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Abstract

An understanding of how the conformational behavior of single-stranded DNAs and RNAs 

depend on sequence is likely to be important for attempts to rationalize the thermodynamics of 

nucleic acid folding. In an attempt to further our understanding of such sequence dependences we 

report here the results of 192 (1 μs) explicit-solvent molecular dynamics (MD) simulations of 48 

DNA and 48 RNA tetranucleotide sequences performed using recently reported modifications to 

the AMBER force field. Each tetranucleotide was simulated starting from two different 

conformations – a fully natively-stacked, and a completely unstacked conformation – and 

populations of the various possible base stacking arrangements were analyzed. The simulations 

indicate that, for both DNA and RNA, the populations of fully natively stacked conformations 

increase linearly with increasing numbers of purines in the sequence, while the conformational 

entropies, computed by two complementary methods, decrease. Despite the comparatively short 

simulation times, the computed free energies of stacking of the 16 possible combinations of bases 

in the middle of the sequences are found to be in good correspondence with values reported 

recently from simulations of dinucleoside monophosphates using the same force field. Finally, 

consistent with recent reports from other groups, non-native stacking interactions, i.e. between 

bases that are not adjacent in sequence, are shown to be a recurring feature of the simulations; in 

particular, stacking interactions of bases in a i:i+2 relationship are shown to occur significantly 

more frequently when the intervening base is a pyrimidine. Given that the high prevalence of non-

native stacking interactions is thought to be unrealistic, it appears that further parameterization 

work will be required before accurate conformational descriptions of single-stranded nucleic acids 

can be obtained with current force fields.

Introduction

While molecular dynamics (MD) simulations have been used to simulate the conformational 

dynamics of nucleic acids for many years,1, 2 recent times have seen substantial effort 
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focused on the reparameterization of nucleic acid force fields to improve agreement with 

experimental data. This has been especially true for the widely-used AMBER force fields, 

for which the parm99 parameter set has proven to be an established jumping-off point.3 One 

relatively early modification was proposed by the Orozco group to improve the description 

of the α and γ backbone dihedrals; these modifications were implemented in the now very 

widely-used bsc0 parameter set.4 Since then, work by a number of groups has identified the 

need to reparameterize the terms that describe the glycosidic bond dihedrals in order to 

overcome poor reproduction of NMR observables for nucleosides,5 and to improve the 

modeling of A-RNA regions,6, 7 for which the formation of artefactual “ladder-like” 

structures had been reported.8, 9 Thanks to these efforts, there are now several alternative 

parameter sets for the glycosidic bond dihedrals for RNA that are available5, 7, 10 as well as 

at least one such parameter set for DNA.11 More recently, reparameterizations of other 

backbone dihedrals have been proposed.12, 13 It is not yet clear, however, that these newer 

parameter sets always offer a very significant improvement in behavior, e.g. capturing the 

conformational behavior of Z-DNA remains challenging.13

An attractive way to test parameterizations of nucleic acids is by comparison with NMR 

data for oligonucleotides. One important class of test system has been the RNA hairpin 

tetraloop, for which a number of experimental structures have been solved.14 Maintaining 

the correct tertiary structure of such tetraloops in MD simulations initially proved to be 

challenging, but was shown to be achievable6 when some of the proposed improvements to 

glycosidic dihedrals were incorporated,5, 7 especially when used in combination with the 

bsc0 parameter set.4 A second important type of test system are single-stranded 

tetranucleotides: in particular, these offer valuable opportunities to test the abilities of 

current force fields to describe RNAs that, while generally stacked in A-form conformations 

(see below), exhibit flexibility of the kind that might be present in the unfolded state of 

RNAs. Experimental scalar coupling constants and nuclear Overhauser effects (NOEs) have 

been reported for a number of different tetranucleotide systems by the Turner group.15–18 

Studies carried out by the same group comparing these NMR data with long MD simulations 

for r(GACC)15 and r(CCCC)14 have provided further evidence in favor of the use of 

reparameterized glycosidic dihedral parameters.5 In addition, however, they have shown that 

simulations can predict substantial populations of non-A-form, “intercalated” conformations 

– in which bases become stacked in an order different from that suggested by the linear 

sequence – for which no experimental data (NOEs) have been observed.

Similar intercalated conformations have been observed in MD simulations performed using 

enhanced sampling techniques carried out by the Cheatham group.19, 20 Despite their 

comparatively small size, it is challenging to fully sample the conformational free energy 

landscape of tetranucleotide systems using conventional, i.e. ‘brute force’, MD simulations. 

Because of this, these systems provide an excellent vehicle for testing different sampling 

methodologies, such as variants of replica exchange techniques.19–22 In their most recent 

study, for example, the Cheatham group showed that a converged view of the 

conformational behavior of r(GACC) could be achieved using multi-dimensional replica 

exchange sampling techniques, but that it required a very significant computational 

investment:20 in that work, 192 system replicas were simulated, each for 300 ns, and replica 

exchanges were invoked simultaneously in both the temperature and Hamiltonian 
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dimensions, with the latter involving lowered dihedral barriers. Importantly, a number of 

different intercalated structures were again observed, including the ones identified in 

previous simulation studies of the same tetranucleotide,15, 19 and in ‘brute force’ 1.5 μs 

simulations of the r(CCCC) tetranucleotide previously carried out by the Turner group.16 As 

noted above, these intercalated structures are in apparent conflict with NMR data.15, 16

Comparative studies of simulation and experiment for RNA tetranucleotides have been 

taken to a new level by very recent work from the Turner group.18 In that work, which was 

published as this work was being completed, NMR data for four RNA tetranucleotides: 

r(AAAA), r(CAAU), r(GACC) and r(UUUU), were used as a benchmark for testing four 

modified versions of the original AMBER parm99 force fields. ‘Brute force’ MD 

simulations of each tetranucleotide were carried out for 8 to 10 μs and were repeated starting 

from four or five very different initial conformations. The extraordinary aggregate 

simulation time of 739 μs of that study, coupled with its thorough testing of a number of 

different simulation force fields, makes the study itself a new benchmark for MD 

simulations of RNAs. Experimentally, r(UUUU) is the only one of the four tetranucleotides 

studied that does not adopt a predominantly A-form, base-stacked conformation. The lower 

degree of ‘native’ stacking in r(UUUU) was correctly reproduced by each of the four force 

fields tested, but they also predicted large numbers of NOEs that were not observed 

experimentally, suggesting that the simulations produced conformations that were more 

compact and/or structured than is realistic. For the other tetranucleotides, the force fields 

again predicted substantial populations of conformations in which stacking interactions 

occur between bases that are not adjacent in the sequence. The overall effect of this repeated 

sampling of structures that are inconsistent with the NMR data was that none of the tested 

force fields produced a level of agreement with experimental observables that was above 

40%. Given these results, it seems inescapable that substantial changes to the AMBER force 

fields for RNAs will be needed in the near future.

Given the very considerable computational demands of the simulations, it is not surprising 

that all of the MD studies described above have focused on only one or a few tetranucleotide 

sequences. The use of very long simulation times,18 or of enhanced sampling methods,19, 20 

has the clear advantage of enabling unambiguous conclusions to be drawn about the 

simulated behavior of the selected systems. But the exploration of only a few such systems 

places limits on our ability to determine the extent to which simulation results are sequence 

or composition dependent. In addition, the focus of such studies on RNA means that 

corresponding information on the behavior of simulations of similar DNAs is currently 

lacking, although studies of single-stranded CGCGAATTCGCG have been reported.23, 24 

As one way of addressing these gaps in our knowledge we report here the results of 192 1-μs 

MD simulations of 48 RNA and 48 DNA tetranucleotides, performed using a combination 

of the parm99 AMBER force field,3 the bsc0 parameter set,4 and the χOL3
7 and χOL4

11 

parameterizations of the glycosidic bond angles for RNA and DNA, respectively. While 

each of the individual simulation times is comparatively short at 1 μs, the simulations allow 

us to identify clear trends due to sequence composition and sugar identity on the 

conformational behavior of tetranucleotides and reinforce recent conclusions regarding the 

surprising prevalence of stacking interactions involving bases that are not adjacent in 

sequence.18
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Methods

Initial structures of all nucleic acids simulated here were generated using the Stroud group’s 

Make-NA server (http://structure.usc.edu/make-na/server.html) and formatted to be 

recognizable by the MD simulation program GROMACS version 4.6.5.25, 26 For both DNA 

and RNA we simulated all 36 tetranucleotides of the form CXYG and GXYC, with X and Y 

being the four standard nucleotides; in addition, for both DNA and RNA we simulated eight 

purine-only tetranucleotides (GAAA, GAAG, GAGA, GAGG, GGAA, GGAG, GGGA, 

GGGG) and eight pyrimdine-only tetranucleotides (in the case of DNA these were CTTT, 

CTTC, CTCT, CTTT, CCTT, CCTC, CCCT, CCCC; in the case of RNA these were CUUU, 

CUUC, CUCU, CUUU, CCUU, CCUC, CCCU, CCCC). In total, therefore 48 DNA and 48 

RNA tetranucleotides were simulated. Since each was simulated for 1 μs twice – once using 

a fully natively-stacked initial conformation and once using a completely unstacked initial 

conformation (see below) – the total simulation time reported here is 192 μs.

Each tetranucleotide was simulated in a comparatively large 50 × 50 × 50 Å box to which 

periodic boundary conditions were applied. Each nucleic acid was modeled using the 

AMBER parm993 force field supplemented with the bsc0 parameters4 that improve 

modeling of α and γ torsions, and with improved parameters for the glycosidic torsions for 

both RNA (χOL3)7 and DNA (χOL4).11 This combination of parameter sets has been shown 

by the Otyepka and Šponer groups to perform quite well in applications to a variety of 

challenging systems27, 28 and, at least for RNA, is now the set recommended for use in 

AMBER;11 hence, in the recent study by the Turner group it was referred to by the short-

hand description ‘ff10’.18 As noted by a reviewer, the εζOL1 parameters13 are now also 

recommended for use in modeling B-DNA by the AMBER developers; we chose not to 

include those parameters as our focus here is on modeling single-stranded DNAs, for which 

the parameters appear to be largely untested. We anticipate that none of our qualitative 

results will be affected by this decision. Water was modeled explicitly using the TIP4P-Ew 

model.29 As in our recent work,30 this was selected in preference to the more commonly 

used TIP3P model31 since our eventual goal is to model protein-nucleic acid interactions: 

when used together with AMBER protein parameters,32–34 TIP4P-Ew has been shown to 

perform well at describing the conformational behavior of small peptides.35 Na+ and Cl– 

ions – which were added to 150 mM concentrations in order to crudely mimic physiological 

concentrations – were modeled using the appropriate set of parameters derived by Joung & 

Cheatham;36 three additional Na+ ions were added to ensure overall system 

electroneutrality. Previous work by the Cheatham group has indicated that – at least for the 

r(GACC) system – there is little difference in conformational behavior between simulations 

that include only enough ions to ensure electroneutrality and those that incorporate 

additional salt.20

All systems were first equilibrated for 1.35 ns, with the temperature being raised 

incrementally from 50 to 298 K over the course of the first 350 ps; following this 

equilibration period, all MD simulations were carried out for a production period of 1 μs. 

During MD, pressure and temperature were maintained at their equilibrium values using the 

Parrinello-Rahman37 barostat and Nosé38-Hoover39 thermostat, respectively. All covalent 

bonds were constrained to their equilibrium lengths with LINCS,40 allowing a 2.5 fs 

Schrodt et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2016 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://structure.usc.edu/make-na/server.html


timestep to be used. Short-range van der Waals and electrostatic interactions were truncated 

at 10 Å and longer-range electrostatic interactions were computed using the smooth Particle 

Mesh Ewald method.41 During the production period of the simulations, all solute 

coordinates were saved at intervals of 0.1 ps giving a total of 10 million snapshots for each 

simulation for subsequent analysis.

As noted above, one complete set of 96 MD simulations was performed using fully 

‘natively’ stacked initial conformations that would be found, for example, in the context of 

double-stranded DNA or RNA (e.g. Figure S1A). A second set of simulations was 

performed in which the tetranucleotides were forced to assume unstacked conformations at 

the beginning of the production period. These simulations were carried out using the same 

protocol outlined above with the exception that during the equilibration period harmonic 

restraints were applied to the C1’ atoms of neighboring ribose rings in order to move them 

~5 Å further apart from each other than the distance found in A-form (for RNA) and B-form 

(for DNA) conformations; a similar strategy was one of a number of approaches used 

recently by the Turner group to generate alternative initial conformations.18 The imposition 

of these restraints was found to be sufficient to cause all tetranucleotides to adopt fully 

unstacked conformations (e.g. Figure S1B); during the subsequent 1 μs production period all 

harmonic restraints were removed so that ‘refolding’ to stacked conformations was possible.

A number of groups have devised geometric criteria to define stacked conformations of 

nucleic acid bases during MD simulations.18, 42–45 As in our previous work,30 we used a 

combination of three different criteria: (1) a minimum distance between any pair of heavy 

atoms in the two bases < 4 Å, (2) a distance between the center of mass of each base of < 5 

Å, and (3) a vector angle between the normals to the planes of the two bases between 0 – 

45° or between 135 – 180°. The first two of these properties were measured for each 

snapshot using the standard GROMACS utilities g_mindist, and g_dist respectively, the 

third was measured using a script written in-house. Pairs of bases simultaneously satisfying 

all three of these criteria were considered to be stacked. For the central two bases of each 

tetranucleotide, free energies of stacking, ΔGstack, were computed using ΔGstack = –RT ln 

(Pstacked/Punstacked), where Pstacked and Punstacked are the respective populations of 

conformations in which bases 2 and 3 are stacked and unstacked, R is the Gas constant, and 

T is the temperature.

There has also been significant interest in developing methods to describe19, 46 and cluster 

nucleic acid conformations.47 Here we devised two simple but complementary approaches 

to cluster the structures sampled during the simulations in order to gain a quantitative 

measure of conformational flexibility. In one approach, we clustered snapshots according to 

the similarity of their backbone conformations. This was achieved using the g_clust utility 

of Gromacs, selecting only those heavy atoms that are part of the sugar-phosphate backbone, 

and applying a RMSD cutoff of 1 Å for deciding whether two snapshots are to be included 

in the same cluster. In a second approach, we clustered snapshots according to the similarity 

of their base stacking arrangements. For a tetranucleotide of the form 1–2-3–4 there are six 

possible base stacking interactions that can, in principle, be adopted: these are 1–2, 1–3, 1–4, 

2–3, 2–4, and 3–4. Of these, 1–2, 2–3, and 3–4 are the ‘native’ stacking arrangements of 

bases in adjacent nucleotides that would be found, for example, in double-stranded regions. 
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As noted in Results, however, each of the other three ‘non-native’ stacking arrangements is 

frequently observed in the simulations described here. To provide a short-hand description 

of the overall stacking arrangement in a given snapshot, therefore, we use a six-character 

‘label’ with each of the six characters representing the status of each possible base stacking 

interaction in the order 1–2, 1–3, 1–4, 2–3, 2–4, 3–4. For each possible interaction we assign 

a character of ‘0’ if the bases are not in contact, ‘1’ if they are stacked, and ‘2’ if they are in 

contact but not considered stacked (i.e. if the minimum distance between any pair of heavy 

atoms in the two bases is < 4 Å). Defined in this way, the ‘label’ for a fully natively stacked 

conformation would be 100101 since only the 1–2, 2–3, and 3–4 pairs of bases would be 

stacked. Since there are six characters, each of which can take on three values, there are in 

principle 36 = 729 possible labels that could be required to describe the stacking status of a 

given tetranucleotide. In practice, however, many of these are never sampled, e.g. a label 

such as 111000 does not occur since it is not structurally possible for the base at the ‘1’ 

position to be simultaneously stacked with the 2, 3 and 4 bases.

Following the clustering of snapshots – either on the basis of backbone similarity or on the 

basis of their base-stacking arrangements – we can compute effective conformational 

entropies using the standard statistical thermodynamic relationship: S = −R Σ pi ln pi, where 

the summation runs over all identified clusters (or labels) and pi is the fractional population 

of each cluster/label.

Results

As outlined in Methods, we have performed independent 1 μs MD simulations of 48 DNA 

and 48 RNA tetranucleotides starting from two extreme initial conformations: fully 

‘natively’ stacked (i.e. stacked in residue number order, as would be found in the double-

stranded form; Figure S1A) and completely unstacked (Figure S1B). We start with an 

analysis of the former set of simulations, before verifying that the key trends we observe are 

recapitulated in the latter set of simulations.

Figure 1A plots the population of simulation snapshots that are found in fully natively 

stacked conformations as a function of the number of purines for all 48 DNA (blue) and 48 

RNA (red) tetranucleotides. With both types of nucleic acid, the fully natively stacked 

populations tend to increase with the numbers of purines in the sequence (Pearson 

correlation coefficient, Rcorr, = 0.72 and 0.76 for DNA and RNA respectively), with stacked 

populations being generally higher in the RNA tetranucleotides than in the DNA 

tetranucleotides (compare red and blue regression lines). Figure 1B shows the same data 

grouped and averaged according to the number of purines in the sequence, from which it is 

clear that the average populations are always higher for RNA than for DNA. The most 

obvious exception to the general trend shown in Figure 1A is the d(GGAA) DNA 

tetranucleotide (marked by the asterisk at the lower-right corner of the figure), for which the 

population of natively stacked conformations is anomalously low. Examination of the 

trajectory for this system shows that early in the simulation the tetranucleotide adopts and 

maintains an unusual, fully stacked conformation that is non-native, i.e. in which bases that 

are not adjacent to each other in sequence are stacked (Figure 1C). For this particular 

system, the bases are stacked in the order A4-G1-A3-G2 and it therefore represents an 
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example of a conformation in which the two most common intercalation events identified by 

the Turner group18 are present simultaneously.

Significant populations of non-native stacking interactions – i.e. interactions involving non-

contiguous bases – are found with a number of sequences but their populations vary 

significantly with sequence composition. Figure 2A shows the populations of the six types 

of base stacks that can, in principle, form in a tetranucleotide (see Methods) as a function of 

the number of purines for the 48 DNA sequences; Figure 2B shows a corresponding plot for 

the 48 RNA sequences. With both types of nucleic acid, the populations of native stacks (i.e. 

1–2, 2–3, 3–4 stacks) increase with the number of purines (blue symbols). Non-native 1–3 

and 2–4 stacks – which for DNA can reach an average population of nearly 40% (Figure 

2A) – occur most frequently in sequences that contain a single purine, and tend to be lower 

in sequences that contain no purines (hence the negative curvature observed repeatedly in 

the (green) quadratic regression lines). Stacking interactions involving the most distantly 

separated bases (1–4 stacks) are, as expected, the least common of the six possible types, but 

for DNA tetranucleotides average approximately 10% for sequences containing zero, one or 

two purines.

The sampling of non-native stacking arrangements indicates that the tetranucleotides explore 

a variety of alternative conformations. In an attempt to quantify the degree of 

conformational flexibility we have used two complementary approaches that cluster 

conformations sampled during the simulations: one does so according to the root-mean-

square deviations of the backbone heavy atoms, and another does so according to the 

stacking interactions of the bases (see Methods). The two different measures provide 

qualitatively very similar results: the number of clusters identified on the basis of the base-

base stacking interactions is linearly correlated with the number identified using backbone 

atoms for both DNA and RNA tetranucleotides (Figure 3A). The cluster populations can be 

converted into effective conformational entropies using standard statistical thermodynamics 

(see Methods): for both DNA and RNA, the correlation between the two entropy measures 

Sbase-base and Sbackbone is very high (Figure 3B). As might be expected given the results 

shown in Figure 1, there is also a clear relationship between these conformational entropy 

measures and the number of purines in the sequences. Figure 3C, for example, plots 

Sbase-base versus the number of purines, and shows that the effective conformational entropy 

decreases considerably with increasing numbers of purines for both DNA (blue) and RNA 

(red). This trend becomes even clearer when results are grouped and averaged according to 

the number of purines in the sequence (Figure S2A).

Given that it has been shown that simulation times far in excess of 1 μs are likely to be 

required in order to completely sample the conformational possibilities for 

tetranucleotides15, 16, 19–21 it is clearly important to determine the extent to which the above 

trends might be affected by sampling issues. One way of mitigating the effects of running 

only single-replica simulations is to start from quite different initial conformations, for 

example, ones in which the glycosidic bond dihedral angles have been flipped.16 Here we 

have conducted a second set of 96 1 μs simulations of the same tetranucleotides but using a 

protocol that ensures that all base-base stacking is eliminated during the equilibration period 

of the simulations (see Methods). If the trends obtained from an analysis of this second set 
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of simulations match those seen from the earlier simulations we can have greater confidence 

that they are real representations of the simulation force field.

Figure 4A (c.f. Figure 1A) shows that the populations of fully natively stacked 

conformations seen in this second set of simulations again increase with the number of 

purines. It can also be seen, however, that there is considerably more scatter in the results 

than before and that a number of the simulated tetranucleotides do not sample the fully 

natively stacked conformation at all within 1 μs. These include even sequences containing 

four purines, such as d(GGGG), d(GAGG) that might be expected to rapidly assume a 

natively stacked conformation (these are the data points at the bottom right of Figure 4A); 

interestingly, d(GGAA) – in stark contrast to its behavior in the first set of simulations (see 

above) – formed and maintained a fully natively stacked conformation. Despite the greater 

scatter in the results, when grouped and averaged according to the number of purines (Figure 

4B) the same overall trend is obtained as was obtained from simulations that started in fully 

natively stacked conformations (Figure 1B): the average populations of fully natively 

stacked conformations increase with the numbers of purines for both DNA and RNA. Figure 

4C shows that the two entropy measures Sbase-base and Sbackbone computed for this second 

set of simulations again correlate very highly with each other (c.f. Figure 3C), and Figure 

4D shows that again, the conformational entropies of systems decrease significantly as the 

number of purines increases (c.f. Figure 3D; see Figure S2B for results grouped and 

averaged by the number of purines). Finally, Figure 5 shows that the relative populations of 

the different types of stacking interactions follow the same trends as seen in the original set 

of simulations (c.f. Figure 2): the populations of native stacking interactions increase with 

the number of purines in the sequence, while the populations of the 1–3 and 2–4 non-native 

stacking interactions peak (again at ~40%) for sequences that contain only one purine. 

Interestingly, the average population of 1–3 non-native stacking interactions is, for DNA at 

least, the highest of any type of stacking interaction for sequences containing one purine 

(Figure 5A).

Direct comparisons of the results obtained from the two sets of simulations are shown in 

Figures S3 and S4. Figure S3A compares the two Sbase-base measures grouped and averaged 

according to the number of purines in the sequences. For both DNA and RNA, Sbase-base 

tends to be somewhat higher in simulations that start from unstacked initial conformations; 

the differences are small, however, and the correlation coefficients between the two sets of 

simulation data are accordingly reasonably high (0.84 for DNA and 0.99 for RNA). Figure 

S3B compares the populations of fully natively stacked conformations, again grouped and 

averaged according to the number of purines. As expected, the populations are generally 

higher in simulations that started in natively stacked conformations (i.e. most data points lie 

below a diagonal running from bottom left to top right of the figure). This is particularly true 

for DNA, for which a number of initially-unstacked simulations do not sample the fully 

natively stacked conformation during 1 μs (see above). For RNA, on the other hand, the 

populations are similar regardless of starting conformation, and this is especially the case for 

sequences containing three or four purines. Figure S4A compares the average populations of 

the six types of stacking interactions obtained from the two sets of DNA simulations; Figure 

S4B shows corresponding results for RNA simulations. As might be anticipated, with both 
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types of nucleic acid, the populations of the non-native 1–3, 2–4 and 1–4 stacking 

interactions (green and red symbols) tend to be somewhat higher in the simulations that start 

from initially unstacked conformations, while the native 1–2, 2–3, and 3–4 stacking 

interactions tend to be somewhat higher in simulations that start from natively stacked 

conformations. While certainly noticeable, the differences are not drastic, however, which 

suggests again that the two sets of simulations are capturing similar overall behaviors.

In addition to examining the dependence of native and non-native stacking interactions on 

the overall purine-pyrimidine composition of the tetranucleotides, we have also explored 

their dependence upon sequence. We converted the populations of natively stacked 

interactions into effective free energies of stacking, ΔGstack (see Methods) and compared the 

results with corresponding values obtained from simulations of dinucleotide 

monophosphates (DNMPs) that we reported recently.30 Figure 6A compares the ΔGstack 

values computed here for all 16 types of DNA stack (A-A, A-C, …, T-G, T-T) for the 

central step of the tetranucleotide (i.e. the 2–3 stacking interaction) with the corresponding 

ΔGstack values for DNA DNMPs; Figure 6B shows a corresponding set of data for RNAs. In 

both cases, the correlation is quite good, with Rcorr values of 0.80 and 0.87 for the DNAs 

and RNAs, respectively. For the DNAs, the ΔGstack values are shifted to more positive 

values in the tetranucleotides than in the DNMPs, but the statistical reliability of this result 

is limited given that the ΔGstack values computed from initially-unstacked simulations are 

poorly correlated with those computed from the initially-stacked simulations (Rcorr = 0.44; 

Figure S5A). For the RNAs, the ΔGstack values are more similar for the tetranucleotides and 

DNMPs, and this appears to be more statistically reliable given that the initially-unstacked 

and initially-stacked data sets are in much better agreement (Rcorr = 0.88; Figure S5B).

To the extent that we can (see Discussion), we have also explored the sequence dependence 

of the non-native stacking interactions. Specifically, we have considered the hypothesis that 

non-native 1–3 and 2–4 stacking interactions might be more likely to occur when the 

intervening base is a pyrimidine than a purine. To explore this issue for 1–3 stacking we 

grouped all simulated tetranucleotides according to whether the 2nd base was a pyrimidine 

or purine and computed the average populations of 1–3 stacks in the two groups. Figure 7A 

compares these two populations for all types of simulation: results are shown separately for 

DNA and RNA simulations and according to the simulation’s initial conformation ((A) 

stacked or (B) unstacked). In all cases, while the error bars are quite large, the population of 

1–3 stacks was higher when the intervening (2nd) base was a pyrimidine (compare blue and 

red bars in Figure 7A). Pursuing a similar strategy for 2–4 stacking interactions (Figure 7B) 

shows that they also occur more frequently when the intervening (3rd) base is a pyrimidine.

Finally, we have quantified the populations of the various possible intercalated structures 

that can be formed by the tetranucleotides. The fact that, once formed, intercalated structures 

can have long lifetimes18 means that there is often a high degree of variability between 

simulations. Figure 8A, therefore, plots the populations of the 8 possible intercalated 

structures, averaged over all 48 sequences in each of the four sets of simulations. While 

there is still considerable scatter in the data, it appears that with both DNA and RNA the 

most populated structure is the 3-1-4 arrangement, with the 3-2-4 and 1-3-2 arrangements 

being the second-most populated for DNA and RNA respectively. The generally higher 
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prevalence of 3-1-4 and 1-3-2 arrangements with RNA is consistent with results reported 

recently using the same force field by the Turner group.18 It is also clear that for RNA, the 

populations of intercalated structures are higher in the simulations that start in an initially 

unstacked conformation (compare RNA (B) with RNA (A) in Figure 8A).

An alternative way of analyzing the data is presented in Figure 8B. Here we plot the number 

of sequences within each of the four sets of simulations that sample each type of intercalated 

structure at some point during the 1 μs simulation, regardless of how many times they do so. 

For DNA, it is the 3-2-4 arrangement that is most likely to be sampled, with 45 of the 48 

sequences sampling it in both the A and B sets of simulations; for RNA, the 1-3-2, 2-1-3 and 

3-2-4 arrangements are sampled at least once by a similar number of sequences. More 

interestingly, there appear to be some significant differences between the DNA and RNA. 

The 2-1-3 arrangement, for example, is sampled at least once by more than 20 RNA 

sequences (Figure 8A) – even though its overall population remains very low (see Figure 

8A) – yet is sampled by only one of the DNA sequences. The 1-4-2 arrangement, on the 

other hand, is sampled by more than 20 DNA sequences, but fewer than 10 RNA sequences. 

Together, therefore, Figures 8A and 8B suggests that the relative preferences for forming 

different types of intercalated structures might differ substantially between DNA and RNA.

Discussion

Before discussing the current simulation results further, it is important to consider whether 

the strategy adopted here of conducting large numbers of (comparatively) short simulations 

is justified. As noted in the Introduction, obtaining a completely sampled view of a given 

tetranucleotide’s conformational behavior using a ‘brute force’ MD approach is likely to 

require simulation periods far in excess of 1 μs:18, 19 in particular, much longer simulation 

times would be necessary to exhaustively sample not only the stacking/unstacking equilibria 

that are of primary interest here but also syn/anti transitions of the glycosidic bonds. While 

the aggregate simulation time reported here (192 μs) is considerable, we have chosen to 

expend our computational resources in covering a wide range of different sequences instead 

of in attempting to obtaining a fully converged view of one or a few sequences. Clearly, we 

are assuming that the benefits of pursuing such an approach outweigh their disadvantages. 

We do not claim to have achieved complete sampling for any of the individual sequences 

modeled here, and it is for this reason that we have refrained from analyzing in detail the 

conformational behavior of any single sequence. What we do claim, however, is that 

important general trends can be extracted from the data, especially with regard to what the 

AMBER force fields predict about the conformational behavior of single-stranded DNAs 

and RNAs. We think that the fact that we have shown that qualitatively identical results are 

obtained from simulations that start in fully natively stacked or that start in fully unstacked 

conformations provides significant support for this idea. In particular, the latter simulations 

appear to rule out the possibility that the increased stacking observed with more purine-rich 

sequences in the former simulations (Figure 2) is simply a reflection of slower unstacking 

kinetics.

The approach that we have followed is clearly complementary to that recently taken by the 

Turner group, although the aggregate simulation time of the work reported here (192 μs) is 
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considerably lower than that (739 μs) recently reported.18 Importantly, despite their very 

different goals, the two studies produce very similar results in the areas where they overlap. 

In particular, both show that repeated sampling of non-native base stacking interactions is a 

common feature of current state-of-the-art AMBER force fields. The Turner group’s studies 

go further in demonstrating that this is a consistent feature of a number of variants of the 

AMBER-based force fields, and most crucially, that it is inconsistent with experiment for 

those tetranucleotides for which NMR data are available.18 The present study, on the other 

hand, shows that sampling of non-native base stacking interactions is a clear function of the 

purine-pyrimidine composition of the tetranucleotides, and occurs with similar frequencies 

in DNA as well as RNA tetranucleotides (Figures 2 and 5). In addition, it indicates that the 

Turner group’s substantive conclusions regarding the capabilities of current force fields for 

describing RNAs are unlikely to be affected by the choice of water model, the treatment of 

long-range electrostatic interactions, or the inclusion of added salt, all of which differ 

between the two studies.

The other major results obtained here are the following. The combination of AMBER force 

fields tested here predict: (a) that native stacking interactions in RNAs are generally stronger 

than those in the corresponding DNAs (Figures 1 and 4) – as was found in our recent 

examination of stacking interactions in DNMPs30 – (b) that the sequence dependence of 

native base stacking interactions in the tetranucleotides mirrors that obtained with DNMPs 

using the same force field (Figure 6), and (c) that non-native stacking interactions involving 

bases in a i:i+2 relationship occur significantly more frequently when the intervening base is 

a pyrimidine (Figure 7). With regard to the first of these results it is difficult to find many 

experimental studies that directly compare stacking free energies of single stranded RNAs 

and DNAs. However, the Pollack group has found that the persistence length of (rU)40 is 

somewhat greater than that of (dT)40 under the same conditions and has partly attributed this 

difference to the possibility that stacking might occur in (rU)40 but not in (dT)40.48 That 

interpretation would argue in favor of the present findings, especially so since those systems 

might be expected a priori to show greater stacking in the DNA form given that, in 

nucleoside pairs, the presence of the additional methyl group in dT has been shown to 

promote stacking (see Discussion in ref. 30). The Marszalek group, on the other hand, has 

shown that in single-molecule stretching experiments performed under identical solution 

conditions the force required to unstack poly(dA) plateaus at ~23 pN,49 while that for 

poly(rA) plateaus at 24 +/- 1 pN.50 Since these two estimates are, within error, identical, this 

might argue that the stronger stacking interactions in RNA predicted by the simulations 

reported here might be unrealistic.

With regard to the finding that non-native stacking interactions are sensitive to the identity 

of the intervening nucleotide (see above), it is worth noting that there are likely to be other 

sequence dependences that could be identified from a more comprehensive sampling of 

sequences. The present study considers only 48 of the 256 possible sequences that can be 

formed from the 4 standard nucleotides and, therefore, covers only some of the possible 

combinations of bases at the 1–3 and 2–4 positions. This precludes us from examining their 

sequence dependences in the same detail that we have for 2–3 stacking interactions (Figure 

6), but future work in this direction might be worth pursuing given the suggestion by the 
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Turner group that the presence of amino groups on the central base might be a factor 

stabilizing intercalated conformations.18 It might also be of interest to determine whether 1–

4 stacking interactions are more likely to occur in sequences of the form Pu-Py-Py-Pu than 

in sequences of other forms.

On the other hand, the two studies together strongly suggest that the problem of non-native 

stacking interactions is a persistent one that will need to be resolved if realistic modeling of 

single-stranded RNA (and probably also DNA) regions is to be achieved. The present 

finding that the frequency of non-native stacking interactions depends on the purine-

pyrimidine composition is consistent with, but does not provide conclusive proof of, 

problems with the thermodynamic description of stacking interactions, something that has 

already been suggested as a possible contributing factor by the Turner group.18 Garcia and 

Chen have recently shown that the simulated stacking interactions of the rG nucleoside are 

far too favorable using the nonbonded parameters of the current AMBER force field51 and 

have demonstrated that modifications to the strengths of van der Waals interactions can be 

made to produce behavior that is more realistic. A similar over-estimation of the favorability 

of stacking was apparent in our own recent comparisons with experiment of stacking 

interactions in DNMPs and nucleoside-pairs.30 Other indications that there are significant 

problems to overcome in the modeling of nucleic acid systems come from the recent studies 

by the Šponer group showing that sophisticated quantum mechanical methods produce 

estimates of the relative energies of nucleic acid conformations that can differ qualitatively 

from those predicted by the Amber force fields both for DNAs52 and RNAs.53 But it is one 

thing for us to point out that there are problems and quite another to solve them, especially 

since the Turner group’s recent study shows that modifications that improve a force field’s 

ability to describe certain situations12, 16 might worsen its behavior in others.18 Given the 

very complicated inter-dependence of the bonded and nonbonded parameters in current 

force fields, the current proliferation of alternative parameter sets, and the significant 

computational demands associated with obtaining converged oligonucleotide simulations, it 

may be that developing a general solution to the modeling of complex nucleic acid systems 

might require a concerted, combined effort from the simulation community.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Native stacking in simulations starting from natively stacked conformations
A. Percent of conformations that are fully natively stacked in production simulations; each 

symbol represents a different tetranucleotide; the asterisk marks the anomalously behaving 

d(GGAA) tetranucleotide. B. Same as A but with results grouped and averaged by the 

number of purines in the sequence. C. Snapshot showing the stable, non-native stacking 

arrangement adopted by d(GGAA); residues are colored using rainbow ordering: G1(blue), 

G2 (green), A3 (yellow), A4 (red).
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Figure 2. Populations of base-stacking interactions in simulations starting from natively stacked 
conformations
A. Percent of conformations that contain stacking interactions of various types plotted 

versus number of purines in the DNA sequence. Results shown are averages obtained by 

grouping sequences by the number of purines they contain; error bars represent standard 

deviations. Blue symbols represent ‘native’ stacking interactions, i.e. base stacks that 

involve residues adjacent in the sequence. Lines represent quadratic regression lines. B. 

Same as A but showing results for RNA tetranucleotides.
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Figure 3. Conformational flexibility in simulations starting from natively stacked conformations
A. Comparison of number of conformational clusters obtained with two different approaches 

to clustering (see Methods); each symbol represents a different tetranucleotide. B. Same as 

A but comparing conformational entropies. C. Plot of conformational entropy, Sbase-base, 

versus number of purines in the sequence.
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Figure 4. Native stacking and conformational flexibility in simulations starting from initially 
unstacked conformations
A. Percent of conformations that are fully natively stacked in production simulations; each 

symbol represents a different tetranucleotide. B. Same as A but with results grouped and 

averaged by the number of purines in the sequence. D. Plot of conformational entropy, 

Sbase-base, versus number of purines in the sequence.
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Figure 5. Populations of base-stacking interactions in simulations starting from initially 
unstacked conformations
A. Percent of conformations that contain stacking interactions of various types plotted 

versus number of purines in the DNA sequence. Results shown are averages obtained by 

grouping sequences by the number of purines they contain; error bars represent standard 

deviations. Blue symbols represent ‘native’ stacking interactions, i.e. base stacks that 

involve residues adjacent in the sequence. Lines represent quadratic regression lines. B. 

Same as A but showing results for RNA tetranucleotides.
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Figure 6. Comparison of computed free energies of stacking, ΔGstack, in tetranucleotides and 
dinucleoside monophosphates (DNMPs)
A. Plot of computed ΔGstack values in DNA DNMPs versus the corresponding ΔGstack 

values computed here fosr the central bases (i.e. the 2–3 stacking inteaction) of DNA 

tetranucleotides. Each datapoint represents a different sequence (AA, AC etc); error bars 

represent standard deviations calculated for all simulations of all tetranucleotides possessing 

the same 2–3 sequence. Line shows linear regression y = mx + b with m = 0.60 (p-value = 

0.0002) and b = −0.89 (p-value < 0.0001). Data for the DNMPs are taken from ref. 25. B. 

Same as A but showing results for RNAs. Parameters for the linear regression are m = 0.58 

(p-value = 0.0008) and b = −0.74 (p-value = 0.0001).
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Figure 7. Populations of non-native 1–3 and 2–4 stacks versus identity of the intervening base
A. Population of 1–3 stacking interactions observed in simulations, averaged and plotted as 

a function of system type. Blue and red represent 1–3 stacks where the intervening base (2) 

is a pyrimidine or a purine, respectively; (A) indicates initially natively stacked simulations, 

(B) indicates initially unstacked simulations. Error bars represent standard deviations. B. 

Same as A but showing results for 2–4 stacking interactions.
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Figure 8. Populations of intercalated structures
A. Population of various possible stacking arrangements observed in simulations, averaged 

and plotted as a function of system type. B. Number of sequences that sample each type of 

stacking arrangement at least once during the course of the simulation.
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