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Abstract
Tropical forests are now at the center stage of climate mitigation policies worldwide given

their roles as sources of carbon emissions resulting from deforestation and forest degrada-

tion. Although the international community has created mechanisms such as REDD+ to

reduce those emissions, developing tropical countries continue to invest in infrastructure

development in an effort to spur economic growth. Construction of roads in particular is

known to be an important driver of deforestation. This article simulates the impact of road

construction on deforestation in Western Amazonia, Peru, and quantifies the amount of car-

bon emissions associated with projected deforestation. To accomplish this objective, the

article adopts a Bayesian probit land change model in which spatial dependencies are

defined between regions or groups of pixels instead of between individual pixels, thereby

reducing computational requirements. It also compares and contrasts the patterns of defor-

estation predicted by both spatial and non-spatial probit models. The spatial model repli-

cates complex patterns of deforestation whereas the non-spatial model fails to do so. In

terms of policy, both models suggest that road construction will increase deforestation by a

modest amount, between 200–300 km2. This translates into aboveground carbon emis-

sions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region

serves as a cautionary example that the models may be underestimating the impact of

roads.

1. Introduction
Loss of tropical forests has emerged as an important environmental issue given their impor-
tance to Earth’s nutrient and water cycles, and as repositories of biodiversity [1, 2]. Land
change, primarily tropical deforestation, also account for 14–20% of global greenhouse gas
emissions [3], a non-trivial amount. This has let the UN Framework Convention on Climate
Change to created REDD+ mechanisms in an attempt to reduce emissions from deforestation
and forest degradation. REDD+ projects typically focus on small scale forest conservation ini-
tiatives [4] but equally important is to investigate the role of regional proximate drivers of land
change as an indirect source of greenhouse gases through induced deforestation. One of the
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most important driver of deforestation in the tropics is infrastructure development, particularly
roads meant to provide access to forested areas and markets that were once inaccessible [5, 6].

The Peruvian Amazon is of particular significance in this regard because it is one of the
most biodiverse areas in the world and is now the focus of several transnational transportation
projects [7, 8]. Moreover, Peru is at the forefront of REDD+ initiatives and has received com-
mitments of over US$350 million to help protect its 69 million ha of tropical and Andean for-
ests [9]. This article addresses this issue for the Amazonian Department of Loreto by
implementing a spatially explicit econometric land change model to simulate the impact of
new road construction on deforestation and associated carbon emissions. The model makes
use of a Bayesian spatial probit procedure developed by Smith and LeSage [10] whereby spatial
dependencies are assigned to occur between groups of observations or regions instead of
between individual observations, which provides a substantial computational advantage.

This article has two primary objectives, one applied and one methodological. The first is to
estimate the impact of road building on the probability of deforestation and to quantify the
resulting carbon emissions in Loreto, Peru, a region currently with low levels of deforestation
but where infrastructure development is planned. The second objective is to demonstrate that
the Smith and LeSage spatial probit model applied to a raster data environment yields better
spatial allocation of estimated deforestation than standard spatially explicit probit models and
therefore should be added to the portfolio of land change models. To achieve these objectives,
the article begins by describing the study area and the regional context that motivates the anal-
ysis. It then shows results of a non-spatial probit model that motivates the use of a spatial
probit that follows. A simulation of the impact of new roads on deforestation and carbon emis-
sions is presented next, and the spatial and non-spatial models are compared. The paper con-
cludes with a methodological discussion, and with an assessment of the policy implications for
the Western Amazon.

2. Regional Context and Infrastructure Development Plans in
Loreto
Located in the Western Amazon between the Equator and 9° south, the Department of Loreto
is the largest in Peru, covering 368,852 km2. Loreto is endowed with an extraordinary aquatic
and terrestrial biological diversity and is home to more than one million people, of which 12%
are indigenous, belonging to 27 different groups [7, 11, 12]. National protected areas cover
18% of Loreto (67,000 km2), while legally titled indigenous communities account for another 4
million ha. Loreto is also rich in hydrocarbon deposits with an oil production around 8 million
barrels per year. Despite this richness of resources, Loreto’s economy accounts for only 2% of
Peru’s GDP and almost half of the adult population is either un- or under-employed [12].

Decision makers in the capital have long considered Loreto to be an “island state” within
Peru that needs to be integrated economically to the rest of the country. Since colonial and
early republican periods, natural resources from Loreto such as timber and rubber have found
their way to distant markets via fluvial transportation down the Amazon River through Brazil,
and to the Atlantic Ocean, 4000 km east. Although much longer, this water route was and con-
tinues to be easier and cheaper than shipping across the formidable Andes Mountains that sep-
arate the Peruvian Amazon from its coastal lands, the capital Lima, and port facilities on the
Pacific Ocean. For reasons such as these, the Peruvian government has shown interest in road
building, which stands to reasons since transportation infrastructure is viewed by developed
and developing countries alike as fundamental to providing economic benefits and to securing
sovereignty over isolated hinterlands [13, 14]. The sovereignty issues are especially relevant to
Loreto, a department with a history of demands for more regional autonomy, which has been
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perceived by the federal government in Lima as a step toward secession. One historical episode
illustrates how challenging the tenuous land connection between Lima and Iquitos was and
continues to be. In 1896 the Peruvian federal government sent two military expeditions to Iqui-
tos, Loreto’s capital, to subdue a separatist movement. News about the movement arrived in
Lima only indirectly after its consulate in Rio de Janeiro, Brazil, reported the events [15]. One
expedition was sent by land across the Andes and another by water along the Pacific and Atlan-
tic coasts and Amazon River. The land expedition reached Iquitos first but the water expedition
was already on the Amazon when it received orders to return to Lima. In addition to internal
concerns, territorial disputes with neighboring countries along Loreto’s 3,891 km frontiers
with Brazil, Colombia, and Ecuador have raised concerns about the territorial integrity of the
country [15, 16]. Thus, road construction in Loreto fulfills both economic development and
national geopolitical objectives [17].

The short extent of the current road network and its sparse spatial distribution illustrates
the “isolated state” of much of Loreto, particularly around the capital Iquitos (Fig 1). According
to GIS data [18], only two road segments comprising ~200 km are asphalted. One segment con-
nects the city of Yurimaguas in the western part of Loreto to the national road network at Tara-
poto; this was asphalted in 2009 as part of the Integration of Regional Infrastructure in South
America (IIRSA) Norte program [19]. The other asphalted road links the capital Iquitos to an
important local port in Nauta at the confluence of the Marañon and Ucayalli Rivers. Year round
trafficable dirt roads are roughly 130 km in length while intermittent dirt roads and trails add
another 823 km to the network. Roads built to service oil pipelines amount to 400 km, but are
not used for general transportation because they remain detached from the network.

Roads have long been considered an important driver of deforestation in many tropical
countries [5, 20]. In Peru, 75% of total deforestation and forest degradation is within a 20-km
buffer along roads [21]. This road-deforestation nexus has also been observed recently with the
road construction and paving of IIRSA’s Inter-Oceanic Highway in the department of Madre
de Dios, which have induced new pulses of deforestation [8]. Nevertheless, perhaps because of
its sparse road network, less than 5% of Loreto is deforested (~17,500 km2), mostly for low
intensity swidden agriculture based on cassava, plantains, rice, and maize, although palm oil
plantations are beginning to encroach on the region [22]. Deforestation is currently concen-
trated along the Iquitos-Nauta road, near the city of Yurimaguas, and in communities found
along Loreto’s extensive hydrologic network [12] (Fig 1).

Concerns about extensive deforestation in Loreto emerged in 2005 when the Peruvian gov-
ernment, together with the regional government, released a transportation development plan
for the department [23]. The plan calls for a series of multi-modal investments including the
construction of a railway connecting Iquitos with Yurimaguas, upgrade of port facilities and
airports, dredging of rivers, and waterways signalization. The plan also includes the construc-
tion of 1,780 km of new roads that will provide, together with waterways and railways, connec-
tions between important national and regional hubs such as Iquitos, Yurimaguas, Pucallpa,
Saramiriza, and strategic communities bordering Colombia and Brazil, and oilfields close to
Ecuador (Fig 1).

Despite these ambitious development goals, only a few qualitative studies have been con-
ducted regarding potential environmental impacts of such projects. Recent studies have pro-
jected that deforestation will reach 1.8 million hectares in 2021 or 4.8% of Loreto, mostly
“along new roads” [12]. These projections are based on linear extrapolation of past trends and
although these numbers are feasible, modeling efforts to date have been limited in their capac-
ity to predict the spatial distribution and pattern of future deforestation. This article fills this
gap by assessing the impact of new roads in the region on deforestation through a raster-based
spatial econometric model, a topic addressed in the following sections.
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3. Conceptual Model of Deforestation and Data Set
The conceptual model aims to explain deforestation by considering the role of market access to
agricultural land use decisions. Key to this model is the concept of potential economic rent
developed by von Thünen, whereby rent declines as a function of transportation costs. In this
model, agents are more likely to deforest when rents from agricultural land uses (Ra) are greater
than rents obtained from standing forests (Rf), both being non-negative [24, 25].

Rents for a given pixel i depend of the prices obtained for agricultural or forest products net
of transportation costs and therefore can be stated as functions of Euclidean or weighted

Fig 1. Department of Loreto in the Peruvian Amazon. Planned infrastructure will crisscross the
department and will provide connection to the national road system.

doi:10.1371/journal.pone.0152058.g001
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distances from transportation corridors such as rivers, roads, and central markets [24, 26]. The
likelihood of a given pixel i being deforested is then modeled as a linear function of (weighted
or unweighted) distances (TC) and other control variables that affect rent such as protection
status, biophysical characteristics, and socioeconomic variables (x). Define y�i = Ra

i—Rf
i =

αTCi + xiβ + ei. Assuming agents are profit-maximizers, the probability of observing deforesta-
tion (y = 1) can be written as:

Pðy ¼ 1jx;TCÞ ¼ Pðy� > 0jx;TCÞ ¼ Pðe > �aTC� xβjx;TCÞ ¼ FðaTC þ xβÞ

yi ¼
0; if y� < 0

1; if y� > 0

(

where α is the vector of coefficents associated with TC and β the vector of coefficients associ-
ated with the vector of controls x. If we assume that the unobservable term e is normally dis-
tributed, then the probability of deforestation is given as P(y = 1|x, TC) = P(y� > 0|x, TC) =
P(e> −αTC − xβ|x, TC) = F(αTC + xβ), where F(.) is the cumulative normal density function,
which leads to a non-spatial probit model.

3.1. Road endogeneity issues
The proper identification of the effect of roads on deforestation must address potential
endogeneity in the placement of roads, a routing decision that can arise from two processes.
First, roads can be purposefully routed through areas with higher suitability for agricultural
development (e.g. better soils, terrain, and climate) and if such biophysical factors are left
uncontrolled, the effect of roads on deforestation will likely be overestimated [24, 27]. The
second case arises from an inverse causality process whereby deforestation actually precedes
the construction of roads, which are therefore built as a response to agricultural develop-
ment [28]. For the case of Loreto and this analysis in particular, where only three year-
round trafficable roads exist, endogeneity does not seem to be likely. As explained above, the
construction of the Yurimaguas -Tarapoto road was motivated mostly by national and inter-
national interests in connecting two large cities to the national network system in order to
facilitate the transportation of goods [19]. The road connecting the upper Marañon River in
western Loreto to the national grid was motivated by oil exploration in that region and is
therefore unrelated to agricultural development objectives [29]. Finally, the Iquitos-Nauta
road construction was motivated mostly by the savings in transportation time between Lore-
to’s capital and this important logistic point at the confluence of the Marañon and Ucayalli
Rivers, which are the main transportation arteries in Loreto [30]. In addition, the regression
analysis (see below) attempts to control for biophysical characteristics that may be corre-
lated with deforestation and road construction such as soil type, precipitation, ecosystem
type, and presence of wetlands. The analysis also masks out all deforestation that occurred
prior to 2000, the year when all three trafficable roads currently in existence in Loreto
became fully connected during the dry season with the completion of bridges, although the
opening of the road paths began in the 1970s in fits and starts and paving was completed
only in the mid-2000s [30, 31]. While endogeneity cannot be ruled out completely, the
empirical context and the analytical setup work to mitigate these concerns.

3.2 Long-term effect of roads on deforestation
In addition to endogeneity issues, another modeling challenge arises by virtue of the long term
effect of roads on deforestation. Typically, policy makers, Earth systems scientists, and
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ecologists are interested in the accumulated total effect, not on yearly rates. However, total
deforestation due to road construction is not observed instantaneously in a single period after
construction; rather its effects are observed over a duration lasting years. This is because we
rarely observe landholders clearing all their plots in a single time [32], although theory predicts
that in steady-state equilibrium, the sum of annual rates will reach an optimal total amount of
deforestation [33]. As stated previously, I use observed deforestation accumulated from 2001–
2014 in the estimation. The upper bound year (2014) is the most current deforestation estimate
obtainable from satellite images. Thus, the analysis presented here can be interpreted as the
accumulated effect of roads on deforestation in a 14 year period after a road acquired a status
of “fully passable.”

3.3 Model variables and data sources
The data used in the statistical analyses were made available to the author by the Wildlife Con-
servation Society (WCS) office in Peru; they were also derived from online sources. All digital
files were either in or converted to raster format, projected to UTM coordinate system, and
resampled to 900 m cell resolution using nearest neighbor algorithms. This meso-scale cell res-
olution was chosen as a good compromise among the various scales of the data available. For
instance, the deforestation data (see below) is at 30 m resolution, whereas the ecosystem maps
represent units at scales of “thousands of hectares” [34]. After masking out previously defor-
ested cells (pre-2000) and open water cells, these 900m cells constitute the units of observation
(n = 435,138). The dependent variable ‘deforestation’ is from the Peruvian Ministry of the
Environment and Ministry of Agriculture [35]. Originally at 30 m resolution, this Landsat-
based dataset detected deforestation prior to 2000, the baseline year, and from 2001to 2014 on
an annual basis. According to this dataset, accumulated deforestation until 2000 was 9,142 km2

and from 2001–2014 the area deforested amounted to 8,330 km2, resulting in a total deforested
area of 17,472 km2 or 4.6% of Loreto.

In most spatially explicit models, rent is proxied by Euclidean distances to roads, to naviga-
ble rivers, and to main cities [36, 37]. These variables were calculated within ArcGIS1 using
built-in functions; the average distance of the pixels to a road segment was 155.8 km (standard
deviation, or s.d. 90.8 km) with a maximum distance of 477 km (Table 1). The average distance
to a navigable river was much smaller, only 7.77 km (s.d. 6.1 km), an indication of the extensive
hydrologic network in Loreto. The average distance of the pixels to the nearest city in the
region, either Iquitos, Yurimaguas, or Pucallpa was 191.5 km (s.d. 86.6 km) with a maximum
distance of 480 km.

In addition to unweighted Euclidean distance variables, I specified a model with a variable
representing ‘accumulated transportation costs’ (Wdisti) that captures the weighted distance
between each cell i to the nearest market place. Specifically, Wdisti = min(Wdisti1, Wdisti2,
Wdisti3), where the indexes 1, 2, 3 denote the three relevant market centers in the study area,
Iquitos and Yurimaguas in Loreto, and Pucallpa in the Department of San Martin (Fig 1). The
transportation cost between each cell and a market center was calculated within ArcGIS1

using cost distance functions based on the Dijkstra algorithm [38]. I first assign a “friction
value” for each cell, which is the cost of traversing the cell (Table 2). The friction value varies
according to the mode of transportation (e.g. river, road) and quality and type of infrastructure
(e.g. paved road vs. dirt road or large river vs. narrower, smaller river). For example, transport
of one sack of grain/fruits (50–60 kg) by boat along a large river such as the Ucayali costs
$0.0103 km-1 and $0.30 km-1 on a dirt road (values in Peruvian Soles). In essence, lower fric-
tion values “shorten” the size of the cell relative to cells with higher friction values. Thus, two
cells of same resolution may have different weighted “lengths” depending on their friction
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value. These transportation costs were based on 42 surveys conducted by a WCS staff member
during the low water season of 2014 along the Ucayali and Maranõn Rivers; they were also
taken from the literature (see sources on Table 2). Hence, the accumulated transportation cost
variable is a weighted distance measurement that incorporates information about distance to
markets as well as transportation costs. The calculated accumulated cost values range from $0
to 184/sack, with a mean of $43.33, a median of $32, and a s. d. of $35 (Table 1).

A set of dummy variables was also included to control for different biophysical characteris-
tics. I used NatureServe’s ecosystems macrogroup classification to distinguish white (4.4% of
the area) and black water flooded forests (24.4%), as they may have different agricultural apti-
tudes due to differences in river sediment deposition [34, 39]. Black water ecosystems include

Table 1. Descriptive statistics of the variables used in the regression (n = 435,138).

Variable (abbreviation between parentheses) Unit Mean Std. Dev. Min Max

Deforestation binary 0.026 0.158 0 1

Distance to nearest road (Droad) kilometers 155.782 90.810 0 477.00

Distance to nearest river (Driver) kilometers 7.767 6.074 0 43.879

Distance to nearest city (Dcity) kilometers 191.473 86.563 0 480.038

Accumulated cost (Wdist) Soles/sack 43.329 34.999 0 184.764

Distance to pre-2000 deforestation (Ddft) kilometers 12.628 10.136 0.9 57.240

National Protected Areas (NPA) binary 0.181 0.385 0 1

Elevation (Dem) meters 185.72 155.16 56 2182

Slope (Slp) percent 0.936 2.573 0 58.872

Precipitation (Precip) meters/yr 2.901 0.465 1.547 3.584

Gleysols (Gley) binary 0.372 .483 0 1

Cambisols (Camb) binary 0.163 0.369 0 1

Alisols (Alis) binary 0.047 0.211 0 1

Acrisols (Acri) binary 0.403 0.490 0 1

Distance to pipeline (Dpipes) kilometers 175.784 133.692 0 568.340

Distance to oil wells (Dwells) kilometers 161.800 125.913 0 565.172

Black water environment (Blkwt) binary 0.244 0.429 0 1

White water environment (Whtwt) binary 0.044 0. 206 0 1

Non-flooded forests (Ralta) binary 0. 558 0. 496 0 1

Wetlands (Wet) binary 0.122 0.328 0 1

doi:10.1371/journal.pone.0152058.t001

Table 2. Transportation costs according to different modes of transportation and infrastructure
quality.

Type Friction
($/meter/sc)

Source

Class I Rivers 0.0000103 From WCS survey

Class II Rivers 0.0000320 From WCS survey

Class III Rivers 0.0000534 From WCS survey

Class IV Rivers 0.0000750 From WCS survey

Asphalted Roads 0.0001000 Roughly 30% more expensive than class IV rivers (Arima et al.
2007)

Dirt Road
(trochas)

0.0003000 3x more expensive than on asphalted road (Arima et al. 2007)

Natural bed—
forest

0.0020000 20x more expensive than on asphalted road (Arima et al.
2007)

doi:10.1371/journal.pone.0152058.t002
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the classes ‘black water floodplain forests of the Western Amazon, black water flooded forests
of the Western Amazon, black water flooded forests of the Southwestern Amazon.’White
water ecosystems are ‘white water floodplain forests of the Western Amazon, white water
flooded forests of the Western Amazon, white water flooded forests of the SouthWestern Ama-
zon, and white water flooded forests of the Upper Amazon. Non-flooded forests include ‘for-
ests of the plains of the Western Amazon, forests of the peneplains of the Western Amazon,
and forests of the peneplains of the SouthWestern Amazon. Subandean forests constitute the
omitted variable.

Lowland, non-flooded forests occupy 55.8% of the area and sub-Andean forests (omitted
categorical variable) account for the remaining 15.4% (Table 2). In addition to those ecosystem
variables, a binary variable that identifies wetlands [40, 41] was also included because these
environments subject to annual flooding are less likely to have roads built on them. Approxi-
mately 12% of Loreto’s area is wetland, located mostly along the rivers and between the Mara-
ñon and Ucayalli rivers, a geologic region known as the Ucamara depression. Also included
was elevation from the Shuttle Radar Topography Mission and derived slope variables. Loreto’s
mean elevation excluding masked cells is only 185.7 m but it ranges from 54 to 2,182 m in its
western Andean portion. Likewise, the average slope is only 0.9%, but ranges from 0 to 58.9%
or roughly 30 degrees. Completing the biophysical controls, I added soil type and precipitation
since both have been shown to be associated with deforestation and agricultural productivity in
Amazonia [32, 42]. Precipitation data are from the Tropical Rainfall Measuring Mission
(TRMM) product 3B43 version 7. Through the use of raster algebra, monthly rainfall values
per hour were converted to a 16-year (1999–2014) average rainfall raster. Average rainfall in
Loreto is 2.901 meters/yr with a range between 1.547–3.584 m and s.d. of 0.465 m. Soil data are
from the harmonized world soil database version 1.2 [43]. The soil types include gleysols
(37%), cambisols (16%), alisols (4.7%), and acrisols (40%). The omitted category contains lep-
tosols and a small portion of fluvisols.

Two other variables, Euclidean distance to oil wells and pipelines, control for the potential
effect of the oil industry on deforestation. The average distance of the cells to a pipeline and well
is 175 and 162 km respectively, with a maximum value at around 568 km. Distance to pre-2000
deforested areas was also included in some model specifications because new deforestation tends
to sprawl from old deforestation. Moreover, this variable also control for other unobservables
that may be correlated with roads [42]. Finally, a dummy variable was included to identify cells
inside national protected areas, which account for approximately 18% of Loreto.

4. Spatially Explicit Models

4.1 Non-spatial probit model
Before presenting the spatial probit model application developed by Smith and LeSage [10]
(henceforth SLS), a non-spatial probit (henceforth NSP) model is first considered in order to pro-
vide a context and motivation for the implementation of the spatial model. Table 3, shows NSP
regression results using the explanatory variables described in the previous section, with Huber-
White robust standard errors in parentheses. Model 1 (NSP1) uses Euclidean distance measures
in level and squared values as explanatory variables in addition to the other control variables.
Model 2 (NSP2) uses the weighted distance variable (Wdist) instead of the Euclidean distance
variables. Interpretation of results relies not only on statements about statistical significance but
also on the practical significance of each variable. I thus measure the average partial effect (APE)

for a continuous variable xk in levels and quadratic form as N�1
Pn
i¼1

ðbbk þ 2bbk2xikÞ�ðxi
bβÞ where ϕ

is the standard normal density function and bbk is the estimated coefficient of the variable in level
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Table 3. Regression results for non-spatial probit (NSP) and SLS spatial probit.

Variable Coefficient(standard error)

NSP1 NSP2 SLS1 SLS2 SLS3

Wdist -0.0052*** -0.0102***

(0.0002) (0.0006)

NPA -0.351*** -0.363*** -0.5335*** -0.5355*** -0.5562***

(0.019) (0.0193) (0.0542) (0.0544) (0.0236)

DEM -0.0002* -0.0005*** -0.0027*** -0.0026*** -0.0040***

(8.9e-05) (0.0001) (0.0001) (0.0001) (0.0001)

Slope 0.0067** 0.0149*** 0.0502*** 0.0503*** 0.0795***

(0.0032) (0.0031) (0.0056) (0.0056) (0.0071)

Dpipes 0.0031*** 0.0036*** 0.0037*** 0.0037*** 0.0007***

(0.0002) (0.0002) (0.0003) (0.0004) (0.0001)

Dpipes2 -9.69e-06*** -9.41e-06*** -1.2e-05*** -1.1e-05***

(7.38e-07) 7.30e-07 (1.0e-06) (1.0e-06)

Dwells -0.0020*** -0.0001 -0.0016*** -0.0016*** 0.0018***

(0.0002) (0.0002) (0.0004) (0.0004) (0.0002)

Dwells2 1.10e-5*** 6.19e-06*** 1.1e-05*** 1.1e-05***

(7.79e-07) 7.31e-07 (1.0e-06) (1.0e-06)

Ddft -0.1351*** -0.159*** -0.2495*** -0.2495*** -0.1334***

(0.0023) (0.0024) (0.0089) (0.0087) (0.0167)

Ddft2 0.0025*** 0.0030*** 0.0048*** 0.0048***

(4.38e-05) (4.38e-05) (0.0002) (0.0002)

Droad -0.0023*** -0.0045*** -0.0045***

(0.0002) (0.0007) (0.0007)

Droad2 6.99e-06*** 1.4e-05*** 1.4e-05***

(8.67e-07) (2.0e-06) (2.0e-06)

Driver -0.0894*** -0.2213*** -0.2226***

(0.0028) (0.0087) (0.0086)

Driver2 0.0024*** 0.0060*** 0.0060***

(8.44e-05) (0.0002) (0.0002)

Dcity -0.0038*** -0.0057*** -0.0057***

(0.0003) (0.0005) (0.0005)

Dcity2 5.47e-06*** 9.0e-05*** 9.0e-05***

9.31e-07 (1.0e-05) (1.0e-05)

Precip -0.330*** -0.330*** -0.4692*** -0.4664*** -0.5217***

(0.0180) (0.015) (0.0303) (0.0304) (0.0432)

Blkwt -0.488*** -0.516*** -0.7648*** -0.7643*** -0.7960***

(0.0180) (0.017) (0.0259) (0.0259) (0.0392)

Whtwt -0.140*** -0.118*** -0.3376*** -0.3373*** -0.1134***

(0.0195) (0.019) (0.0358) (0.0358) (0.0465)

Ralta -0.135*** -0.271*** -0.1977*** -0.1995*** -0.3972***

(0.020) (0.0184) (0.0221) (0.0221) (0.0340)

Wet -0.190*** -0.196*** -0.2048*** -0.2033*** -0.1931***

(0.0153) (0.0153) (0.0230) (0.0231) (0.0206)

Gley 0.722*** 0.407*** -0.2555*** -0.2492*** -0.6985***

(0.085) (0.0812) (0.1075) (0.1084) (0.1168)

Camb 0.752*** 0.529*** -0.0656 -0.0633 -0.3747***

(0.080) (0.077) (0.0932) (0.0937) (0.0976)

(Continued)
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form and bbk2 the estimated coefficient of the variable in quadratic form. APEs for a variable

without its quadratic form are obtained by setting bbk2 ¼ 0. For a binary variable k, APE is

N�1
Pn
i¼1

½Fðxk�;i
bβk� þ bbkÞ � Fðxk�;i

bβk�Þ�, where the index k- indicates that the variable k is not
part of the vector andF is the cumulative normal. Standard errors for the partial effects were also
calculated but not reported since the effects were all statistically significant at p = 0.01, with the
exception of elevation and slope partial effects (significant at p = 0.05).

The variables of interest, distance to roads and ‘transportation cost’ (Wdist), have the
expected negative sign for the level term and are both statistically significant in both NSP1 and
NSP2. The coefficient for the quadratic term for distance to roads is positive in the NSP1
model, indicating that the combined effect becomes smaller as distance increases. The esti-
mated average partial effect (APE) for Wdist is relatively small; a 1 Peruvian Sol increase in
freight cost will decrease the probability of deforestation by 0.0003. Likewise, a one kilometer
increase in distance to a road decreases the probability by an average of 3.0e-5. The APE of dis-
tance to rivers is two orders of magnitude larger, -0.0032, indicating the importance of rivers as
the main transportation mode in the region. On the other hand, distance to the nearest city
had a small APE of -1.0e-4 (in model NSP1). National protected areas (NPA) are also highly
significant and reduce deforestation by 0.016 (in NSP1) and 0.017 (in NSP2), a surprisingly
large effect given that deforestation is quite low even outside protected areas.

The impact of the physical variables on deforestation varied in magnitude. Although all var-
iables are statistically significant, elevation (DEM) and slope APEs are quite small (APE 10−6

and 10−4 order of magnitude respectively). The ecosystem type variables had much larger
APEs on both NSP1 and NSP2: deforestation is 0.023 smaller in black water (Blkwater) and
0.06 in lowland non-flooded (Resalta) environments on average, when compared to the omit-
ted category sub-Andean forests. White water environments also showed small negative APEs
around -0.006 on both models, effects similar to wetlands (-0.009). The APEs of soil types on
deforestation are all positive with respect to the omitted variable leptsols, with a 10−2 order of
magnitude. Finally, precipitation also had a small negative effect on deforestation with APEs of
-0.15 in both models (the unit is in meters of rain per year).

Oil exploration does not seem to impact deforestation. Distance to oil wells (Dwells) and
distance to pipelines (Dpipes) had opposite effects and negligible APEs values, similar in mag-
nitude to elevation (10−5). Overall, the estimated probabilities range from 0.0 to 0.486 (NSP1)

Table 3. (Continued)

Variable Coefficient(standard error)

NSP1 NSP2 SLS1 SLS2 SLS3

Alis 0.669*** 0.312*** -0.3127** -0.3090* -0.5831*

(0.094) (0.0912) (0.2008) (0.2023) (0.1250)

Acri 0.661*** 0.419*** -0.3417*** -0.3359*** -0.6428***

(0.0864) (0.0825) (0.1174) (0.1187) (0.1210)

constant 0.0075 -0.4605*** 2.135*** 2.1168*** 1.0653***

(0.100) (0.0962) (0.124) (0.1254) (0.1638)

ρ 0.0475*** 0.1036*** 0.1500***

(0.0190) (0.0313) (0.0223)

Note

*, **, *** significant at p< 0.1, p<0.05, p<0.01 respectively; n = 435,138.

doi:10.1371/journal.pone.0152058.t003
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with an average of 0.0256, a value similar to the overall proportion of deforested cells in the
dataset. For the NSP2 model, predicted probabilities range from 0.0 to 0.374 with the same
mean probability value. Different model specifications without squared variables yielded simi-
lar estimates, and results are available upon request to the author.

In addition to issues of spatial autocorrelation that can lead to parameter bias and/or ineffi-
cient standard error estimation [44], NSP models usually fail to replicate complex spatial pat-
terns of land change, which is an important consideration since ecology and Earth system
sciences are interested not only in the amount of deforestation but also where deforestation is
likely to occur. Consider the maps shown in Fig 2; here, the left central panel shows actual
deforestation in Loreto in red and panels A and B show details of two regions, the Lower Ama-
zon and Yurimaguas. Estimated probabilities are shown on the right panels and are color
coded with low probabilities of deforestation in green and high probabilities in red. Since the
maximum estimated probability of the NSP1 model is 0.48, all cells in A1 and B1 are in green
hue. In order to examine location agreement/disagreement patterns, cells predicted to be defor-
ested were cross tabulated with actual deforested cells (Fig 3). The cells predicted to be defor-
ested were selected by searching for a threshold probability p� such that the sum of the areas of
cells j with estimated probability bpj � p� equals the observed amount of deforestation [45].

This probit goodness-of-fit measure is preferred when one outcome is unbalanced in the sam-
ple, which is the case of Loreto where only 2.5% of the cells are deforested [45]. The calculated
threshold probability p� was 0.181. That is, the number of the cells with estimated probability
greater than 0.181 equals the observed 11,218 cells that are actually deforested. Thus, by fixing
the estimated area to match the actual value, we can investigate how well the model allocates
deforestation spatially. Predicted deforestation (cells in red and green) is clustered along the
Ucayalli, Amazon, lower Yavari, parts of Marañon, and Napo rivers, where probabilities are
higher due to cheaper fluvial transportation costs and proximity to the three regional market
centers, and also because this distance-based variable is multiplied by one single global parame-
ter ba. The NSP model fails to capture the fragmented nature of deforestation in Loreto as evi-
denced by the cross tabulation of actual and predicted deforestation in Fig 3, panel A.
Approximately 30% (3,316 cells) of the actual deforestation was correctly allocated by the
model (cells in red). The remaining 7,902 cells (70%) were areas that are actually deforested
but were predicted to be forests (in yellow). These under-predictions are concentrated around
Iquitos and Yurimaguas, lower Amazon River as well as in isolated pockets of deforestation
along smaller rivers. Since the deforestation quantity is fixed to match actual deforestation, an
equivalent area was (over-) predicted as deforested when in fact it is forested (in green).

To summarize, the non-spatial probit model generates probability surfaces that are usually
very smooth, with little local variation because it does not incorporate any spatial neighbor-
hood effects. Thus, fragmented patterns of deforestation are not easily reproduced or captured
by such models. This is a significant shortcoming when the objective of the model is not only
to statistically determining the drivers of land change but also to predict patterns of landscape
change or fragmentation that may be important to certain ecological and biophysical processes
(e.g. local extinction of species, viability of fragments, fire regime, carbon emissions).

4.2 Spatial probit regression model
Smith and LeSage [10] developed a probit model with spatial dependencies where individual
observations are assigned to regions. In their model, spatial dependencies are ascribed to occur
between regions, not between individual observations. In their model implementation, SLS
used county-level observations grouped by states (i.e. regions) and spatial dependencies were
assigned between states instead of between individual counties. Following SLS, we can write
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Fig 2. Actual deforestation and estimated probabilities. (A) Actual deforestation along the lower Amazon River from 2001–2014. (B) Actual deforestation
near Yurimaguas from 2001–2014. (A1 & B1)–Estimated probabilities from NSP1model. (A2 & B2) Estimated probabilities from SLS1 model.

doi:10.1371/journal.pone.0152058.g002
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Fig 3. Cross tabulation of actual vs. predicted deforestation. NSP1Model. (B) SLS1 Model spatial
allocation of deforestation is superior to the NSP1 Model.

doi:10.1371/journal.pone.0152058.g003
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our empirical model of deforestation for pixel i in region j as:

y�ij ¼ aTCij þ xijβþ yj þ eij

yj ¼ r
Xm
k¼1

wjkyk þ mj

where θj: j = 1, . . .,m is the regional effect and is defined as a spatial autoregressive process,
where wjk are the weights reflecting the degree of spatial ‘closeness’ between regions j and k,
and ρ is the parameter that reflects the overall degree of spatial dependency between regions. In
essence, this model contains two unobserved components, a region specific effect θj and an
individualistic effect eij. The regional effect θj captures unobserved phenomena that are con-
stant for all pixels i 2 j [44]. The idiosyncratic error eij is assumed to be normally distributed,
conditional on θ; μj is also assumed to be normally distributed.

To implement this model in a raster format, two Matlab scripts were written. The first script
divides the raster extent into regions that are 5x5 cells in size, labels and sorts each pixel to its
region, and creates a file containing the number of pixels within each region, which in this
application can be less than 25 for regions near the border of the raster extent or if a region
contains cells with masked out values. This 5x5 region size was chosen because it yields a good
compromise between computational feasibility (smaller regions are more computationally
demanding) and individual specificity (larger regions assume same unobserved effect over a
larger area). The second script creates regional neighborhood weight matrices and normalizes
each row sum

Pm
k¼1 wjk to one while keeping track of the pixel i region j sorting. Three model

specifications are shown in Table 2. Models SLS1 and SLS3 use neighborhood matrices where
only the four nearest neighboring regions, equally weighted, are considered. Model SP2 uses a
neighborhood matrix whereby the weights for each region are calculated proportionally to the
inverse of the distance to the nearest 24 regions. Fig 4 shows the example of the four nearest
neighbor case for a simple raster with cells labeled 1–225 divided into 9 regions, each with 25
cells. The region in the middle containing cells 101–125 and colored in dark gray has four
neighboring regions colored in light gray.

Spatial econometric models have rarely been used with raster or gridded data when the
extent of the study area is large as is the case of Loreto, because of the significant computational
challenges associated with the high dimensionality of the corresponding spatial weight matrix
W when spatial dependencies are assigned between each individual observation. Fig 4 exempli-
fies why the SLS model is computationally less demanding than a model where spatial depen-
dency is individually assigned. In the latter case, the neighborhood matrix for this small raster
would be 225x225 in size. The SLS model would only require a 9x9 neighborhood matrix.

For the Loreto area, the scripts allocated the 435,138 raster cells into 18,903 regions and cre-
ated a corresponding (sparse) weight matrix of similar size. To run the SLS probit regression,
the function semip_g from LeSage’s spatial econometric Matlab library was used [46]. This
function implements a hierarchical Bayesian approach and a Markov Chain Monte Carlo
(MCMC) sampler to estimate the parameters of interest. The results presented in Table 3, col-
umns 4–6, are based on the average of 500 valid draws after the first 500 were omitted for con-
vergence (burn-in) of the MCMC sampler. Likewise, the reported standard errors between
parentheses are the standard deviation of the last 500 draws. In the Supplementary Information
document (S1 File), the parameters and distributions used in the sampler are summarized but
readers are encouraged to find detailed description of the methods in the original manuscript
by [10, 44]. The average partial effects for the SLS model are calculated similarly to the NSP
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case because it does not contain any spatial spillover effect [44]. The only difference is that now
the latent variable’s fitted values include the regional spatial effect.

The estimated coefficients for the SLS1 and SLS2 are essentially the same with minor varia-
tion at the fourth decimal place, indicating that the different neighborhood matrices had little
impact on the estimation, a finding consistent with recent literature [47]. The discussion below
will focus on SLS1, which uses the same variables as the NSP1 model. The sign of the coeffi-
cients of the spatial probit models agree with the NSP estimates with the exception of the soil
variables, which are positive in the NSP models and negative and statistically significant in the
SLS model. The APE for distance to roads is -3.59e-05 and very similar to the NSP1. APE for
distance to rivers is also in accordance with the NSP1 model, -0.0038. Similarly, distance to
nearest city yielded an APE of -2.0e-5. SLS3 estimated an APE for Wdist smaller than the esti-
mated non-spatial probit and indicates that a 1 Sol. increase in freight cost will decrease the
probability of deforestation by -0.0002. The APE of national protected areas is -0.0083, still a
relatively sizeable impact. The spatial effects parameter ρ indicates positive and significant spa-
tial dependence between regions, as expected.

The advantages of the spatial over the non-spatial model for land change models are clearly
visible in Fig 2. Panels A2 and B2 use the same color code as in A1 and B1 to show estimated
probabilities, which now range from 0 to 0.98. Patterns and clusters of high (and low) deforesta-
tion probabilities are discernible due to the strong spatial regional neighborhood effect. Clusters
of high probability near Iquitos, Yurimaguas, lower Amazon, and upper Ucayali River match
actual deforestation reasonably well (Panel A). Fig 3, panel B replicates the observed quantity of
deforestation by defining a cell j to be deforested if bpj � p� ¼ 0:160. The ‘blocky’ appearance of

the map reflects the strong regional effect whereby the cells within each block show similar mag-
nitudes in probabilities. Unlike NSP, deforestation estimates are not continuous over the land-
scape but show a more fragmented and jagged pattern, consistent with actual deforestation. The
cross tabulation (Fig 3, panel B) indicates that 44% of the actual deforestation was correctly allo-
cated by the SLS model, a large improvement when compared to the NSP (30%), although 56%
of deforested cells are still either over or under-predicted (as deforested).

Fig 4. Raster implementation of regions and spatial neighborhoods. In this example, region in the center
is neighbor to the four rook neighbors in light gray.

doi:10.1371/journal.pone.0152058.g004
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The better performance of the SLS model in allocating predicted deforestation is confirmed
by Hagen’s fuzzy similarity metric [48]. The cross-tabulations shown in Fig 3 and statistics
such as Cohen’s Kappa coefficient measure the degree of similarity between two rasters by eval-
uating if the state of a cell (e.g. deforested or forested) in the predicted raster perfectly overlaps
the actual raster. This pixel-by-pixel comparison is problematic because it treats a small offset
error in location, say by one cell, the same as a large displacement error [49]. Therefore, simi-
larity metrics that bring cell neighborhoods into the calculation are preferred. Following [50], I
coded Hagen’s Two-Way fuzzy similarity metric using a neighborhood weight matrix based on
an exponential decay function (W = 2-d/2), where d is the distance between the cell center and
each of the neighborhood cells within a defined window kernel. This neighborhood weight
matrix incorporates fuzziness in location and measures the degree of similarity of the simulated
center cell to its corresponding center cell and neighbors of the actual raster. The Two-Way
fuzzy metric ranges from 0 to 1, where 1 depicts a perfect center cell match, independent of the
neighborhood. In fairness to the NSP1 model, a 5x5 window kernel size was used to mimic the
regional effect of the spatial model and calculated a global Two-Way statistic by averaging the
fuzzy metric for all the cells that are predicted to be deforested in each model. The average
Two-Way similarity is 0.64 for the NSP1 and 0.79 for the SLS1 model, a sizable difference in
location accuracy. Thus, even when accuracy measurements use fuzzy or neighborhood met-
rics, the allocation performance of the spatial model is superior to the non-spatial model.

5. Simulating the Impact of New Roads on Deforestation and on Carbon
Emissions
In this section, I use the estimated parameters from NSP1 and SLS1 and consider how the
reduction of transport costs brought by planned roads will impact the probability of deforesta-
tion and carbon emissions. The federal and regional governments have planned the construc-
tion of several road segments (Fig 1, traced lines in black) to support a dual mode of
transportation based on the extensive hydrologic network and roads instead of relying solely
on water transport, as is the case today. These roads are designed to provide interconnectivity
between important watersheds, thereby cutting transportation time and costs of getting prod-
ucts to central markets. For example, the Mazan—San Antonio del Estrecho will connect the
Napo and Putumayo watersheds, the Jenaro Herrera–Angamos will connect the Ucayali and
Yavarí Rivers, and the Orellana–Huallaga stretch will connect the Ucayalli and Huallaga Rivers
and Yavarí River at the frontier with Brazil [31]. The road segments on the northwest part of
Loreto are intended to provide access to important oil concessions and to secure the frontiers
with Ecuador [51]. The segment fromMarsella—Intuto along the Tigre River to the already
built Iquitos—Nauta road will link Iquitos to the national road network once the segments to
the Department of Amazonas are completed.

The effect of building these new roads on deforestation is estimated by accounting for the
change in the “distance to roads” and “distance to deforestation” variables. Specifically, a GIS
layer with the new roads was merged with the current roads’ layer and new distance values
were calculated. These new variables substituted for the original variables and were ‘plugged-
into’ the latent variable equation, and new probabilities were calculated. Let TC� be a vector
containing these two new variables. Then the new raster probabilities NSP1� and SLS1� can be
defined as:

NSP1� � dprobi ¼ FðbaTC�
i þ xi

bβÞ for the NSP1 model, and

SLS1� � dprobij ¼ FðbaTC�
ij þ xij

bβ þ brPm
k¼1 wjk

bykÞ for the SLS1 model, where the ba;bβ; br are

the estimated regression parameters presented in Table 3 and by is the estimated regional effect.
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Once in possession of these new probability surfaces for NSP1� and SLS1�, I generated 1,000
stochastic predicted deforestation landscapes for each model. In each realization, the probability
of each cell i was compared to a random number draw from a uniform distribution. If the esti-
mated probability for a given pixel was larger than the random number, I considered the pixel to
be deforested [52, 53]. Next, I spatially intersected each stochastic predicted deforestation raster
with an aboveground carbon dataset obtained from [54] and calculate the total amount of pre-
dicted emissions assuming that all carbon in a deforested cell is released into the atmosphere.

The average number of cells predicted to be deforested under the SLS1� model is 251 or
only 203 km2 with a range between [205, 294] cells, whereas the NSP1� predicts a larger
amount, 339 cells or 274 km2 with a range of [288,389] (Fig 5, panel A). This translates into
average aboveground carbon emissions of 1.36 and 1.85 x106 tons for the SLS1� and NSP1�

models respectively (Fig 5 panel B). These differences in simulated deforestation among the
spatial and non-spatial models highlights the ability of the former to differentiate cells with
very low and cells with very high probabilities of deforestation whereas the NSP model gener-
ates a relatively more uniform (but still skewed to the left) distribution of probabilities with
many cells showing mid-range probabilities. For instance, the SLS1� model generates 1,845
cells with probability greater than 0.5; at the same time 367,714 cells have probability less than
0.01. In contrast, only3 cells in the NSP1� have probability greater than 0.5 and only 244,754
cells with probability less than 0.01. Thus, the larger number of cells with probabilities in the
mid-range increases their likelihood of being labeled ‘deforested’ in the stochastic analysis,
leading to higher levels of predicted deforestation in the NSP1� model.

6. Discussion
This paper implements two sets of spatially explicit models, the non-spatial probit and the spa-
tial probit with regional effects, to estimate the impact of new roads on deforestation in Loreto,
Peru. It provides a policy relevant analysis for the western Amazon, while serving as an exam-
ple of ways in which drivers of deforestation can be studied. The discussion below will address
both policy implications of the analysis as well as computational issues related to the methods.

The methodological motivation for implementing the SLS model using raster data was two-
fold. First, spatially autocorrelated data generating processes are usually not incorporated into
raster-based observations due to computational constraints. By adapting the SLS model to ras-
ter data, the computational requirements can be reduced significantly. Second, the SLS model
replicates complex patterns of deforestation because the addition of the regional effect captures
variations at a more local scale than the global parameters obtained in the non-spatial counter-
part. There is however a ‘blocky’ or ‘pixelated’ aspect to the spatial deforestation pattern, a
result of the strong regional effect captured by the estimated model that overpowers the varia-
tion of individual cells within each region. This pixelation could be reduced by making the
region smaller. At the limit, if each observation is treated as a region, then the model will esti-
mate spatial dependencies between individual pixels [10].

This region size reduction is attractive but it comes at the expense of computational cost. In
the Loreto example, each region was defined as a 5x5 cell square window and spatial dependen-
cies were assigned to occur between nearest neighbors. The 5x5 cell region size created 18,903
regions in total and the estimation procedure with 1,000 MCMC samplings took 7 hours and 5
min in a desktop computer equipped with Intel Pentium Xeon 3.20 GHZ processors and 24
GB of RAMmemory. Attempts to use smaller regions were not possible due to insufficient
RAMmemory required to handle the neighborhood matrix and the log determinant calcula-
tion. Processing time usually cannot be reduced further because the MCMC procedure cannot
be easily parallelized since each draw depends on the previous one. In principle, computational

Spatial Probit Econometric Model of Land Change

PLOSONE | DOI:10.1371/journal.pone.0152058 March 24, 2016 17 / 22



Fig 5. Predicted deforestation and carbon emissions. Histogram of cells predicted to be deforested from 1,000 stochastic simulations. (B) Associated
carbon emissions from same simulations.

doi:10.1371/journal.pone.0152058.g005
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concerns aside, the method can be easily adapted to cases where cells fall within regions of dif-
ferent shapes or sizes (e.g. administrative boundaries such as census tracts, voting districts,
etc.) or other neighborhood rules such as first or second order contiguity as long as the total
number of regions is kept relatively small.

From a policy viewpoint, the results from both probit regressions show that deforestation is
statistically correlated with transportation variables, but the marginal effects are small and
translate into a modest simulated impact on deforestation, estimated to be between ~200–300
km2. This finding is contrary to the literature on infrastructure development in tropical
regions, particularly for neighboring Brazil, where roads have been identified as one of the
most important proximate causes of deforestation [5, 42]. This small effect is likely due to the
current low levels of deforestation in Loreto that amount to less than 5% of the department.
Large scale commercial agriculture is nonexistent and therefore there is currently little demand
for large tracts of land for activities such as cattle ranching and soybean farming, as presently
found in the Brazilian Amazon [12, 55].

Technological progress, introduction of new crops, and the dispossession of indigenous
people’s land rights can of course change such a benign scenario, and the recent introduction
of palm oil plantations serves as a warning that the analysis could be underestimating the
impact of road construction in the region. Statistical land change models capture the relation-
ship between observed outcomes and explanatory variables, and therefore reflect only past con-
ditions. This means that projections of deforestation into the future assume that the processes
driving deforestation are stationary and uniform over time [56].

Despite this caveat, both models, and the spatial one in particular, can still be useful in
determining where deforestation is likely to occur, in addition to predicting the amount of
deforestation. The results suggest that spatial probits using raster data can be useful to land
change scientists and ecologists and also to decision makers as predictors of not only the
amount of deforestation but more importantly of emergent fragmentation patterns [57]. This
is of particular importance given fragmentation patterns play a key role in the viability of spe-
cies’ survival, carbon storage, forest fire, and other ecosystem processes [58–60].

Supporting Information
S1 File. Distributions and parameters used in the Bayesian spatial probit model.
(PDF)
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