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A comparison of genomic selection models across time in
interior spruce (Picea engelmannii× glauca) using unordered
SNP imputation methods

B Ratcliffe1, OG El-Dien1, J Klápště1,2, I Porth1, C Chen3, B Jaquish4 and YA El-Kassaby1

Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by
reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to
tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce
(Picea engelmannii× glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of
repeated tree height measurements through ages 3–40 years permitted the testing of GS methods temporally. The genotyping-
by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered
imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based
on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31–0.55) were observed and were of sufficient
capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with
spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and
decreased substantially with increasing difference in age between the training and validation populations (0.04–0.47). Moreover,
our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs
and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ
(BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits
evaluated.
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INTRODUCTION

The principal limitation in most tree-improvement programs is the
time required for the completion of one cycle of breeding, testing and
selection. In some programs, it can take up to 30 years to complete a
single cycle of breeding, specifically for traits with late expression
patterns. Strategies to maximize genetic gain per unit time should
then be the primary focus to rationalize the enormous spatial and
economic requirements associated with forest tree-improvement
practices (White et al., 2007). The concept of genomic selection
(GS) (Meuwissen et al., 2001) has promised to reduce the time
associated with breeding cycles, and has since established itself as a
paradigm in animal (Hayes et al., 2009) and plant (Heffner et al.,
2009) breeding systems. Though this movement has yet to occur
within a forest tree species context.
The novel GS approach combines phenotypes and genotypes of a

training population (TP) to develop a prediction model that estimates
genomic breeding values (GEBV) for selection candidates, requiring
only their genotypic information (Meuwissen et al., 2001). This
method may circumvent the need for the long testing phase that
forest trees require to attain accurate phenotypic data for traditional

pedigree-based estimation of breeding values, and offers a unique
opportunity to substantially increase the response to selection through
increasing the number of selection candidates. Previously, marker-
assisted early selection (MAES) has been considered as a selection
strategy for forest tree breeding to exploit the linkage disequilibrium
(LD) between quantitative trait loci (QTL) and genetic markers (White
et al., 2007). However, MAES has not been rewarding in forest tree
breeding programs owing to its severe limitations (Strauss et al., 1992).
The primary constraint that has withheld MAES from use in forest

trees is the low proportion of the phenotypic variance accounted for
by the relatively low number of statistically significant markers used in
the analysis (White et al., 2007). This limitation results primarily from
the infinitesimal genetic architecture of most complex growth-related
traits (Hill et al., 2008). Further limitations to MAES in forest trees
include low levels of LD (Neale and Savolainen, 2004) and strong
QTL-environment and QTL-lineage interactions due to overestima-
tion of the QTL effects (Beavis, 1998). GS is fundamentally different
from MAES through its simultaneous use of phenotypes and dense set
of markers (thousands), which are implemented without a prior
assumption concerning marker significance. GS is thus thought to
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capture more variation in traits with complex inheritance because it is
assumed that at least some of the many fitted markers will be in LD
with some of the QTL of the desired trait (Meuwissen et al., 2001).
The GS method has been enabled via current generation sequencing

technologies, their low per-sample cost and the use high density single
nucleotide polymorphism (SNP) genotyping platforms such as
genotyping-by-sequencing (GBS) (Elshire et al., 2011). The GBS
method is characterized by its use of methylation-sensitive restriction
enzymes to reduce genome complexity, and high levels of multi-
plexing, which efficiently obtain genome-wide SNP markers. The GBS
pipeline thus does not require prior genomic information, making it
suitable for non-model species such as forest trees owing to their
current lack of high-quality reference genomes (Elshire et al., 2011).
Recently, Chen et al. (2013) successfully demonstrated the suitability
of GBS for SNP discovery in two economically important forest tree
species, white spruce (Picea glauca (Moench) Voss) and lodgepole pine
(Pinus contorta Dougl. ex. Loud.). The density of SNP markers
obtained by GBS can be increased substantially by tolerating high
levels of missing data and use of marker imputation (Crossa et al.,
2013). However, the benefit of using imputation and the optimal
imputation method have not yet been completely validated in GS
studies that utilize GBS (Rutkoski et al., 2013).
The potential for use of GS in forest trees was first explored by

Grattapaglia and Resende (2011) through the use of deterministic
simulation studies. More recently, empirical studies have all produced
promising results in regards to acceleration of the breeding cycle for
three tree species; namely, eucalypts (Eucalyptus spp.) (Resende et al.,
2012a), loblolly pine (Pinus taeda L.) (Zapata-Valenzuela et al., 2012;
Resende et al., 2012b, c) and white spruce (Beaulieu et al., 2014a, b).
This study represents a novel approach over the preceding studies
through the application of the non-model GBS SNP discovery
pipeline, in addition to high missing data ratio imputation methods
to produce GS prediction models.
In the present study, we randomly selected 769 40-year-old interior

spruce (Picea engelmannii× glauca) trees from 25 elite open-pollinated
families grown on two progeny test sites near Prince George, BC.
Height at ages 3, 6, 10, 15, 30 and 40 were used to obtain estimates of
pedigree-based breeding values (EBV), narrow-sense heritability, age-
age genetic correlations, and in combination with SNP marker data,
GS prediction models and associated GEBV. The prediction models
were developed using three statistical approaches: ridge regression
BLUP (rrBLUP), generalized ridge regression (GRR) and BayesCπ
(BCπ). Further, we used the GBS pipeline for discovery of SNP
markers for each of the 769 interior spruce trees. Three unordered
high-density SNP imputation methods (K-Nearest Neighbor (KNN);
Singular Value Decomposition (SVD); Mean Imputation (M60)) were
used on a 60% missing data set to produce the SNP table, and used to
explore the effect of imputation method.
The objectives of this study are to: (i) Assess the predictive accuracy

(PA) of GS at different ages for the complex trait, tree height, in
interior spruce, (ii) evaluate the temporal PA of GS models for
purposes of model retraining, (iii) explore variation of PA in the
previous two objectives using combinations of three GS statistical
approaches and three imputation methods, (iv) consider the suitability
of SNPs discovered through a GBS pipeline in conjunction with
unordered high-density imputation, for GS in interior spruce, and (v)
assess the relative efficiency of GS to traditional pedigree-based BLUP
selection.

MATERIALS AND METHODS

Genetic material
Fresh foliage was obtained post flush in spring 2013 from two 40 year-old
interior spruce progeny trial sites, Quesnel and PGTIS, located within the
Prince George Seed Planning Zone (SPZ) of North-central British Columbia,
Canada (http://www2.gov.bc.ca/gov/topic.page?id=E06AB7FFB0AA49B88144
83B1ADC1F5F8). Tissues were sampled, separated, sealed and placed on ice
prior to being stored at − 80 °C until DNA extraction. Briefly, the two sites,
PGTIS (Lat. 53.771639 N, Long. 122.718778 W, Elev. 610m) and Quesnel
(Lat. 52.990889 N, Long. 122.2085 W, Elev. 915 m), contain a total of 32 940
trees initially planted with 2-year-old container nursery stock in a randomized
complete block design. The two sites are represented by the same 174 open-
pollinated families each planted in 10-tree-row plots within 10 replicate blocks
and 2.5 by 2.5mm spacing. This study concerns 769 randomly selected trees
from within a subset of 25 elite families based on breeding value for tree
volume.

Phenotypic data and MBLUP analysis
Tree height (m) at ages 3, 6, 10, 15, 30 and 40 year were used in this study.
Mature tree heights were obtained using an ultrasonic clinometer Vertex III
(Haglöf, Långsele, Sweden). The full data set consisting of a maximum of
29 475 trees from 174 open-pollinated families were used for estimation of
variance components, EBVs, age-age genetic correlations (rij), narrow-sense
individual tree heritabilities (h2i ) and their respective standard errors. The
following pedigree-based, multivariate polygenic model (MBLUP) (Mrode,
2014) was implemented using ASReml v. 3.0 software (VSN International,
Hemel Hempstead, UK; Gilmour et al., 2009):

Y i ¼ X ibi þ Z iai þ Z ibi þ Z iaei þ ei ð1Þ
where Yi is the vector of phenotypes for height at the i

th year, and Xi and Zi are
the incidence matrices relating observations of height at the ith year to the
vector of fixed site effect (βi), and vectors of random additive genetic effect (ai),
block effect (bi), additive genetic by site effect (aei), and residual effect (ei).
Assuming, aiBN 0; s2aiA

� �
, where s2ai is the additive genetic variance for the i

th

trait and A is the average numerator relationship matrix; biBNð0;s2bi IÞ,
where s2bi is the block variance for ith trait, and I is the identity matrix;
aeiBNð0;s2aei IÞ, where s2aei is the additive genetic by site interaction variance
for the ith trait; and ei~Nð0;s2ei IÞ, where s2ei is the residual variance for the ith

trait. The covariance matrix of the additive genetic term was modeled with a
heterogeneous general correlation structure (‘CORGH’) in ASReml to directly
obtain age-age genetic correlations (Gilmour et al., 2009).
Estimates of individual tree narrow-sense heritability, ĥ

2

i , for trait i were
calculated as the ratio of estimated additive variance (ŝ2ai ) to total phenotypic
variance (ŝ2ai þ ŝ2aei þ ŝ2ei ) from equation (1). Accuracy of individual EBVs for
height at age i obtained from the MBLUP model were estimated following
Dutkowski et al. (2002):

r EBV ;TBVð Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEV=ŝ2ai

� �r
ð2Þ

where PEV is the individual tree prediction error variance (square of standard
error), and ŝ2ai is the estimated additive genetic variance component of the ith

trait from equation (1).

SNP genotyping and missing data imputation
SNP markers were discovered utilizing a GBS pipeline for non-model species;
see Chen et al. (2013) for details. Additionally, the three SNP imputation
methods evaluated in this study for SNP tables with 60% missing data were:
mean imputation (M60), KNN with special family weighting (KNN) and SVD.
The KNN and SVD imputation methods are described in detail by Gamal
El-Dien et al. (2015). Mean imputation was carried out using the ‘A.mat’
function provided in the ‘rrBLUP’ R package, and refers to imputation using
the mean for each marker (Endelman, 2011).

Genomic selection
Three GS analytical approaches were assessed: a common shrinkage model,
rrBLUP (Whittaker et al., 2000) and two variable selection models, GRR
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(Shen et al., 2013), and BayesCπ (BCπ) (Habier et al., 2011). Further, rrBLUP
and BCπ are both homoscedastic effects models using common marker
variances for shrinkage, whereas GRR is a heteroscedastic effects model (that
is, marker-specific variances are used). SNP tables were coded as: aa=− 1,
Aa= 0, AA= 1, where a is the reference allele, and A is the alternative allele. All
analyses were completed using R software (R-Core-Team, 2014). The following
base model was implemented (Moser et al., 2009):

yi ¼ 1mþ g xið Þ þ ei ð3Þ
where yi is the EBV of individual i obtained from equation (1), 1 is an incidence
matrix of ones, μ is the overall mean, xi is a 1× p vector of SNP genotypes for
individual, g(xi) is a function to estimate the GEBV as the combined effect
of p SNP markers on the EBV of individual i, and ei is the residual error.

Ridge regression BLUP (rrBLUP)
rrBLUP estimates of GEBV were obtained using the R package ‘rrBLUP’
(Endelman, 2011). The model for rrBLUP follows:

g xið Þ ¼
Xp

k¼1
xikuk ð4Þ

where xik is the genotype of individual i for SNP marker k, and uk is the
additive effect of SNP marker k. The BLUP solution for marker effects, û, is
obtained using Henderson’s methods for mixed model equations (MME)
(Henderson, 1953):

û ¼ Z 0Z þ lIð Þ�1Z 0y ð5Þ
where Z is an incidence matrix relating SNP markers to individuals, I is an
identity matrix, y is the vector of EBV and l ¼ ŝ2e assuming u B Nð0; Is2uÞ.
The SNP shrinkage parameter expressed as the ratio between the residual and
common marker variances, l ¼ ŝ2e=ŝ

2
u. This method shrinks all marker effects

equally, where the shrinkage is dependent on the marker allele frequency.

Generalized ridge regression (GRR)
GRR is a two-step variable selection process, and was carried out using the R
package ‘bigRR’ (Shen et al., 2013). In the first step, initial estimates of ŝ2e , ŝ

2
u,

and û were obtained through the same MME as in rrBLUP. However, the
BLUP estimate, û, is modified to accommodate a SNP-specific shrinkage
parameter:

û ¼ Z 0Z þ diagðkÞð Þ�1
Z 0y ð6Þ

where Z and y are the same as in equation (5) and λ is a vector of p shrinkage
parameters with lk ¼ ŝ2e=ŝ

2
uk

as the shrinkage parameter for SNP k, and ŝ2uk is
the variance component for SNP k computed as: ŝ2uk ¼û2k= 1�hkkð Þ, where ûk is
the marker effect BLUP for SNP k obtained in equation (5) and hkk is the
(n+k)th diagonal of the hat matrix, H=T(TT)− 1T 0, where

T ¼ X Z
0 diag lð Þ

� �
ð7Þ

BayesCπ (BCπ)
BayesCπ was developed by (Habier et al., 2011) as an extension to the Bayesian
GS methods developed by (Meuwissen et al., 2001). The statistical model for
BCπ follows:

g xið Þ ¼
Xp

k¼1
xikukdk ð8Þ

where xik and uk are the same as in equation (4) and δk is an additional dummy
variable that reflects the effect of SNP marker k in the model being equal to
zero with probability π.
The proportion of markers with null effect in the model, π, is inferred from

the data using a uniform prior distribution (0,1). BCπ assumes a common SNP
effect variance, with a scaled inverse chi-square prior, vu degrees of freedom
and scale parameter, S2u. The proportion (1–π) markers included in the model
have effects following a mixture of multivariate Student’s t-distributions
t 0; nu; IS2u
� �

, as described in (Habier et al., 2011).
The R package ‘BGLR’ (Perez and de los Campos, 2014) was used to

implement the BCπ algorithm. Gibbs sampling was used to generate the Monte

Carlo Markov Chain using 100 000 iterations thinned at a rate of 100, with the
first 20 000 discarded for burn-in. The ‘BGLR’ package default estimate for the
scale parameter, S2u, and degrees of freedom, vu= 5, was used. Trace plots were
visually checked for model convergence.

Cross validation, PA and relative efficiency of GS
To assess GS prediction accuracy we used 10 replications in a 10-fold random
cross-validation scheme. Under this scenario, 90% of available data are selected
randomly as the TP while the remaining 10% is designated as the validation
population (VP). Here, we define prediction accuracy of GS as the mean
Pearson product-moment correlation between EBV from the MBLUP model
[1] and GEBV from the GS models, for the VP from the 10 replications, that is,
r(GEBV, EBV). The temporal PA (TPA) is then r(GEBVj, EBVk), where k is age
40 and j is an age less than 40.
To explore the relative efficiency of GS to TS, we obtained estimates of PA

from model [1] using raw phenotypes of the genotyped individuals as training
data, and applying the same cross-validation method previously stated.
Breeding value estimates were then obtained under two scenarios. The first
scenario utilized the pedigree-based average numerator relationship matrix,
A (EBVTS). The second replaced A with the realized relationship matrix,
G (GEBVGS) (Habier et al., 2007; VanRaden, 2008). The latter method is
known colloquially as GBLUP and is equivalent to rrBLUP (Mrode, 2014). We
used the SVD marker data to compute G as:

G ¼ ZZ0=2
X

pj 1� pj

� �
ð9Þ

where Z=M–P withM as the genotype matrix and P as vector of 2(pj–0.5), and
p is the frequency of the alternative allele of the SNP at the jth locus. The relative
efficiency of GS to TS, assuming selection response is inversely proportional to
the length of the breeding cycle is:

RE ¼ r GEBVGS; EBVð Þ
r EBVTS; EBVð Þ ´

tTS
tGS

ð10Þ

where EBV is the estimated breeding value using the full data from model [1],
and tTS and tGS are the length of time to complete a breeding cycle under TS
and GS, respectively (Grattapaglia and Resende, 2011).

RESULTS

Phenotypic and MBLUP analysis
Variation in measures of height among trees within the two sites was
relatively stable across years (range: CV= 25.09% (HT40)—34.44%
(HT6) (Table 1). Narrow-sense individual tree heritability estimates
from the MBLUP analysis ranged from low (0.25, HT10) to moderate
(0.64, HT30) (Table 2). As expected, the age-age genetic correlation
between juvenile and mature height (HT40) increased with increasing
juvenile age (Table 2). Mean individual accuracy of breeding values
estimated with the MBLUP method were consistent across years of
measurement and ranged from 0.74 to 0.76 (Table 2).

Prediction accuracy
Imputation method and statistical approach. The number of SNP
markers retained after filtering for minimum minor allele frequency

Table 1 Sample size (n) and descriptive statistics for interior spruce

height (m) used in the pedigree based analysis

Age n Mean s.d. CV (%) Min Max

3 29475 0.36 0.11 30.56 0.04 1.05

6 29184 0.90 0.31 34.44 0.10 2.51

10 28696 1.54 0.50 32.47 0.18 4.47

15 27922 2.69 0.90 33.46 0.30 7.19

30 27466 7.15 2.27 31.75 0.62 14.98

40 26808 11.32 2.84 25.09 0.70 20.80

Abbreviations: CV, coefficient of variation; s.d., standard deviation.
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(0.05), averaged from the cross-validation scenarios was 34 570 (M60),
39 915 (KNN) and 50 803 (SVD). On average, SVD, followed by the
novel KNN family-based imputation approach both surpassed the PA
of M60 imputation in all GS analysis methods, with the observed
differences being comparatively minor between SVD and KNN
(Figure 1, left; Table 3). The increase in PA relative to the baseline
M60 imputation method, averaged across statistical approaches and
ages, was greatest for SVD (7.9%), followed by KNN (6.6%). The
average increase in PA of SVD relative to KNN was 1.2%. The former
result produced a trend of diminishing return when comparing the
number of markers used in GS analyses.
On average, variation in the relative difference between GS

analytical approaches was less than that among imputation methods
and number of markers (Figure 1, right; Table 3). PA was, on average,
equal between the rrBLUP and BCπ methods and both performed
better than GRR, with differences being largest at ages 15, 30 and 40
years. The relative increase in PA, averaged across imputation methods
and ages, indicated that rrBLUP and BCπ both performed equally well

over GRR (4.3%). Pairwise groupings of statistical approach and
imputation method scenarios indicated that rrBLUP or BCπ in
combination with SVD produced the greatest PA, on average, across
all ages. Standard errors of the predictions computed from the 10
replicates were low, ranging from 0.001 to 0.006 (Table 3).

Predictive accuracy across time. The GS PA was inconsistent across
ages (Table 3; Figure 1). The greatest PA occurred for HT3, and while
a reduction occurred for all other ages, it was largest for HT10 and
HT15 across all imputation and GS analytical approach combinations.
As expected, the TPA decreased with increasing difference between the
training and VP age of height measurement (Table 4; Figure 2, right).
Differences in TPA mirrored the results from imputation compar-
isons, with SVD and KNN producing the greatest average relative
increases over M60 by 22.2% and 12.6%, respectively. Diversity in
TPA between analytical approaches was lower than that between
imputation procedures with average relative increases of rrBLUP and
BCπ at 5.5% and 2.6% over GRR, respectively. Age-age genetic
correlations from the MBLUP model were plotted with TPA of GS

Table 2 Pedigree-based estimates of variance components for interior spruce height (m) at ages 3, 6, 10, 15 and 30 (years), and the estimated

narrow-sense individual tree heritabilities (ĥ
2

i ), age-age genetic correlations with age 40 (r̂ij), mean estimated individual breeding value accuracies
(r(EBV,TBV))

Age r̂2a ŝ2ae ŝ2b ŝ2e ĥ
2
i r̂ ij r(EBV,TBV)

3 2.95E-03 (3.80E-04) 6.89E-04 (1.02E-04) 4.17E-05 (2.05E-05) 2.55E-03 (2.88E-04) 0.48 (0.05) 0.63 (0.06) 0.74

6 1.74E-02 (2.55E-03) 7.64E-03 (1.13E-03) 2.16E-03 (1.03E-03) 3.65E-02 (1.97E-03) 0.28 (0.04) 0.75 (0.04) 0.74

10 7.56E-03 (1.16E-03) 3.73E-03 (5.70E-04) 1.25E-03 (5.94E-04) 1.94E-02 (9.03E-04) 0.25 (0.04) 0.84 (0.03) 0.74

15 7.82E-01 (4.01E-02) 7.68E-03 (1.19E-03) 2.33E-03 (1.11E-03) 3.54E-02 (2.32E-03) 0.33 (0.04) 0.93 (0.02) 0.75

30 3.09 (3.87E-01) 6.00E-01 (9.00E-02) 1.60E-01 (7.59E-02) 1.12 (2.32E-01) 0.64 (0.06) 1.00(0.00) 0.76

40 4.53 (5.67E-01) 8.56E-01 (1.33E-01) 4.26E-01 (2.02E-01) 2.14 (4.29E-01) 0.61 (0.07) 1.00(0.00) 0.76

ŝ2a ; ŝ2g ´ e ; ŝ2b ; ĥ
2
i ; r̂ i j ; r EBV ;TBVð Þ are the estimated additive genetic, additive genetic by site, block, residual, narrow-sense individual heritability, age-age genetic correlation and mean estimated individual

breeding value accuracy.
Standard errors in parentheses.

Figure 1 GS prediction accuracies from models trained using interior spruce height data at ages 3, 6, 10, 15, 30 and 40 years and validated against EBV at
the training age. Shape and pattern in left panels represent imputation methods for 60% missing genomic data (M60, triangle/dash; KNN, circle/dash-dot;
SVD, square/dot). Shape and pattern in right panels represent genomic prediction methods (GRR, circle/dash; BCπ, square/dash-dot; rrBLUP, triangle/dot).
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Table 3 Genomic prediction accuracy obtained from rrBLUP, GRR and BCπ analytical approaches for SVD, KNN and M60 imputation methods

for interior spruce tree height at ages 3, 6, 10, 15, 30 and 40 (years)

Age rrBLUP GRR BCπ

SVD KNN M60 SVD KNN M60 SVD KNN M60

3 0.53 (0.003) 0.55 (0.001) 0.52 (0.002) 0.52 (0.003) 0.54 (0.004) 0.51 (0.003) 0.54 (0.002) 0.54 (0.002) 0.51 (0.002)

6 0.46 (0.002) 0.46 (0.002) 0.43 (0.003) 0.45 (0.002) 0.45 (0.002) 0.42 (0.006) 0.45 (0.001) 0.46 (0.003) 0.43 (0.002)

10 0.38 (0.002) 0.38 (0.002) 0.35 (0.002) 0.37 (0.002) 0.36 (0.002) 0.35 (0.004) 0.38 (0.004) 0.37 (0.003) 0.35 (0.004)

15 0.37 (0.005) 0.36 (0.003) 0.33 (0.003) 0.36 (0.005) 0.33 (0.005) 0.31 (0.005) 0.37 (0.002) 0.36 (0.003) 0.33 (0.003)

30 0.46 (0.003) 0.45 (0.003) 0.42 (0.002) 0.41 (0.003) 0.43 (0.003) 0.38 (0.006) 0.47 (0.002) 0.46 (0.001) 0.43 (0.002)

40 0.47 (0.003) 0.45 (0.002) 0.43 (0.002) 0.41 (0.004) 0.42 (0.002) 0.39 (0.005) 0.47 (0.002) 0.45 (0.002) 0.43 (0.003)

Abbreviations: BCπ, BayesCπ; GRR, generalized ridge regression; KNN, k nearest neighbor; M60, mean 60%; rrBLUP, ridge regression BLUP; SVD, singular value decomposition.
Standard errors in parentheses.

Table 4 Age 40 temporal genomic prediction accuracy obtained from rrBLUP, GRR and BCπ analytical approaches for SVD, KNN and M60

imputation methods for interior spruce tree height at ages 3, 6, 10, 15 and 30 (years)

Age rrBLUP GRR BCπ

SVD KNN M60 SVD KNN M60 SVD KNN M60

3 0.06 (0.003) 0.05 (0.002) 0.04 (0.002) 0.05 (0.003) 0.05 (0.003) 0.04 (0.002) 0.06 (0.002) 0.05 (0.002) 0.03 (0.002)

6 0.15 (0.003) 0.14 (0.002) 0.12 (0.002) 0.14 (0.003) 0.14 (0.002) 0.12 (0.004) 0.15 (0.001) 0.13 (0.003) 0.12 (0.002)

10 0.26 (0.003) 0.24 (0.002) 0.22 (0.002) 0.25 (0.003) 0.23 (0.003) 0.21 (0.004) 0.26 (0.003) 0.24 (0.002) 0.22 (0.003)

15 0.40 (0.005) 0.38 (0.005) 0.35 (0.003) 0.39 (0.005) 0.34 (0.004) 0.33 (0.005) 0.39 (0.003) 0.38 (0.004) 0.35 (0.002)

30 0.46 (0.003) 0.44 (0.004) 0.41 (0.001) 0.41 (0.003) 0.42 (0.003) 0.38 (0.005) 0.47 (0.002) 0.45 (0.001) 0.42 (0.003)

Abbreviations: BCπ, BayesCπ; GRR, generalized ridge regression; KNN, k nearest neighbor; M60, mean 60%; rrBLUP, ridge regression BLUP; SVD, singular value decomposition.
Standard errors in parentheses.

Figure 2 Left panels: Temporal GS prediction accuracy for three models (rrBLUP, GRR, BCπ) trained using interior spruce height data at ages 3, 6, 10, 15,
30 and 40 years and validated against EBV at age 40 year. Right panels: Relationship between age-age genetic correlations from the MBLUP model and
temporal GS prediction accuracy from the three GS models (rrBLUP, GRR, BCπ). Shape and patterns in both panels represent imputation methods for 60%
missing genomic data (M60, triangle/dash; KNN, circle/dash-dot; SVD, square/dot).
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models (Figure 2, left). As anticipated, the Pearson product-moment
correlation between the two was, on average, near perfect (̂r = 0.99,
not tabulated), with the TPA and age-age genetic correlation both
decreasing with difference in years. Interestingly, the TPA of GS
models based on 30-year data was often equivalent to those based on
40-year data.

Distribution of SNP effects. The scatter plots, histograms and correla-
tions of estimated marker effects from the three GS analytical methods
suggested greatest similarity between the rrBLUP and BCπ methods,
and least similarity between GRR and BCπ (Figure 3, Supplementary
Figures 1–5). Evident in the plots is the relative tendency of GRR to
apply intense shrinkage to the minor effect SNPs while allowing SNPs
with large effect to persist. The latter result contrasts with rrBLUP and
BCπ where they tended to distribute marker effects more widely owing
to the common shrinkage parameter. The posterior mean of the π
parameter (that is, probability of null effect) for BCπ was relatively
constant across ages and with estimates ranging from 0.03 to 0.04 (not
tabulated), accounting for some of the similarity between the rrBLUP
and BCπ methods. The intensity of shrinkage due to marker quantity
is also apparent when comparing the SVD to KNN and M60 marker
effects plot. Pearson product-moment correlation was used to assess
the linear relationship between the absolute value of marker effects in
the three analytical approaches (Figure 3, Supplementary Figures 1–5;
upper triangles). Pearson product-moment correlation, averaged
across imputation methods and ages (not tabulated), was greatest
between rrBLUP-BCπ (̂r = 0.88), followed by rrBLUP-GRR (̂r = 0.86)
and BCπ-GRR (̂r = 0.86). Spearman rank-correlation, averaged across
imputation methods and ages (not tabulated), of marker effects
yielded nearly identical ranking between rrBLUP-GRR (r̂= 0.99), as
expected because the rrBLUP procedure precedes GRR. Lower rank
correlations were observed between rrBLUP-BCπ (r̂= 0.93) and BCπ-
GRR (r̂= 0.90). Additional marker effect plots for the remaining
height measurement years are available in the supplement.

Relative efficiency. PA from rrBLUP and the SVD marker data (GS)
was compared with those using TS (Table 5). Under the early selection
scenario (10 and 15 years), the TPA using GS was greater than that of
TS resulting in 112% and 106% increase in selection response,
respectively. GS PA for mature tree height (30 and 40 years) of the
same age as model estimation was lower (HT30) or equal (HT40) to
their TS counterparts, however, assuming a 25% reduction in breeding
cycle length resulted in increases of selection response by 137 and
139% for both ages separately. Additionally, a high (̂r = 0.85, not
tabulated) Pearson correlation between PA and proportion of additive
genetic variance explained by the GS model (that is, narrow-sense
genomic heritability) was observed in this study. A lower correlation
(̂r = 0.75, not tabulated) was also observed between TS narrow-sense
heritability and TS PA.

DISCUSSION

Accuracy of GS prediction through time
In this study, repeated measures of tree height over time permitted the
testing of GS models’ accuracy (PA) at different ages (Figure 1,
Table 3). PA reported in this study varied substantially throughout
time (Figure 1, Table 3). This may reflect the capacity of the SNP
markers to account for differential gene expression due to physiolo-
gical or G×E interaction over time. Interestingly, the large drop in PA
at age 10 and 15 years seems to coincide with a period of intense
competitive exclusion between trees at this age, perhaps exacerbated
by the relatively narrow tree spacing (2.5× 2.5m). The observed extent
of PA for tree height was comparable with that reported in other
studies using clonal eucalypts (Resende et al., 2012a) and 1–6-year tree
height in loblolly pine (Resende et al., 2012b, c; Zapata-Valenzuela
et al., 2012). More recently, Beaulieu et al. (2014a) tested GS in a half-
sib population of white spruce and reported PA for 22-year tree height
that were similar to those described here.
Next, we trained GS models with EBV of tree height at ages 3, 6, 10,

15 and 30 year and validated the GEBV against EBV from 40-year

Figure 3 Comparison of SNP marker effects by kernel density plots (diagonal), scatter plots (lower triangle), and Pearson (r̂ ) and Spearman (r̂) correlations
(upper triangle) for three imputation methods (KNN, red; SVD, blue; M60, green) and three analytical approaches (rrBLUP, top; GRR, middle; BCπ, right)
estimated for tree height at age 15 years in interior spruce.
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measurements (Figure 2, Table 4). This scenario is of interest because
the PA is expected to decline after each breeding cycle owing to the
decay of SNP-QTL LD as a result of recombination in the offspring
(Habier et al., 2013). Thus, the TPA of GS methods is an important
consideration for retraining said models as it offers potential to further
accelerate the breeding cycle if target phenotypes can be selected
earlier. TPA in this study decreased as the difference in age of training
and VP increased. Interestingly, the TPA of GS models based on 30-
year height was nearly equivalent to those based on 40-year despite the
10 years difference in measurements, suggesting consistency between
the EBVs and SNP effects at both ages. This analysis is in agreement
with that of Resende et al. (2012b), who tested TPA for ages 1–6 years
in clonal loblolly pine and concluded that model retraining will likely
require phenotypic data from mid-rotation age or later to accurately
reflect mature growth trait performance (White et al., 2007). These
results are not unexpected as conifers typically have weak age-age
genetic correlations (Namkoong et al., 1988) attributed to their long
life spans and exposure to a wide range of environmental contingen-
cies over time. Currently, selection based on growth attributes is
carried out at the age 15 years in interior spruce.

Model comparison
We tested the PA of rrBLUP, GRR and BCπ statistical approaches for a
time series of tree height measurements in interior spruce (Figure 1,
Table 3). The rrBLUP and BCπ models both performed consistently
well, producing the highest PA across all ages. These two models can
be considered equivalent when the posterior mean of π in the BCπ
model approaches zero value. The π parameter posterior mean
estimate ranged from 0.03 to 0.04 in this study, accounting for some
of the models’ observed similarity. The marker effect plots (Figure 3,
Supplementary Figures 1–5) illustrate the likeness of the number of
markers fitted, marker effect distributions and shrinkage for both
methods. Similarly, Resende et al. (2012b) found no difference in PA
between rrBLUP and BCπ for 6-year height in loblolly pine, although
they did find that BCπ outperformed rrBLUP for an oligogenic disease
resistance trait. This demonstrates the flexibility of the BCπ algorithm,
where the π parameter allows the model to behave like rrBLUP when
traits follow the Fisher’s infinitesimal model (Fisher, 1918). This
concept gives BCπ the possibility to be useful in prediction of traits
with unknown genetic basis at the cost of additional computational
time (BCπ took upwards of five times longer than both rrBLUP and
GRR combined). rrBLUP has often been suggested as a baseline model
to which comparisons should be made because it has been shown to
yield high and stable PA across a wide variety of species and traits with
low computational time investment (Heslot et al., 2012). Indeed, this

result has been found to be true in the present as well as other studies
involving forest trees (Resende et al., 2012c; Beaulieu et al., 2014b).
As anticipated, the GRR model did not offer improved PA over

rrBLUP or BCπ for mature tree height under this study’s conditions.
Tree height is widely regarded as having a complex inheritance pattern
under the Fisher’s infinitesimal model (Fisher, 1918). In theory, the
statistical approach used in GS can lead to variation in PA, depending
on the genetic architecture of the trait (Daetwyler et al., 2010). Hence,
variable selection methods are generally expected to perform optimally
for traits with simple genetic architecture (that is, few loci with large
effect), because SNPs of low effect are strongly shrunk toward zero,
while those of large effect persist. Beaulieu et al. (2014b) and Resende
et al. (2012c) evaluated BayesA and Bayesian LASSO, approaches
similar to GRR, where the improvement in PA of growth related traits
was found to be null. The GRR model did, however, offer PA
comparable with rrBLUP and BCπ at juvenile ages (3, 6 and 10 years).
As observed in the distributions of marker effects at these juvenile
ages, the GRR model appeared to shrink all markers equally because of
an apparent absence of those with large effect compared with mature
ages (Figure 3, Supplementary Figures 1). However, in mature ages
where large marker effects were perceived to exist by the GRR model,
the intense shrinkage applied to markers of low effect led to an
obvious impairment of PA. This is expected because of the complex
genetic nature of tree height, guiding the decision that these large
effect markers in mature tree height were likely false positives. Further,
the increase in PA by rrBLUP and BCπ over GRR at later ages may be
accounted for by the knowledge that when markers are shrunk
equally, the kinship component of PA is more effectively captured,
when compared with heteroscedastic models (Heslot et al., 2012). GS
models should, however, ideally be based on the LD between SNP-
QTL rather than kinship, because the SNP-QTL LD component of PA
is expected to persevere in subsequent generations following breeding
(Habier et al., 2007).

GBS and marker imputation
The use of GBS, in combination with several imputation methods, was
successful in supplying a dense genome-wide marker data set, and
further, enabled moderate levels of PA to be captured for tree height in
interior spruce. This study represents the first use of GBS data as a
base for genomic prediction in a forest tree species. We report that
both SVD and novel KNN imputation methods offered increases in
PA over mean imputation (M60) (Figure 1, left). However, it is
unclear whether this result is the product of the number of markers
retained by the imputation method or the imputation method itself.
Although the initial marker matrix with 60% missing information was
used for the three imputation methods, variation in the number of
retained markers should be expected as some marker loci may be non-
imputable with certain algorithms and differences will occur because
of filtering of minor allele frequency. Thus, the imputation method
should be wholly evaluated based on both its marker yield and PA,
because restricting the markers to a common set would lend
unintentional penalization to methods that yield greater numbers of
markers. Similarly, Rutkoski et al. (2013) noted comparable increases
in PA over mean imputation while using both SVD and KNN
imputation on GBS-derived markers for wheat (Triticum aestivum L.).
Further, we found that on average, the SVD imputation method
yielded only slightly better PA than KNN. The former result alludes to
diminishing returns given the average difference in available markers
after filtering the TP SNP tables for a minimum minor allele frequency
of 0.05. This result corresponds well to the asymptotic relationship

Table 5 Predictive accuracy and relative efficiency from cross-

validated models using realized (GEBVGS) and average (EBVTS)
relationship matrices for early (10 and 15 years) and mature

(30 and 40 years) interior spruce tree height

Age r(EBVTS,EBV) r(GEBVGS,EBV) Efficiency Increase (%)

10 0.20a (0.003) 0.22a (0.004) 1.12 112

15 0.29a (0.002) 0.31a (0.002) 1.06 106

30 0.45 (0.003) 0.43 (0.003) 1.29b 129

40 0.43 (0.004) 0.43 (0.003) 1.33b 133

Abbreviations: EBV, estimated breeding values; GEBV, genomic breeding values. Standard errors
in parentheses.
aRepresents the temporal predictive accuracy.
bAssumes a 25% reduction in breeding cycle length attributed to genomic selection.
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between marker density and PA derived by Grattapaglia and Resende
(2011) who used simulated data and deterministic formulae.
Foundationally, the GBS method produces a large number of

missing data due to low read depth and possible mutation at
restriction sites in some individuals (Elshire et al., 2011), thus, it
relies heavily on accurate imputation methods to derive dense marker
data. With the availability of a complete reference genome assembly of
white spruce, it may be possible to increase the accuracy of imputation
through use of methods designed for ordered data and constructed
haplotypes (Rutkoski et al., 2013). In the interim, scaffolds of the draft
genome assembly for white spruce published by Birol et al. (2013) may
suffice to aid in aligning the unordered genomic data produced in this
study, and additionally assist in discovering additional markers that
can be used for GS. This would be greatly beneficial because the
genome size and complexity of conifers demand a large number of
markers to sufficiently saturate the genome and provide high PA.
Marker density is also particularly important in determining PA for
forest tree populations where the effective size (Ne) is commonly large
(Grattapaglia and Resende, 2011).

Relative efficiency
The observed GS prediction accuracies (PA) in the present study are
adequate to produce greater genetic gain over TS (Table 5). The
relative efficiency results are compatible with those described by other
studies involving white spruce and loblolly pine (Resende et al., 2012b;
Beaulieu et al., 2014a). However, we chose to limit the reduction in
time of breeding cycle to a conservative value of 25%, as opposed to
50% in other studies, because the reliability of the PA produced from
the present study has not been validated in a progeny generation. The
theoretical increase in genetic gain produced by GS hinges on the
capacity of the prediction models to remain relevant in the next
generation. For this to occur, PA must ideally be based on SNP-QTL
LD rather than kinship (Habier et al., 2013). Recently, the source of
the relationship between marker and QTL described by GS models has
been decomposed by Habier et al. (2013) into factors involving both
kinship and pure marker-QTL LD, generating questions about the
validity of such models in subsequent generations.
The origin of PA produced by the GS models in this study is

currently unknown, and further testing via a progeny VP, or the
partitioning of families in a restricted cross-validation scheme as
demonstrated by Beaulieu et al. (2014a), will be required in the future.
Optimally, the PA of the models was produced via LD between
markers and QTL. Sub-optimally, PA was derived through kinship
information between individuals in the training and VPs. GS PA can
be composed of a combination of the two factors, leading to inflated
estimates of PA to occur without proper validation because the kinship
component is anticipated to decay more rapidly than marker-QTL LD
in the progeny generations (Habier et al., 2007, 2010, 2013). In a study
of a large population of white spruce open-pollinated families,
Beaulieu et al. (2014a) observed that PA decreased significantly when
kinship between the training and VPs was restricted. This is not
unexpected in forest trees, where decay in LD is typically fast (Neale
and Savolainen, 2004). Thus, it may be necessary in the future to
create ‘designer’ breeding populations through intense management to
maximize marker-QTL LD. Alternatively, selective within-family
genotyping of phenotypically extreme individuals (that is, best and
worst) could be used to train accurate GS models based on haplotype
blocks (Odegard and Meuwissen, 2014).
In the open-pollinated testing used in the present study, GS models

were trained using traditional pedigree-based EBVs that incorporate
expected additive genetic relationships between individuals into the

matrix, A, to estimate genetic parameters (Lynch and Walsh,
1998). Mixed model theory assumes that covariance matrices are
error-free (that is, ideally reflecting the segregation of only QTLs),
thus, the accuracy of information contained in A is critical in
obtaining unbiased and accurate estimates of genetic parameters
and breeding values (Mrode, 2014). Ideally, data fitted to train GS
models should be analogous to the true additive genetic merit of
each individual in the TP (Garrick et al., 2009). Earlier studies have
fitted de-regressed EBV in GS models to improve prediction
accuracy (Garrick et al., 2009). However, there are empirical
results in animal breeding to suggest EBV to be superior in some
cases (Guo et al., 2010). Kinship explained by marker data can be
used to overcome this limitation and has been used in the past to
correct pedigree errors (Munoz et al., 2014), and produce
increased accuracy of EBV (El-Kassaby and Lstiburek, 2009;
El-Kassaby et al., 2011). Munoz et al. (2014) applied this concept
to GS and noted improved PA by correcting pedigree errors prior
to estimating EBVs of the training data.
It appears that in the short-term, single step methods such as those

incorporating the realized (G) (VanRaden, 2008) or augmented (H)
(Legarra et al., 2009; Christensen and Lund, 2010) genomic relation-
ship matrix may be better suited for tree-breeding programs with
simple mating structures and shallow pedigrees because EBV accuracy
suffers from the insufficiencies produced by the simplified mating
design. At present, selection with increased accuracy could be made
over traditional BLUP methods with the benefit of accumulating
genotypic information that can be used in the long term when deep
pedigrees and ‘designer’ TPs have been established. This concept is
most relevant to young breeding programs with open-pollinated
mating structure such as the one studied here.
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