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Abstract

Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, 

yet capacity-limited cognitive resources restrict the quantity that they can encode. While we know 

infants can attend to only a subset of available acoustic input, few previous studies have directly 

examined infant auditory attention—and none have directly tested theorized mechanisms of 

attentional selection based on stimulus complexity. Using model-based behavioral methods that 

were recently developed to examine visual attention in infants (e.g., Kidd, Piantadosi, & Aslin, 

2012), we demonstrate that 7- to 8-month-old infants selectively attend to non-social auditory 

stimuli that are intermediately predictable/complex with respect to their current implicit beliefs 

and expectations. Our results provide evidence of a broad principle of infant attention across 

modalities and suggest that sound-to-sound transitional statistics heavily influence the allocation 

of auditory attention in human infants.
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Infants are remarkably sensitive to their auditory environment, showing the ability to learn 

from their mother’s speech even before birth (DeCasper & Fifer, 1980). This process of 

learning from the auditory environment continues during the first postnatal year, as infants 

discover phonetic categories (Kuhl, 2004) and learn the sequences of speech that will form 

the words of their native language (Saffran, Aslin & Newport, 1996). These auditory 

milestones must be based on gathering input from the natural environment, where a myriad 

of novel sounds and sound-sequences (e.g., speech syllables, musical notes) unfold rapidly 

over time. A learner with an infinite information processing capacity could theoretically 

encode all available auditory input as it arrives at the ear. A human infant, however, 

possesses only finite, capacity-limited cognitive resources (e.g., attention, memory, 

processing capacity). These cognitive constraints impose severe limits on the kind and 

quantity of auditory input an infant can encode in real time. Infants’ learning is thus limited 

by constraints such as the temporal rate at which they can access sequential inputs (e.g., 

Conway & Christiansen, 2009), the number of elements they can hold in working memory 
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(e.g., Ross-Sheehy, Oakes & Luck, 2003), and the depth to which they can ultimately 

encode the novel stimulus (e.g., Sokolov, 1969).

Even a single auditory stream (e.g., a mother speaking to her child in an otherwise silent 

room) expresses a complex composition and arrangement of acoustic variables (e.g., 

intensity, pitch, timbre) that additionally encode hierarchical levels of structure (e.g., sounds, 

syllables, phrases) and semantic meaning (e.g., salience, emotion, category, identity). 

Additionally, previous work with adults suggests that human auditory processing is likely 

inferior to visual processing in terms of resolution and capacity (e.g., Cohen, Horowitz, & 

Wolfe, 2009). Thus, the infant must pick and choose both which auditory inputs to attend 

and on which aspects of a single auditory stream to focus. Locating and tracking the 

relevant statistics from within the continuous surge of incoming auditory data is then crucial 

for infants to solve the many auditory learning tasks they face.

One reasonable strategy infants might employ in the natural environment is to allocate 

attention on an “as available” basis; that is, they might attempt to encode all auditory inputs, 

and effectively ignore stimuli that exceed their information processing capacity. However, 

such an undirected learning strategy would be inefficient at best, and futile at worst. 

Imagine, for example, attempting to complete an open-book exam on an unfamiliar subject 

in a vast library by drawing books from the shelves at random. An alternative strategy would 

be to make attention dependent upon relevant properties of the stimulus itself, perhaps 

actively allocating attention to auditory material that is most useful for learning. This latter 

strategy might be particularly advantageous for language learning, where the inventory of 

inputs is quite large (e.g., 40 phonemes, 1,000 syllables, 50,000 words) and combined in a 

huge variety of sequences.

A substantial amount of previous work on infant attention theorized that such a strategy 

might help infants focus on learning material that is sufficiently novel from—but also 

sufficiently related to—the infants’ existing knowledge (e.g., Kinney & Kagan, 1976; 

Jeffrey & Cohen, 1971, Friedlander, 1970; Horowitz, 1972; Melson & McCall, 1970), 

Zelazo & Komer, 1971). Kinney and Kagan (1976) suggested that preferring stimuli that are 

moderately novel would prevent infants from wasting time on material that is already 

known. They further suggested that preferring stimuli that are somewhat related to existing 

knowledge might help infants focus on completing partially built cognitive representations. 

These partial representations could then facilitate more efficient construction of newer, 

bigger or more elaborate cognitive constructs later on in learning. This formulation of the 

“discrepancy hypothesis” thus suggests that the complexity of a stimulus can be 

conceptualized as relating to the infant’s current knowledge state. A “simple” stimulus 

would be one with little or no new information for the infant to learn. A “complex” stimulus 

would be one that contains almost entirely new information, distinct from nearly everything 

in the infant’s current conceptual inventory. Further, these theories hold that infants should 

exhibit a U-shaped attentional pattern with respect to stimulus complexity: infants should 

more readily terminate attention to events that are either too simple (predictable) or too 

complex (surprising).
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Our previous work (Kidd, Piantadosi, & Aslin, 2010; 2012) demonstrated that infants’ visual 

attention was influenced by the complexity (or information content) of the visual stimulus. 

We used an idealized learning model in order to quantify the complexity of particular visual 

events in a sequence. We then measured at what point in a visual sequence an infant 

terminated their attention to the sequence. In these studies, infants looked away at visual 

events of either very low complexity (very predictable) or very high complexity (very 

surprising), even controlling for other temporal factors known to influence attentional 

selection. Additional work demonstrated that this U-shaped pattern of preference for visual 

events of intermediate complexity occurred not only across a population of infants, but also 

within individual infants (Piantadosi, Kidd, & Aslin, in press). In the present study, we 

asked whether such an active strategy of attentional allocation extends from the visual 

modality to the auditory modality.

As suggested by the discrepancy hypothesis of infant auditory attention discussed earlier, the 

potential utility of such a strategy is substantial. In contrast to the large quantity of work 

examining auditory learning in infants (e.g., the literature on language learning and music 

cognition), few previous studies have directly examined infant auditory attention—and none 

to our knowledge have employed computationally well-defined stimuli varying in 

complexity. Although there are limits on selective auditory attention infants, including 

stimulus discriminability and working memory (see Werner, 2002), we chose highly 

discriminable stimuli and a rate of presentation that fell well within the working-memory 

capacity of 7- to 8-month-olds (as documented by many previous statistical learning 

experiments; see Aslin & Newport, 2012). Thus, we focused on infants’ implicit preferences 

for maintaining attention to auditory stimuli that were easily accessible, yet varied in their 

information “value” as determined by a quantitative model.

It is important to note that the general idea of a U-shaped function along a dimension of 

stimulus complexity is not new. In fact, several recent studies of infants (Gerken, Balcomb 

& Minton, 2011; Spence, 1996) have reported similar effects. What is new about our 

approach is to make a specific prediction about the U-shaped function based on a 

quantitative metric of complexity. Previous studies have either defined complexity after 

obtaining a U-shaped function or have contrasted learnable versus unlearnable information 

rather than exploring the space of complexity in a continuous manner. Moreover, it is 

important to determine whether the same general principles of attention allocation apply in 

the auditory modality as well as in the visual modality, especially given modality differences 

in the temporal and spatial statistics typically used to process natural stimuli in each domain.

Experiment and Modeling Approach

In the present experiment with 7- and 8-month-olds, we measured infants’ visual attention to 

sequential sounds that varied in complexity, as determined by an idealized learning model. 

We examined the influence of complexity, while simultaneously controlling for other factors 

known to influence infants’ attention (e.g., trial number, repeat events). Both the experiment 

and modeling approach were based on our earlier studies on visual attention (Kidd, 

Piantadosi, & Aslin, 2010; Kidd, Piantadosi, & Aslin, 2012; Piantadosi, Kidd, & Aslin, in 

press). The behavioral experiment measured the point, in a sequence of auditory events, 
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when an infant terminated their attention to the sequence. The auditory stimuli were easily 

captured by a simple statistical model.

Each trial consisted of one of 32 possible sound sequences. The within-sequence events and 

the sequences themselves were designed to vary in terms of their information-theoretic 

properties. For example, some events in a sequence were highly predictable (e.g., sound A 

occurs after 20 successive occurrences of sound A), and others were less predictable (e.g., 

sound B occurs after 21 successive occurrences of sound A). Likewise, some sequences 

contained many more highly predictable events (e.g., AAAAAAAAAAAAAAAA...), while 

others contained fewer (e.g., AAACCBAABBCABACACCC...). For each trial, a script 

randomly selected a new available sequence from the pool of 32. The script also randomly 

selected three different non-social sounds from a pool of 96 possible sounds. (See Materials 

and Methods for more details.)

Fig. 1 illustrates the logic of the experiment and our analysis approach. In this simplified 

example trial, the observer has heard a sequence composed of three A sounds and one B 

sound, and the key question is whether the infant terminates the trial upon hearing the next 

sound in the sequence. The heard sounds (AAAB...) comprise the observed data, which are 

combined with the prior—essentially a smoothing term to avoid zero probabilities—to form 

an updated (posterior) belief. In this example, the updated belief leads to an expectation that 

the next event has a high probability of being sound A, a moderate probability of it being 

sound B, and a low (but nonzero) probability of it being sound C. The complexity of the next 

sound is quantified by an information theoretic metric—negative log probability— which 

represents the amount of “surprise” an idealized learner would have on hearing the next 

event, or, equivalently, the amount of information processing such a learner would be 

required to do (Shannon 1948). Thus, if the next sound is A—a sound that is highly likely 

according to the model’s updated belief—the complexity of that event would be low (i.e., 

the sound would be highly predictable according to the model). The “Goldilocks” hypothesis 

thus holds that infants would be more likely to terminate their attention at this sound. 

Conversely, if the next sound is C—a sound that is highly unlikely according to the model’s 

updated belief—the complexity of that event would be high (i.e., the sound would be highly 

surprising according to the model). The “Goldilocks” hypothesis holds that infants should 

also terminate their attention to the sound sequence at this type of event. However, if the 

next sound is B—a sound that is moderately probable according to the model’s updated 

belief—the complexity of that event would fall in the intermediate “Goldilocks” range, thus 

leading infants to be less likely to terminate their attention to the sound sequence. If 

attention was not terminated at a given sound, the sequence continued until a sound resulted 

in termination of the trial (or 60 sec. elapsed). Once terminated, the next trial consisted of a 

new set of three sounds in a sequence whose complexity was unique among all 32 trials 

presented to each infant.

The example shown in Fig. 1 treats each event as statistically independent (a non-

transitional model). However, our previous work also indicated that a model that tracked the 

bigram probabilities of events (a transitional model) out-performed the non-transitional 

model. In the present experiment, therefore, we also constructed and tested a transitional 

model of the auditory stimuli, which captured how likely each sound was to follow each 
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other sound in computing complexity. Note that for either model, if an infant continued to 

attend to the sound sequence, the predictions of the model would be updated for the next 

sound in the sequence. Thus, although infants may terminate their attention at different 

points in different sound sequences, we hypothesize that these attentional terminations (as 

measured by look-aways) will occur predictably during events with both very high and very 

low complexity values, as estimated by the two models.

We note that this modeling approach and analysis contrast with those employed by most 

infant studies. Previous infant research typically tested for differences in overall mean 

looking times. Here, we predicted a binary outcome (whether an infant terminates attention) 

at each individual auditory event in a sequence. This is a more precise prediction based on 

probabilities computed on-line.

Method

Participants

Thirty-four infants (mean = 7.7 months, range = 7.1 – 8.9) were tested and all were included 

in the analysis. All infants were born full-term and had no known health conditions, hearing 

loss, or visual deficits according to parental report.

Stimuli

We presented each infant with 32 trials consisting of sequences composed by up to three 

unique sounds, with trials presented in a random order across infants. These sequences were 

constructed to vary in their information-theoretic properties (e.g., entropy, surprisal). Thus, 

some sound sequences contained many highly predictable events (e.g., AAAAAAAAA...) and 

others contained many less predictable ones (e.g., BBACAACAB...).

Each of the sound sequences presented up to three non-social sounds (e.g., door closing, 

flute note, train whistle). These sounds were selected randomly for each infant and the three 

sounds in each sequence were unique, such that each infant heard up to 96 sounds across all 

32 trials. (Infants could have heard fewer than 3 sounds within a trial, for example, if they 

terminated the sequence before each of the 3 possible sounds had occurred.) The sounds 

were chosen to be both reasonably familiar, but also maximally memorable and distinct 

from one another. Each sound sequence was presented while infants viewed a unique scene 

on each of the 32 trials, generated by a Matlab script. Each scene consisted of a single, 

uniquely patterned and colored box concealing a single, unique toy at the center of the 

screen (see Fig. 2 and Video S1). The box was animated to open (1 sec.), thus revealing its 

contents, then immediately close (1 sec.), so that each reveal lasted 2 sec. Each reveal was 

accompanied by one sound from the sound sequence. The box continued to open and close 

continuously, revealing the same toy on that particular trial and each time accompanied by 

the next sound in the sound sequence—until the infant looked away continuously for 1 sec., 

or until the sequence timed out at 60 sec (see Video S2). The toy was present to maintain 

infants’ visual fixation, and did not change within a sequence, but was randomized across 

trials and infants; thus, there were no differences in the visual displays across sounds in a 
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sequence, and look-aways could only be attributed to the auditory portion of the stimulus 

presentation.

Neither the boxes nor the objects were repeated across the 32 trials, rendering each object-

box pair independent and unique. Thus, there were 32 visual stimuli, one for each sound 

sequence, and each sound sequence was associated with a different, randomized box-object 

pairing across infants. This design ensured that differences in attentional termination across 

sound sequences were not driven by differences in visual materials or particular sounds.

Procedure

Each infant was seated on his or her parent’s lap in front of a table-mounted Tobii 1750 eye-

tracker. The infant was positioned such that his or her eyes were approximately 23 inches 

from the monitor, the recommended distance for accurate eye-tracking. At this viewing 

distance, the 17-inch LCD screen subtended 24 × 32 degrees of visual angle. The box at the 

center of the screen was 3 × 3 inches. To prevent parental influence on the infants’ behavior, 

the parents were asked to wear headphones playing music, lower their eyes, and abstain 

from interacting with their infants throughout the experiment.

Each of the 32 trials was preceded by an animation designed to attract the infant’s attention 

to the center of the screen—a laughing and cooing baby. Once the infant looked at the 

attention-getter, an experimenter who was observing remotely via a wide-angle video 

camera pushed a button to start the trial. Every infant heard all 32 sound-sequence trials.

For each trial, an animated scene (box opening and closing) for that sound sequence was 

played. The animated sequence of events—single instances of one of three sounds 

accompanied by a box opening and closing—continued until the infant looked away 

continuously for 1 sec., or until the sequence timed out at 60 sec. The Tobii eye-tracking 

software automatically determined the 1-sec. look-away criterion for trial termination. If the 

trial was terminated before the infant actually looked away, as determined after the 

experiment by a wide-angle video-recording of the infant’s face, the trial was labeled by an 

experimenter as a “false stop” and discarded before the analysis. False stops occurred as a 

result of the Tobii software being unable to detect the child’s eyes continuously for 1 sec., 

usually due to infants inadvertently moving out-of-range or inadvertently blocking their own 

eyes from detection (14.7% of trials). If the infant looked continuously for the entire 60-sec. 

sequence, the trial was automatically labeled as a “time out” and also discarded (4.4% of 

trials). Finally, trials in which the infant looked for fewer than four events were also 

discarded, since we judged such limited observations are likely insufficient for establishing 

expectations about the distribution of events (40.9% of trials). These stringent inclusion 

criteria imply that infants terminated many trials before they could compute a reliable 

estimate of information complexity, suggesting that infants have a strong bias to seek other 

(e.g., off-screen) sources of information. We note that changing the minimum-attention 

criterion to include more data (e.g., discarding only trials in which the infant looked for 

fewer than three events instead of four) does not affect the general qualitative or quantitative 

pattern of results. We report data here based on the less-than-four minimum-attention 

criterion in order to more closely match those of Kidd, Piantadosi, & Aslin (2012). This 

resulted in the final analysis including a mean of 11.5 +/− 5.5 sequences from each infant.
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The dependent measure for the subsequent computational modeling was the sound at which 

the infant looked away in each trial (e.g., the specific point in each sequence where the 

infant looked away from the display for more than 1 consecutive second).

Analysis

Analysis of the behavioral data followed the approach used in Kidd, Piantadosi, & Aslin 

(2012) and Piantadosi, Kidd, & Aslin (in press). A Markov Dirichlet-multinomial model 

first quantified an idealized learner’s expectation that each of the three sounds would occur 

next, at each point in the sequence. This rational model essentially combines a “smoothing” 

term—or prior expectation of sound likelihood—with counts of how often each sound has 

been heard previously in the sequence to predict each sound’s probability of occurring next. 

The model’s estimated negative log probability for each sound quantifies the sound’s 

complexity on a scale corresponding to how many bits of information an idealized learner 

would require to remember or process each sound. We also applied the MDM model to the 

data under an assumption of event-order dependence. That is, instead of treating every sound 

as independent, we examined whether look-aways were predicted by the immediately 

preceding sound (i.e., a transitional model).

We note that the models imperfectly assume that infants know how many sounds are 

possible on each display. This simplification keeps the analysis in line with Kidd, 

Piantadosi, & Aslin (2012) and Piantadosi, Kidd, & Aslin (in press); further, and more 

importantly, it is the most reasonable of several possible imperfect analysis options. It is 

likely that infants would learn that only three sounds occur per sequence within the first few 

trials. Other analyses that model uncertainty in the number of sounds per trial (e.g. a Chinese 

restaurant process) lead to implausible assumptions, such as that the first sound always has 

probability of 1 (meaning no other sound was possible).

In the analysis that relates model-measured complexity to behavior, standard linear or 

logistic regressions are inappropriate because infants cannot provide additional data on a 

trial once they have terminated their attention, thus violating the independence assumption 

required for these analyses. Thus, the obtained complexity measure was then entered as a 

quadratic term in a stepwise Cox regression of the behavioral data, as employed in Kidd, 

Piantadosi, & Aslin (2012). The Cox regression is a type of survival analysis that measures 

the log linear influence of predictors on infants’ probability of terminating attention, but 

respects the fact that infants cannot provide additional trial data once they terminate 

attention (Hosmer, Lemeshow, & May, 2008; Klein & Moeschberger, 2003). Importantly, 

the Cox regression allows the significance of a quadratic complexity term (an underlying U-

shape) to be tested while controlling for a baseline distribution of look-aways and other 

factors known to influence infant attention, including generalized boredom, trial number, 

sequence position, whether the current sound was its first occurrence, the number of unheard 

sounds, and whether the sound was an immediate sequential repeat.

Results

Fig. 3 shows infants’ probability of terminating attention, as a function of the negative log 

probability of a sound according to the non-transitional model. The plot collapses across 
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infants, sequences, and sequence positions. The diamonds represent the raw probability of 

terminating attention with complexity divided into 3 discrete bins. The smooth curve 

represents the fit of a Generalized Additive Model (Hastie & Tibshirani, 1990) with logistic 

linking function, which fits a continuous relationship between complexity and probability of 

terminating attention. The figure shows a U-shaped relationship between infants’ probability 

of attentional termination and the model-based estimate of sound event complexity. This 

indicates that infants were more likely to terminate attention at a sound in the sequences 

with either very low or very high complexity (i.e., ones that are very predictable or very 

surprising, according to the model). There is a “Goldilocks” value of complexity around 2 

bits, corresponding to infants’ preferred rate of information in this task. However, the Cox 

regression analysis revealed that this U-shaped trend was not significant controlling for the 

baseline look-away distribution (β= 0.008, z = 0.325, p > 0.7), suggesting that other factors 

contributed to the U-shape.

Fig. 4 shows the outcome of the same analysis, but now applied to successive pairs of 

events. This transitional model also yields a U-shaped function. The complexity measure—

along with a number of control covariates that could plausibly influence infant attentional 

termination—were entered into the Cox regression using a stepwise procedure that only 

added variables that improved model fit. The control variables included trial number, 

whether or not the sound had occurred before in the sequence, and whether or not the sound 

was the same as the last one that had played in the sequence (Table 1). This stepwise 

procedure revealed a highly significant effect for squared complexity (β = 0.136, z = 2.91, p 

< 0.01). This indicates that the U-shape observed in Fig. 4 is statistically significant, even 

after controlling for an overall baseline look-away distribution and the other potentially 

confounding variables.

The magnitude of this effect can be understood by exponentiating the coefficient for squared 

complexity (e0.136 = 1.15). This number quantifies how much more likely infants are to 

terminate attention at events that are one standard deviation from the experiment’s overall 

mean complexity. In this case, infants are 1.15 times more likely to terminate attention at 

such high- or low-complexity sounds. This effect is relatively small, though statistically 

reliable. This analysis also revealed an effect of trial number (β = 0.031, z = 5.76, p < 0.001) 

and first occurrence of a sound (β = 0.523, z = 2.23, p < 0.05), suggesting an overall 

tendency to look away at earlier sounds during later trials and on sounds which are occurring 

for the first time in the sequence.

Discussion

Our results from the transitional MDM model suggest that infants seek to maintain 

intermediate rates of complexity when allocating their auditory attention to sequential 

sounds. This is consistent with the hypothesis that infants employ an implicit strategy of 

attentional allocation in the auditory modality that is very similar to attention in the visual 

modality. As hypothesized in Kidd, Piantadosi, & Aslin (2012), the existence of this effect 

for auditory stimuli indicates that the Goldilocks effect may be a general way for children to 

handle James’ “blooming, buzzing confusion” by providing a rational mechanism to direct 

attention to the most important aspects of the world. Of course, future work will be required 
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to understand the intricacies of this attentional strategy—in particular, how it interacts with 

social factors (e.g., pedagogy and reward) and with overall stimulus familiarity (e.g., mom’s 

face or a favorite toy). Together with our earlier work on infant visual attention, which also 

used “arbitrary” stimuli rather than highly familiar or positive-valence stimuli, the results 

demonstrate that predictability plays an important role in influencing infant attention—but it 

is by no means the only relevant factor. In typical looking-time paradigms, it is the overall 

duration of looking, prior to meeting a criterion for a look-away, that serves as the 

dependent measure of attention. In contrast, our paradigm used briefly presented sequential 

stimuli because it afforded us a quantitative metric of information complexity. It remains to 

be seen whether attention to briefly presented stimuli and to static images (e.g., of a scene) 

can be captured by a similar model. Finally, in real-world learning situations, multiple 

complex factors likely compete to influence learners’ attention. Examining the complexities 

of these dynamics and understanding how they interact with the effects reported here will be 

a major topic of future work.

Interestingly, the results from the non-transitional model for auditory stimuli were not 

significant—in contrast to the robust results of the non-transitional model reported for visual 

stimuli in Kidd, Piantadosi, and Aslin (2012). Dissimilarly, the transitional model for 

auditory stimuli showed robust evidence of the U-shaped function, even after controlling for 

a number of other factors, including a baseline look-away distribution. This notable 

difference across models could indicate that effects of non-transitional learning are weak or 

non-existent for auditory stimuli. In other words, attention to auditory stimuli could rely 

more heavily on temporal order information than does attention to visual stimuli. If so, this 

would have interesting implications for potential cross-modality differences in infants’ 

attentional systems and learning. For example, though children certainly show sensitivity to 

frequency differences for auditory stimuli, this apparent sensitivity could arise as the result 

of learning about transitional statistics (e.g., children’s learning about the transitional 

probabilities between words could yield apparent phrase-frequency sensitivity as in Bannard 

& Matthews, 2008). It could be that the transient nature of auditory stimuli leads attention to 

be directed more to successive differences rather than to raw frequencies of occurrence, 

something that may be less relevant in the visual modality. Alternatively, tracking of the 

transitional probabilities of auditory stimuli may either be easier or more crucial for 

developing useful expectations about the auditory world. This is arguably true in language 

learning, where the meanings of words are composed not of single events but rather 

sequences of sounds, and the meanings of utterances tend to be composed not of single 

words, but of sequences of words. If this were the case, it could be relevant to determine 

whether this is an innate bias of humans to process auditory stimuli in this way, or whether 

this attentional pattern might develop over time as infants begin to acquire language. It may 

also be the case that the non-transitional model regression was insignificant because the 

effects of non-transitional complexity were too highly correlated with the baseline looking 

distribution. In this case, we might not have had enough power to find an effect of non-

transitional sound event complexity while controlling for the baseline distribution.

Our results provide quantitative evidence that infants possess an attentional selection 

mechanism that operates over the predictability of the stimulus. However, understanding the 
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precise nature of the mechanism will require further work. Previous theories hypothesized 

that infants would exhibit a U-shaped pattern of preference over stimulus complexity 

because of a gradually learned, experience-dependent selection mechanism that allocated 

attention with respect to encoding/learning efficiency. However, it is equally possible that 

our pattern of results could fall out of a far more automatic, low-level selection mechanism 

designed to filter out noise inherent in human perceptual systems. In other words, infants’ 

behavior may instead result from an attentional mechanism designed to select the most 

informative, trustworthy observations—and discard those that are uninformative (overly 

predictable) or unreliable (so surprising that they are implausible). In-progress and planned 

work will test these two competing theories by longitudinally examining patterns of 

selection within individuals, in other species, and across different timescales.

Conclusions

We hypothesized that infants’ probability of terminating their auditory attention would be 

greatest on sounds whose complexity (negative log probability), according to an idealized 

learning model, was either very low or very high. We found evidence that this was true for 

the transitional version of the model, but the trend in the non-transitional version was not 

significant after controlling for other factors. This may indicate that transitional statistics are 

more readily tracked by infants in the auditory modality. In general, our results are further 

evidence for a principle of infant attention that may have broad applicability: infants 

implicitly seek to maintain intermediate rates of information absorption and avoid wasting 

cognitive resources on overly simple or overly complex events—in both visual and auditory 

modalities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic showing an example sound sequence and how the idealized learning model 

combines heard sounds with a simple prior to form expectations about upcoming sound 

events (the “updated belief” above). The next sound then conveys some amount of 

complexity according to these probabilistic expectations of the updated belief. The 

“Goldilocks” hypothesis holds that infants will be most likely to terminate their attention to 

the sequence at sounds that are either overly simple (predictable) or that are overly complex 

(unexpected), according to the model. Thus, sounds to which the updated belief assigns 

either a very high probability (e.g., sound A) or a very low probability (e.g., sound C) would 

be expected to be more likely to generate attentional termination (look-aways) than those to 

which it assigns an intermediate probability (e.g., sound B).
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Figure 2. 
Example of display used in the experiment. A novel toy object (e.g., a little teardrop-shaped 

figure) in the box was revealed by up-down animation of an occluder (e.g., a yellow-striped 

box). Each reveal was accompanied by the next sound in the sequence associated with the 

trial. The animation and sound sequence continued until the infant looked away 

continuously for 1 sec. Also see Video S1 for examples of animated displays and Video S2 

for an example of an infant watching and terminating a trial.
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Figure 3. 
U-shaped curve for the non-transitional model. The blue solid curve represents the fit of a 

Generalized Additive Model (GAM) (Hastie & Tibshirani, 1990) with binomial link 

function, relating complexity according to the MDM model (x-axis) to infants’ probability of 

terminating attention (y-axis). The dashed curves show standard errors according to the 

GAM. The GAM fits include the effect of complexity (negative log probability) and the 

effect of position in the sequence. Note, the error bars and GAM errors do not take into 

account subject effects. Vertical spikes along the x-axis represent data points collected at 

each complexity value. The fuchsia diamonds represent the raw probabilities of terminating 

attention binned along the x-axis.
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Figure 4. 
U-shaped curve for the transitional model. The blue solid curve represents the fit of a GAM, 

relating complexity as measured by the transitional MDM (x-axis) to probability of 

terminating attention (y-axis). Dashed curves show GAM standard errors. The GAM fits 

include the effect of complexity (negative log probability) and the effect of position in the 

sequence. Note, the error bars and GAM errors do not take into account subject effects. 

Vertical spikes along the x-axis represent data points collected at each complexity value. 

The fuchsia diamonds represent the raw probabilities of terminating attention binned along 

the x-axis.
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