI mRNA every ~6 min on average (table S4). When accounting for the 

presence of 2 to 4 gene copies per cell (Fig. 3B), this value is consistent with the burst 

frequency estimated from the CI protein histogram (Fig. 2E). Comparing the protein and 

mRNA data also allowed us to directly calculate the number of CI proteins produced from 

each cI mRNA, ~6 on average (table S3). This value is in good agreement with a previous 

theoretical calculation (23).

To measure the regulatory relation between CI concentration and PRM activity, we used a 

reporter system in which the autoregulatory feedback from CI to PRM existing in the lysogen 

is broken: CI is expressed from an inducible promoter, while PRM transcribes the lacZ gene 

rather than cI (14) (Fig. 4A). To simultaneously measure CI concentration and PRM activity 

in the same cell, we combined immunofluorescence (using antibody to CI) with smFISH 

(using lacZ probes)(18)(Fig. 4B and fig. S10), and measured the corresponding protein and 

mRNA numbers as described above. Performing this measurement over a range of CI levels, 

then plotting lacZ mRNA numbers versus CI concentration from many individual cells, 

produced highly scattered data (Fig. 4C), as expected from the stochasticity of the regulation 

and transcription processes (9). Averaging within finite windows of CI concentration 

revealed the mean regulatory relation between CI and PRM, known as the gene regulation 

function (16)(Fig. 4C, fig. S11). The shape of the regulation function agreed with that from 

previous reports, with PRM activity first increasing, then decreasing, with CI concentration 

(4, 14, 28). However, our measurement provides the absolute numbers for both the input (CI 

concentration) and output (mRNA numbers), rather than relative expression levels (4, 5, 14, 

28). The absolute values are crucial for the subsequent steps in our analysis of PRM 

regulation.

As the first step in this analysis, we wrote down a theoretical model, in which the 

probabilities of different CI binding configurations are given by their thermodynamic 

weights (15) (fig. S12A). This thermodynamic model successfully reproduced the regulation 

function (Fig. 4C and fig. S13). In performing this procedure, most free energy values used 

in the model were identical to those reported (15)(table S5). The model also provided the 

probabilities of observing the different promoter activity states—basal, activated [with the 

DNA between OR and OL either looped or unlooped (15)], and repressed—as a function of 

CI concentration (Fig. 4D). The overlap between the different states underlines the challenge 

in identifying the transcriptional signature of a single promoter state: For example, the 

probability of PRM being in the activated state never surpasses ~50%.

To reveal the activity of individual promoter states, we introduced a stochastic version of the 

theoretical model (Fig. 4E and fig. S12). In the model, the CI binding configurations are 

grouped based on the expected promoter activity: basal, activated unlooped, activated looped 

and repressed (15). Each promoter activity state is described by stochastic bursty kinetics of 

mRNA production (29). PRM stochastically switches between its four activity states. The 

switching rates are initially unknown, but the thermodynamic model above provides us with 
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the equilibrium constant (ratio between switching left and right) for each pair of states, at a 

given CI concentration. For each set of parameters, the stochastic model can be solved to 

yield the expected mRNA copy-number distribution for the population of multi-copy cells.

We used the stochastic model to analyze the full PRM(CI) single-cell data set (Fig. 4C 

above). Applying maximum-likelihood estimation, we found good agreement between the 

experimental and theoretical mRNA distributions over the full range of CI concentrations 

(Fig. 4F, fig. S14 and movie S1). The fitting procedure allowed us to extract the mRNA 

statistics corresponding to the different activity states of PRM (fig. S15). The calculated 

distributions were in good agreement with those obtained using genetic controls: Cells 

expressing no CI (basal), overexpressing CI in wild-type PRM (repressed) and in a mutant 

lacking the OL operator (activated unlooped) (14)(fig. S15B and table S6). The stochastic 

kinetics of each promoter state exhibited a similar relation between expression level and 

burst size to that measured in other E. coli promoters (29)(fig. S15C).

Despite the fact that the measured mRNA distribution at each CI concentration represents a 

mixture of multiple promoter states, each of the histograms is unimodal, and can be 

described by a simple kinetic model with a single burst size and frequency (Fig. 4F and fig. 

S16). The parameter that determines the shape of the “mixed state” mRNA distribution is the 

rate of switching between promoter states (Fig. 1B above). Previous in vitro studies of OR-

OL looping suggested that the switching between looped and unlooped promoter 

configurations is fast (~seconds) (30), but similar studies of looping in the cell left the 

question open (31). Our stochastic model predicts that if promoter switching is very slow 

relative to mRNA lifetime (here ~2 min (29)), the observed mRNA distribution will be the 

weighed sum of the underlying single-promoter-state distributions. Our experimental data 

strongly disagreed with this prediction (Fig. 4G). On the other hand, if switching is fast, the 

observed distribution will be given by a (weighed) convolution of the underlying single-

promoter-state distributions, and, if the underlying states can each be described by simple 

bursty kinetics, the new mixed state can be as well. This is indeed what we observed (Fig. 4, 

F and G; fig. S16). Thus, PRM switches rapidly between different promoter states, resulting 

in a stochastic signature that (at a given CI concentration) is indistinguishable from that of a 

single promoter state, but with renormalized kinetic parameters. Our finding of rapid 

switching explains why, in the lysogen, we did not detect distinct “active” and “repressed” 

populations in either the protein (Fig. 2E) or mRNA (Fig. 3A) histograms, but instead both 

data indicated a single, well-defined promoter activity.

Precise single-cell measurements, accompanied by theoretical analysis, can reveal new 

features even in well-studied model systems. When combined with genetic and synthetic-

biology approaches (13), this strategy may allow prediction of the stochastic characteristics 

of promoter activity, a prediction which remains a challenge to our understanding of gene 

regulation (9, 32).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic: PRM regulation by CI
(A) As the concentration of CI increases, the probabilities of different binding configurations 

of CI dimers at the OR and OL operators change (color shading), resulting in varying PRM 

activity (gray curve). Three configurations, expected to be the most probable, are depicted. 

In lysogenic cells, PRM has comparable probabilities of being in the activated and repressed 

promoter states (gray shading). (B) The rate of switching between activated and repressed 

states drives the stochastic activity of PRM in lysogenic cells. Two alternative hypotheses are 

illustrated: If switching is slow relative to the mRNA lifetime (left), two subpopulations of 
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cells will exist, with low and high mRNA levels. If switching is fast (right), the mRNA 

distribution in the population will be unimodal.
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Fig. 2. Measuring the number of CI molecules in individual cells
(A) CI proteins were labeled using antibodies to CI and fluorescently-labeled secondary 

antibodies (left). Under the microscope, lysogenic E. coli cells exhibited a strong CI signal 

(right) whereas non-lysogens showed a weak background signal (center). (B) Method #1 for 

measuring the number of CI proteins per cell. The typical fluorescence of a single CI dimer 

was obtained from the spot intensity distribution in lysogenic cells (green, N = 23631 spots), 

distinguishable from that of the negative sample (black, N = 1764 spots). (C) Method #2 for 

measuring the number of CI proteins per cell. The variance versus the mean of pixel 

intensity in individual cells (gray, N = 324) was fitted to a linear function (green). The slope 
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of this line was used to estimate the fluorescent intensity of a single CI dimer. (D) The 

estimated number of CI molecules in a lysogen, obtained using the two single-cell methods 

(green, mean ± SEM from 6 experiments, 327 to 704 cells each). Also shown is the value 

reported in the literature (gray, mean ± SD from three studies (19–21)). (E) The distribution 

of CI copy number in lysogenic cells (green; N = 560 cells). The data is described well by a 

gamma distribution (black).
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Fig. 3. Measuring the transcriptional activity of a single PRM copy
(A) (Left) cI mRNA in lysogenic cells was labeled using single molecule fluorescence in 
situ hybridization (smFISH). (Right) The measured distribution of cI mRNA number per cell 

from the whole population (gray, N = 2893 cells) consists of contributions from cells 

containing 2 and 4 gene copies (black; see panels B–D). α is the fraction of cells with two 

copies of the PRM-cI gene. (B) Estimating the number of PRM-cI gene copies in lysogenic 

cells. TetR-YFP binds to an array of tetO sites inserted next to the gene locus, resulting in 

visible foci (left). (Right) Newborn cells (length percentile 5 to 20, “short”, red, N = 493) 

contained two copies of the PRM-cI locus, whereas cells about to divide (length percentile 80 

to 95, “long”, blue, N = 493) contained four copies. Error bars indicate SEM. (C) The 

measured distributions of cI mRNA numbers for short (left) and long (right) cells. Both were 

well fitted by a model assuming independent stochastic activity of each gene copy. (D) The 

theoretical fit from panel C was used to reconstruct the cI mRNA distribution from a single 

gene copy. This distribution was then used to predict the distribution for the whole-

population (panel A).
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Fig. 4. PRM regulation at the single-cell level
(A) The reporter system used for measuring PRM activity. (B) Cells labeled for CI protein 

(immunofluorescence, green) and PRM-lacZ mRNA (smFISH, magenta). (C) The PRM(CI) 

gene regulation function. The single-cell data (light gray, N = 2941 cells) was filtered using 

a moving average (dark gray, 200 cells/bin). The averaged curve was well fitted by the 

thermodynamic model (red). (D) The calculated probabilities of different promoter activity 

states as a function of CI concentration: basal (purple), activated (looped and unlooped, 

blue) and repressed (orange). (E) A stochastic model for PRM kinetics. Each promoter 

Sepúlveda et al. Page 13

Science. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity state was modeled using stochastic ON/OFF transcription kinetics. The promoter 

stochastically transitions between activity states in a CI-dependent manner. (F) The 

stochastic model successfully described the PRM(CI) single-cell data. The experimental data 

(panel C) was binned into 100-cell histograms (gray) and fitted to the model (red) using 

maximum likelihood estimation. (G) Consistency of measured mRNA statistics with rapid 

switching between promoter states. Solving the stochastic model for different switching 

rates, and fitting the model results to the measured mRNA statistics, resulted in a good fit for 

fast switching (right, blue); slow switching yielded a poor fit (left, red).
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