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Abstract
Mesenchymal stromal cells (MSCs) are currently being 
investigated for use in a wide variety of clinical applications. 
For most of these applications, systemic delivery of the 
cells is preferred. However, this requires the homing and 
migration of MSCs to a target tissue. Although MSC homing 

has been described, this process does not appear to be 
highly efficacious because only a few cells reach the target 
tissue and remain there after systemic administration. 
This has been ascribed to low expression levels of homing 
molecules, the loss of expression of such molecules during 
expansion, and the heterogeneity of MSCs in cultures and 
MSC culture protocols. To overcome these limitations, 
different methods to improve the homing capacity of 
MSCs have been examined. Here, we review the current 
understanding of MSC homing, with a particular focus 
on homing to bone marrow. In addition, we summarize 
the strategies that have been developed to improve this 
process. A better understanding of MSC biology, MSC 
migration and homing mechanisms will allow us to prepare 
MSCs with optimal homing capacities. The efficacy of 
therapeutic applications is dependent on efficient delivery of 
the cells and can, therefore, only benefit from better insights 
into the homing mechanisms.
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Core tip: Mesenchymal stromal cells (MSCs) are currently 
under investigation for use in a variety of clinical 
applications. In most studies, MSCs are administered 
systemically. This requires efficient homing and migration 
of the MSCs to a target tissue. However, the homing 
mechanisms of MSCs are not completely understood. 
Moreover, the in vivo homing and migration of MSCs does 
not appear to be highly efficient. Therefore, different 
methods have been investigated to improve homing. Here, 
we will review the current knowledge of bone marrow 
homing of MSCs, as well as the different strategies that 
might improve the homing capacity of these stem cells.
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INTRODUCTION
Mesenchymal stromal cells (MSCs) are non-haema-
topoietic cells that were first derived from the bone 
marrow and described approximately 40 years ago by 
Friedenstein et al[1]. In 2006, the International Society 
for Cell Therapy defined the minimal criteria to define 
human MSCs. They must adhere to plastic in culture and 
differentiate into osteocytes, chondrocytes and adipocytes. 
Additionally they must express CD105, CD90 and CD73 
and lack expression of CD45, CD34, CD14 or CD11b, 
CD79alpha or CD19, and HLA-DR surface molecules[2].

There is great interest in using these cells in a wide 
variety of clinical domains, such as Neurology, Orthopaedics, 
Cardiology and Haematology[3-6]. This interest arises from the 
following MSC characteristics: They have immunomodulatory 
capacities, they are multipotent and are thus possible 
effectors for tissue regeneration, and they tend to migrate 
to sites of tissue injury/inflammation[7-11]. Additionally 
MSCs might escape immune recognition, although con-
flicting observations about this particular phenotype 
have been published. MSCs do not express MHC class Ⅱ 
antigens, but the expression of these molecules can be 
upregulated after exposure to inflammatory cytokines 
or during MSC differentiation[12]. The data from animal 
studies suggest that MSCs can elicit allogeneic immune 
responses and be rejected[13-16]. On the other hand, there 
is also a report of MSCs that overcame this allogeneic 
immune response due to their immunomodulatory 
capacities[17]. von Bahr et al[18] addressed this issue and 
published follow-up data of patients treated with MSCs, 
showing that there was no correlation between the MSC 
source (donor-derived or third party) and the patients’ 
response to the MSC treatment. The clinical applications of 
these cells have been extensively studied in Orthopaedics, 
where MSCs are used to repair large bone defects, and in 
Haematology for the treatment of graft-vs-host disease 
and support for the engraftment of hematopoietic stem 
cells[4,6,19]. In recent years, MSCs have been studied as 
vehicles to deliver anti-cancer treatments because there 
is evidence that MSCs home to tumour sites. They can be 
induced to express anti-cancer proteins [e.g., interleukin 
(IL) 2], to produce pro-drug activating enzymes, which 
ensures that the active drug will only be localized in the 
tumour, or to deliver oncolytic viruses[20-23]. For these 
applications, the homing and persistence of MSCs in the 
target tissue are desirable[24].

When MSCs are used in clinical applications, different 
modes of administration are possible: Systemic admini-
stration [intravenous (IV) or intra-arterial (IA) injection] or 
local administration [intracoronary (IC) injection or direct 
injection into the tissue of interest]. Of these different 
options, IV injection is the most widely used because it is 
minimally invasive, the infusions can be readily repeated 

and the cells will remain close to the oxygen- and nutrient-
rich vasculature after extravasation into the target 
tissue[25]. However, after IV injection, the cells appear to 
be trapped in the lungs, and thus efficient homing to the 
target tissues might be compromised. IA administration 
requires an invasive procedure that has a higher risk 
of complications than IV. Although IA injections might 
improve tissue-specific homing compared to IV, there is 
a concern that microthrombi might occur as a result of 
trapping large MSCs in the microvasculature. One example 
is the concern regarding IC injections of MSCs to treat 
myocardial infarction[26]. Similar concerns have been raised 
in studies that used MSCs to treat stroke[27,28]. A true local 
injection of MSCs might require a surgical intervention, 
such as that used in the repair of bone defects. In this 
setting, the MSCs are immediately delivered to the target 
tissue; however, the cells’ survival might be compromised 
due to a lack of oxygen or nutrients[25]. Currently, haema-
topoietic stem cell transplantation is performed via an 
IV infusion. Intra-bone marrow transplantation is a more 
complex procedure, but evidence from an animal model 
suggests that this might improve the outcome of the 
treatment[29]. Finally, some animal models of systemic admi-
nistration, such as intracardiac injection, cannot readily be 
performed in patients.

The systemic infusion of cells for therapeutic appli-
cations implies and requires efficient migration and homing 
to the target site. Although there is ample evidence of MSC 
homing, this process appears to be inefficient because 
only a small percentage of the systemically administered 
MSCs actually reach the target tissue[30]. The mechanisms 
by which the MSCs migrate and home are not yet clearly 
understood.

Currently, in Haematology, MSCs are mainly being 
tested for their ability to control graft-vs-host disease and 
to support haematopoiesis after haematopoietic stem cell 
transplantation. Chemo- and radio-therapy can damage 
the haematopoietic niche. MSCs are part of this niche 
and secrete a number of haematopoietic growth factors. 
To facilitate the engraftment of haematopoietic stem 
cells and stimulate blood formation, the MSCs should 
successfully home to and persist in the bone marrow[31]. In 
this review, we discuss current knowledge about MSC 
homing, specifically focusing on bone marrow homing 
(based on both in vitro and in vivo data), and we review 
the efforts that different groups have undertaken to 
improve the homing efficiency of these cells.

MSC HOMING AND MIGRATION TO 
BONE MARROW AND OTHER TISSUES
The exact mechanisms used by MSCs to migrate and 
home to tissues have not been fully elucidated. It is 
generally assumed that these stem cells follow the same 
steps that were described for leukocyte homing. In the 
first step, the cells come into contact with the endothelium 
by tethering and rolling, resulting in a deceleration of 
the cells in the blood flow. In the second step, the cells 
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are activated by G-protein-coupled receptors, followed 
by integrin-mediated, activation-dependent arrest in the 
third step. Finally, in the fourth step, the cells transmigrate 
through the endothelium and the underlying basement 
membrane[32].

The first studies addressing MSC homing examined 
the origin of the bone marrow MSCs after allogeneic 
bone marrow transplantation. Those groups all concluded 
that the haematopoietic cells were provided by the donor, 
but the stromal cells were provided by the recipient[33-35]. 
However, in these studies, the patients received marrow 
transplants containing only a limited number of MSCs - 
approximately 1/250000 nucleated cells at 35 years of 
age - in contrast to the purified MSC product that is used 
in the majority of clinical trials[36].

Since then, several studies in animal models and 
patients have shown that MSCs are capable of migrating 
and homing to a variety of tissues. Early studies of intra-
uterine MSC transplantations in animal models showed 
that donor-derived non-haematopoietic cells were present 
in the bone marrow, thymus, spleen and liver[37,38]. Devine 
et al[30] and Chapel et al[7] performed MSC transplantations 
in non-human primates and observed MSCs in a variety 
of tissues, with highest numbers in the gastro-intestinal 
tract. The percentage of MSCs in the different tissues was 
estimated between 0.1% and 2.7%[7,30]. Erices et al[39] 
described the homing and survival of human cord blood-
derived MSCs in the bone marrow of immunodeficient 
(nude) mice after systemic infusion[39]. Several studies in 
patients have also shown MSC homing[40-43].

A few groups have analysed the dynamics of MSC 
migration after systemic infusion using different tech-
niques. Immediately after infusion, the MSCs are trapped 
in the lungs, and, subsequently, the cells are cleared 
from the lungs and distributed to other tissues[44,45]. The 
cells could be injected intravenously or intra-arterially 
for systemic infusion. The former is the least invasive 
method and the easiest to perform; however, as the 
MSCs were trapped in the lungs, different administration 
routes were examined. IA injection, which is already more 
risky because of the arterial puncture, also appears to 
entail a risk of development of microvascular occlusions 
called passive entrapment[27,46]. In addition, there have 
been reports that MSCs have a procoagulant activity[26,47]. 
A few years ago, a group from the Karolinska Institute 
reported that MSCs, particularly those that had been 
subjected to extended passaging and co-culture with 
activated lymphocytes, exhibited increased prothrombotic 
capacities; this effect was dose-dependent[47]. Gleeson 
et al[26] reported that MSCs express functionally active 
tissue factor. When MSCs were injected in the coronary 
arteries of a porcine myocardial infarction model, it 
resulted in a decreased coronary flow reserve. This effect 
could be reversed by the co-administration of heparin, an 
antithrombin agent[26].

Kyriakou et al[48] have studied the factors influencing 
short-term bone marrow homing of MSCs. The stem cells 
were observed in the bone marrow, spleen, liver and 
lungs 24 h after IV injection. It was observed that homing 

increased in younger animals and after irradiation but 
decreased with increasing passage numbers of the cells[48]. 
Several other groups have also shown that MSC homing 
improves after irradiation[7,8,30,49-52].

MOLECULES INVOLVED IN MSC (BONE 
MARROW) HOMING
The expression of molecules involved in MSC migration, 
homing and functionality has been widely studied.

Different molecules are involved/necessary for the 
different steps in the homing process. The selectins on 
the endothelium are primarily involved in the first step. 
For bone marrow homing in particular, the expression 
of haematopoietic cell E-/L-selectin ligand (HCELL), a 
specialized glycoform of CD44 on the migrating cell, is 
very important[53]. Although MSCs express CD44, they 
do not express HCELL[54].

The G-protein coupled receptors that are involved 
in the activation step are typically chemokine receptors. 
It has been extensively demonstrated that the CXCR4-
stromal derived factor-1 (SDF-1) axis is critical for bone 
marrow homing[55]. Both molecules are very physiologically 
important, as knock-outs are lethal due to bone marrow 
failure and abnormal heart and brain development[56,57]. The 
expression of the chemokine receptor CXCR4 on MSCs is 
controversial. Some groups did not observe expression of 
the receptor, while other studies demonstrated that CXCR4 
was expressed, albeit at low levels on the membrane, 
which affected migration in response to SDF-1[58-70].

Integrins are important players in the stable activation-
dependent arrest in the third step of homing. It has been 
shown that the inhibition of integrin β1 can abrogate MSC 
homing[71]. Integrins form dimers that bind to adhesion 
molecules on the endothelial cells. Integrin α4 and β1 
combine to form very late antigen 4 (VLA-4), which 
interacts with vascular cell adhesion molecule 1 (VCAM-1). 
It has been shown that the VCAM-1-VLA4 interaction is 
functionally involved in MSC homing[72,73].

In the final step of diapedesis or transmigration 
through the endothelial cell layer and the underlying 
basement membrane, lytic enzymes, such as the matrix 
metalloproteinases (MMP), are required to cleave the 
components of the basement membrane. In particular, 
the gelatinases MMP-2 and MMP-9 have important 
roles in this step because they preferentially degrade 
collagen and gelatin, two of the major components of the 
basement membrane[74,75]. We have shown that MSC 
migration is regulated by MMP-2 and tissue inhibitor of 
metalloproteinases 3 (TIMP-3)[76]. Membrane type 1 
MMP (MT1-MMP) has also been reported to play a role in 
MSC migration[63]. MMPs are secreted as pro-enzymes. 
ProMMP-2 is activated by interactions with MT1-MMP and 
TIMP-2 and is inhibited by TIMP-1. This explains why the 
MMP-2, MT1-MMP or TIMP-2 knock-down decreased the 
invasive capacity of MSCs, and why TIMP-1 knock-down 
resulted in increased invasion in the study of Ries et al[77].

Table 1 gives an overview all of the migration and 
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homing molecules that are reported to be expressed 
on human MSCs. Figure 1 shows a schematic overview 
of the molecules involved in human MSC bone marrow 
homing.

In addition to the expression of classic homing mole-
cules, different groups have also described the expression 
of growth factor receptors on MSCs. Several studies have 
shown that growth factors can also induce MSC migration. 
For example, platelet-derived growth factor (PDGF) AB 
and BB can induce MSC migration in vitro[68,80,91]. Another 
growth factor involved in MSC migration is hepatocyte 
growth factor (HGF), which binds to c-met[63,68,80]. Both 
PDGF-BB and HGF have been loaded on gels or scaffolds 
as a means to improve the in vitro migration of MSCs[92,93].

HOW CAN WE IMPROVE THE HOMING 
EFFICIENCY OF MSCs?
Several groups have demonstrated MSC homing and 
migration, but only a small proportion of systemically 
administered MSCs actually reaches and remains in the 
target tissue[30]. Several factors are assumed to be involved. 
First, the expression of homing molecules on MSCs is 
limited. For example, the membrane expression of CXCR4, 
a critical receptor for homing to bone marrow, is very low, 
and some groups even claim there is no CXCR4 expression 
at all[58-70]. Another concern is that the MSCs appear to 
lose the expression of homing molecules during in vitro 
expansion[70,94]. Additionally, there is also heterogeneous 
expression of homing molecules in MSC cultures and in 
MSCs derived from different tissues (adipose tissue vs 
bone marrow), which show a different expression profile of 
homing molecules[95].

Because improving the homing efficiency to and 
retention of MSCs in a target tissue after systemic adminis-
tration would improve their therapeutic effects, many 
groups are investigating methods to achieve this goal. 
Different strategies have been developed: the mode 
of administration could be modified, the MSC culture 
conditions can be adapted to optimize the expression of 
homing molecules, the cell surface receptors could be 
engineered to improve homing or the target tissue could be 
modified to better attract the MSCs. Again, we will mainly 
focus on the strategies that might improve the bone marrow 
homing of MSCs. The homing molecules involved in homing 
to bone marrow can also be of importance in homing to 
other organs or sites of injury, such as the CXCR4-SDF-1 
interaction for homing to the injured myocardium[96]. 
However, we believe that methods that can upregulate or 
induce the expression of the homing molecules that are 
involved in bone marrow homing of MSCs are valuable. 
They show a potential means for improving bone marrow 
homing, even though the data supporting/proving this 
are not yet available. Figure 2 provides an overview of the 
methods that could be used to improve the bone marrow 
homing of MSCs.

Modification of the mode of administration
In vivo studies have repeatedly shown that MSCs are 
trapped in the lung after intravenous injection. When mice 
were treated with a vasodilator prior to MSC infusion, there 
was a clear decrease in the number of trapped MSCs in 
the lungs and a significant increase in MSC homing to the 
marrow of the long bones[44]. Yukawa et al[97] transplanted 
MSCs in combination with heparin treatment and found 
that this strategy also significantly decreased MSC trapping 
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Figure 1  Overview of the homing molecules that are expressed on human mesenchymal stromal cells and known to be involved in the different steps 
of the bone marrow homing of mesenchymal stromal cells. EC: Endothelial cell; BM: Basement membrane; CD: Cluster of differentiation; SDF-1: Stromal cell 
derived factor 1; VLA-4: Very late antigen 4; VCAM-1: Vascular cell adhesion molecule 1; TIMP: Tissue inhibitor of metalloproteinases; MMP: Matrix metalloproteinase; 
MT1-MMP: Membrane type 1 matrix metalloproteinase; MSC: Mesenchymal stromal cell.
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Table 1  Overview of the homing molecules expressed on human mesenchymal stromal cells

Group Molecule Source Transcript Protein Functional assay

Chemokine 
receptors

CCR1[70,77-82] BM[70,77-79,81] Yes[70,77,79,80] Yes[70,77-82] In vitro migration[70,77,78,80], in vivo 
tail vein injection in mice for tissue 
distribution[77]

WJ[79]

AT[80]

PB[82]

CCR2[68,78,81,82] BM[68,78,81,82] Yes[68,82] Yes[68,78,81,82] In vitro migration[68,78,82] 
CCR3[68,78,81-83] BM[68,78,81,83] Yes[68] Yes[68,78,81,82,83] In vitro migration[68,78] 

PB[82]

CCR4[68,77,78,82] BM[68,77,78,82] Yes[68,77,82] Yes[68,77,78] In vitro migration[68,77,78,82], in vivo 
tail vein injection in mice for tissue 
distribution[77]

No[82]

CCR5[68,78,81-83] BM[68,78,81,83] Yes[68] Yes[68,78,81,82] In vitro migration[68,78] 
PB[82]

CCR6[78,81,83] BM[78,81,83] Yes[82] Yes[78,82] In vitro migration[78]

CCR7[70,78,80-83] BM[70,78,81,83] Yes[70,80,83] Yes[70,78,80-83] In vitro migration[70,78,83]

AT[80]

PB[82]

CCR8[78,82,83] BM[78,83] Yes[82] Yes[78,82,83] In vitro migration[78]

PB[82]

CCR9[70,78,81-83] BM[70,78,81,83] Yes[70,83] Yes[70,78,81-83] In vitro migration[70,78]

PB[82]

CCR10[77,78,81,83] BM[77,78,81,83] Yes[77,83] Yes[77,78,81] In vitro migration[77,78], in vivo tail 
vein injection in mice for tissue 
distribution[77]

CXCR1[78,81,82,84] CB[84] Yes[83,84] Yes[78,81,82,84] In vitro migration[78,83,84], in vivo 
injection in brain[84]BM[78,81,82]

PB[82]

CXCR2[62,78,81-83] BM[62,78,81,83] Yes[62,83] Yes[62,78,81-83] In vitro migration[62,78,83], in vivo lung 
metastasis model[62]PB[82]

CXCR3[78,81-83] BM[78,81,83] Yes[83] Yes[78,81-83] In vitro migration[78]

PB[82]

CXCR4[60,62,65,66,68,70,76,78,80-83,85,90] BM[60,62,68,70,76,78,81,83,85] Yes[60,62,66,68,70,76,80,83,85] Yes[62,65,66,68,70,76,78,80-83,85,

90]
In vitro migration[60,62,65,66,68,70,76,78,80,83,85,90], 
in vivo lung metastasis model[62], tail 
vein injection in sublethally irradiated 
mice[66]

CB[65,85,90]

Foetal BM[66]

AT[80]

PB[82]

CXCR5[68,70,77-83] BM[68,70,77,78,81,83] Yes[68,70,77,79,80,83] Yes[68,70,77-83] In vitro migration[68,70,77,78,80], in vivo 
tail vein injection in mice for tissue 
distribution[77]

WJ[79]

AT[80]

PB[82]

CXCR6[70,78,80-83] BM[70,78,81,83] Yes[70,80,83] Yes[70,78,80-83] In vitro migration[70,78,80]

AT[80]

PB[82]

CXCR7[60,82] BM[60] Yes[60] Yes[82] In vitro migration[60]

PB[82]

CX3CR[82] BM[82] Yes[82] Yes[82]

PB[82]

XCR[82,82] BM[82] Yes[82] Yes[82]

PB[82]

Adhesion 
molecules

VCAM-1[74,85,86] BM[74,85,86] Yes[85] Yes[85,86] In vitro migration[74]

CB[86]

AT[86]

ICAM-2[85] BM[85] Yes[85] Yes[85]

CD62[11,17,54,86-89] BM[11,54,86-89] Yes[11,17,54,86-89] In vivo homing in a mouse model[54]

CB[17,86,87,89]

AT[86-89]

Skin[87]

LFA-3[85] BM[85] Yes[85] Yes[85]

Integrin α1[11,85,87] BM[11,85,87] Yes[85] Yes[11,85,87]

CB[87]

AT[87]

Skin[87]

Integrin α2[85] BM[85] Yes[85] Yes[85]

Integrin α3[11,85] BM[11,85] Yes[85] Yes[11,85]

Integrin α5[11,85] BM[11,85] Yes[85] Yes[11,85]

Integrin α6[85] BM[85] Yes[85] Yes[85]
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in the lungs.

Pretreatment or priming of MSCs in culture or modifying 
the MSC culture conditions
Because MSCs appear to downregulate homing molecule 
expression during expansion, many groups are investigating 
different ways to induce or upregulate the expression of 
important homing molecules.

Much effort has been focused on increasing CXCR4 
expression on the membrane. One way to achieve this 
is by adding cytokines or cytokine cocktails to the culture 
medium during expansion. Shi et al[66] showed that 
exposure to a combination of flt3 ligand, stem cell factor 
(SCF), IL 3, IL 6 and hepatocyte growth factor (HGF) 
increased both the intracellular and membrane expression 
of CXCR4 on cultured MSCs. More of the pretreated cells 
migrated towards an SDF-1 gradient, and there was no 
effect of the pretreatment on the function of the MSCs in 
supporting haematopoiesis. In vivo homing experiments 
where MSCs were intravenously injected into sublethally 

irradiated mice revealed a significant increase in bone 
marrow homing after the cytokine treatment[66]. Other 
molecules that have been shown to increase CXCR4 
expression are insulin-like growth factor 1 (IGF-1), tumour 
necrosis factor α (TNFα), IL 1β, interferon γ (IFNγ)[68,98-100]. 
CXCR4 expression could also be upregulated by treating 
cultured MSCs with glycogen synthase kinase 3β (GSK-
3β) inhibitors, resulting in an improved in vitro migration 
capacity, without affecting cell viability[101]. Exposure 
to complement 1q (C1q) has been shown to increase 
MSC migration towards SDF-1, although there was no 
significant increase in CXCR4 expression. Therefore, it was 
postulated that C1q exposure increases the MSCs’ ability 
to sense SDF-1 gradients[65].

Treatments with GSK-3β inhibitors and C1q also 
increase MMP expression in MSCs, which are important 
for the degradation of the basement membrane during 
extravasation[60,101]. A combination of the haematopoietic 
growth factors erythropoietin (EPO) and granulocyte 
colony stimulating factor (G-CSF) has also been reported 

Integrin αv[85] BM[85] Yes[85] Yes[85]

Integrin β1[11,86-88] BM[11,86-88] Yes[11,86-88]

CB[86,87]

AT[86-88]

Skin[87]

Integrin β3[85] BM[85] Yes[85] Yes[85]

Integrin β4[85] BM[85] Yes[85] Yes[85]

ALCAM[17,87] BM[87] Yes[17]

AT[87]

CB[17,87]

Proteases MMP-1[90] BM[90] Yes[90] Yes[90] In vitro migration[90]

MMP-2[65,68,74,76,77,85,90] BM[68,76,77,85,90] Yes[68,76,77,85,90] Yes[65,68,76,77,85,90] In vitro migration[65,68,74,76,77,85,90] 

CB[85]

MMP-13[68,90] BM[68,90] Yes[68,90] Yes[68,90] In vitro migration[68,90] 
MT1-MMP[68,77,85] BM[68,77,85] Yes[68,77, 85] Yes[68,77,85] In vitro migration[68,77,85]

CB[85]

TIMP-1[68,77,90] BM[68,77,90] Yes[68,77,90] Yes[68,77,90] In vitro migration[68,77,90] 

TIMP-2[68,90] BM[68,77,90] Yes[68,77,90] Yes[68,77,90] In vitro migration[68,77,90] 

TIMP-3[76] BM[76] Yes[76] Yes[76] In vitro migration[76]

Growth 
factor 
receptors

c-met (HGF-R)[68,80,85] BM[68,85] Yes[68,80, 85] Yes[68,85] In vitro migration[85,68] 
CB[85] No[80]

AT[80]

PDGFRα[68,80,87] BM[68,87] Yes[68,80] Yes[68,80,87] In vitro migration[68,80] 

AT[80,87]

CB[87]

Skin[87]

PDGFRβ[68,80,87] BM[68,87] Yes[68,80] Yes[68,80,87] In vitro migration[68,80] 
AT[80,87]

CB[87]

Skin[87]

FGF-R1[80] AT[80] Yes[80] Yes[80] In vitro migration[80]

FGF-R2[68] BM[68] Yes[68] Yes[68] In vitro migration[68] 
EGF-R[68,78] BM[68,78] Yes[68,80] Yes[68,80] In vitro migration[68,80] 

AT[80]

IGF-R1[68] BM[68] Yes[68] Yes[68] In vitro migration[68] 

TIE-2[68] BM[68] Yes[68] Yes[68] In vitro migration[68] 

TGFRB2[80] AT[80] Yes[80] Yes[80] In vitro migration[80]

TNFRSF1A[80] AT[80] Yes[80] Yes[80] In vitro migration[80]

BM: Bone marrow; CB: Cord blood; AT: Adipose tissue; WJ: Wharton’s Jelly; VCAM: Vascular cell adhesion molecule; ICAM: Intercellular adhesion 
molecule; CD: Cluster of differentiation; LFA: Lymphocyte function associated antigen; ALCAM: Activated leukocyte cell adhesion molecule; MMP: 
Matrix metalloproteinase; TIMP: Tissue inhibitor of metalloproteinase; HGF: Hepatocyte growth factor; PDGFR: Platelet-derived growth factor receptor; 
FGF-R: Fibroblast growth factor receptor; EGF-R: Epidermal growth factor receptor; IGF-R: Insulin-like growth factor receptor; TIE: Tyrosine kinase with 
immunoglobulin-like and EGF-like domains; TGFR: Transforming growth factor receptor; TNFRSF: Tumour necrosis factor receptor superfamily.
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to increase MMP-2 expression in MSCs and improve their 
motility[102].

There is also evidence that the epigenetic modulation 
induced by a short-term exposure to valproic acid results 
in increased expression of CXCR4 and MMP-2 in cultured 
MSCs and an increase in their migration towards SDF-1. 
There was no impact of this priming on the differentiation 
capacity of the cells[103].

Another approach that is under investigation is 
culturing MSCs under hypoxic conditions. Several groups 
have shown that these conditions result in increased 
CXCR4 expression and an improvement in MSC migration 
both in vitro and in vivo. This effect of hypoxia not only 
appears after short-term exposure but also in response 
to continuous culture in hypoxic conditions[104-108]. The 
increase in CXCR4 expression is reported to be regulated 
by an increase in hypoxia inducible factor (HIF) 1α[108]. 
Hypoxia also leads to differential expression of MMPs. For 
example, a decrease in MMP-2 secretion and an increase 
in MT1-MMP secretion and activity has been described 
in MSCs cultured under hypoxic conditions[104]. However, 
one could be concerned that culturing MSCs under 
hypoxia might change their behaviour. Valorani et al[109] 
reported that adipose tissue-derived MSCs cultured under 
hypoxic conditions exhibited an increased adipogenic or 
osteogenic differentiation capacity[109]. Crowder et al[110] 
reported that concurrent exposure to extreme hypoxia 
(0.5%) and a carcinogenic metal (nickel) induces 
carcinogenic changes in late passage MSCs. They did not 
observe these changes in early passage control cells[110].

A simpler modification of culture conditions is to 
maintain lower confluence. Our group found that MSCs that 
were cultured to complete confluence had a lower migration 

capacity than MSCs maintained at a low confluence. The 
cells cultured at higher confluence secrete more TIMP-3, an 
inhibitor of MMPs, which decreases migration compared to 
the MSCs cultured at low confluence[76].

Finally, MSCs are a heterogeneous cell population, and 
a particular subset of MSCs might have better homing 
abilities. MSCs were separated based on their expression 
of Stro1 and cultured further; these cells exhibited 
different migration capacities in NOD/SCID transplantation 
experiments. The amount of Stro1- MSCs was higher than 
the amount of Stro1+ MSCs in the target tissues of the 
mice, such as the bone marrow and spleen, after systemic 
administration via the retro-orbital plexus[111].

Genetic modifications
As already mentioned, MSCs express low levels of 
CXCR4, if any at all[58,59]. Because the CXCR4-SDF1 
axis is important for bone marrow homing[20,112], many 
groups have designed transfection or transduction ex-
periments in which CXCR4 expression plasmids are 
either nonvirally or virally introduced into the cells. Viral 
transduction is the most efficient method for obtaining 
high and stable expression levels in the target cells. 
CXCR4 overexpression resulted in improved MSC homing 
to the bone marrow after intracardiac injection into a 
NOD/SCID transplant model[112]. In a similar model, the 
overexpression of integrin α4, a subunit of VLA4 that 
interacts with VCAM-1, also resulted in increased bone 
marrow homing[113]. However, there are some draw-backs 
to this technique. Most importantly, there is the concern 
that the use of viral vectors to introduce the plasmid DNA 
poses a risk of insertional oncogenesis. Techniques for site-
directed integration have been developed to circumvent 
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Bone marrow
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Figure 2  Schematic overview of the different strategies that can be used to improve homing in the different steps of mesenchymal stromal cell migration. 
CD: Cluster of differentiation; EC: Endothelial cell; BM: Basement membrane; HCELL: Hematopoietic cell E-/L-selectin ligand; PSGL-1: P-selectin glycoprotein 
ligand-1; SLEX: Sialyl Lewis X; SDF-1: Stromal cell derived factor 1; VLA-4: Very late antigen 4; VCAM-1: Vascular cell adhesion molecule 1; Ab: Antibody; TIMP: 
Tissue inhibitor of metalloproteinases; MMP: Matrix metalloproteinase; EPO: Erythropoietin; G-CSF: Granulocyte colony stimulating factor; MSC: Mesenchymal 
stromal cell.
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this problem[114]. Moreover, there is also a risk of adverse 
immune reactions and the production costs are high[115].

Different modes of non-viral transfection of plasmid 
DNA have been developed. One group overexpressed 
CXCR4 in MSCs using mRNA nucleofection. They obtained 
90% expression of the surface receptor, but cell viability 
was only 62% and no increase in MSC homing could be 
observed[96]. Another group investigated the feasibility of 
inserting a short interfering RNA in MSCs using ultrasound 
and microbubbles to promote survival. A significant knock-
down of the target (PTEN) could be obtained, but the cells 
were damaged after the manipulation[116]. 

Different modes of chemical, non-viral transfection 
have been studied, including the use of lipid agents. 
Although these techniques are easier to scale up and 
less expensive than viral transduction, they come with a 
price. The transfection efficiencies are significantly lower 
because approximately 35% of the MSCs express the 
transfected protein compared to over 90% of the cells 
after viral transduction[20].

Cell surface engineering
A method to improve homing efficiency of MSCs that 
has garnered interest in recent years is cell surface 
engineering, i.e., a transient modification of the cell 
surface. Because transmigration through the activated 
endothelium takes 1-2 h, these transient alterations can 
be instrumental in improving MSC homing[117]. It has 
been shown that these modifications do not impact cell 
viability, proliferation, adhesion or differentiation[118-121]. 
For cell surface engineering, most groups focus on 
improving the first step of the homing process, tethering 
and rolling, by modulating the expression of adhesion 
molecules[54,118,120,121]. Since the first publications, many 
groups have developed different techniques for the cell 
surface modifications of MSCs.

A seminal paper in this field was published in 2008, 
when Sackstein et al[54] reported that they had converted 
the native CD44, which is readily expressed on MSCs, 
into the haematopoietic cell E-selectin/L-selectin ligand 
(HCELL) glycoform ex vivo[54]. E-selectin plays a key 
role in haematopoietic stem cell (HSC) homing to the 
bone marrow; however, MSCs do not express P-selectin 
glycoprotein ligand-1 (PSGL-1) or HCELL, the two 
E-selectin ligands that are required for HSC bone marrow 
homing, thus impairing their homing capacity to the bone 
marrow[54,122]. MSCs natively express CD44. In this study, 
Sackstein et al[54] were able to alter sialofucosylation ex 
vivo and transform CD44 into the HCELL glycoform. This 
treatment had no effect on the viability or phenotype 
of the cells. In vivo homing experiments that injected 
MSCs into the tail veins of NOD/SCID mice showed that 
the HCELL+ MSCs homed to the bone marrow, even in 
the absence of CXCR4, in contrast to the unmanipulated 
MSCs[54].

Sialyl Lewis X (SLEX) is the active site of PSGL-1. 
Therefore, introducing this molecule into the MSC cell 
membrane should also lead to improved MSC homing. 

Sarkar et al[118] used biotinylated microvesicles to modify 
the MSCs. When the vesicles were brought into contact 
with the MSCs, they integrated into the cell membrane, 
thus generating biotinylated MSCs. Using a streptavidin 
linker, biotinylated SLEX could be immobilized on the cell 
surface. The accessibility of the lipids integrated in the 
cell membrane was assessed and the researchers found 
they could still be detected after 4 h, but the intensity 
had already decreased to 50% compared with that at 
0 h. After 8 h, all signals were lost, confirming that the 
modification is indeed transient. In vitro tests showed 
that the SLEX-expressing MSCs exhibited improved 
adhesion under shear stress compared to the sham-
treated MSCs[118].

Cheng et al[120] described a rapid (30 min) procedure 
to conjugate peptide K, an E-selectin binding peptide, to 
the MSC membrane. The MSC viability and proliferation 
rates were normal after engineering and their differ-
entiation capacity was also maintained. In an in vitro 
model of inflamed endothelium, they subsequently 
demonstrated that the engineered MSCs adhered better 
than the control MSCs under shear stress[120].

Lo et al[121] described yet another engineering method 
to improve MSC binding to selectins and facilitate tethering 
and rolling. The first 19 amino acids of PSGL-1 (Fc19) 
were combined with an IgG tail and with an SLEX glycan 
to engineer a pan-selectin-binding ligand. Tests in flow 
chambers showed that these MSCs were indeed capable 
of adhesion under shear stresses[121].

However, adhesion molecules are not the sole targets 
of the cell surface engineers. There is also interest in 
conjugating antibodies to the cell surface. Protein painting 
is a technique that binds antibodies to the cell surface. 
First, the palmitated proteins acting as docking stations for 
the antibodies are integrated into the cell membrane, and, 
subsequently, antibodies can be bound to the cell without 
losing affinity and with no impact on the viability and 
differentiation potential of the engineered cells[123]. One 
example using this technique is the binding of intercellular 
adhesion molecule (ICAM)-1 antibodies to MSCs, which 
increased the binding of these cells to endothelial cells[124]. 
This same protein painting technique has been applied 
to express VCAM-1 antibodies on MSCs, resulting in 
improved homing. In this study, the target tissues were 
the mesenteric lymph nodes and the colon. However, this 
technique might also be applied to improve homing to 
other organs, such as the bone marrow, because VCAM-1 
is implicated in the bone marrow homing of MSCs[125].

Recently, a method was also described in which 
recombinant CXCR4 is bound to the cell surface of MSCs 
using lipid-PEG. In a one-step mixture procedure, recom-
binant CXCR4 could be transiently expressed on MSCs, 
leading to migration towards SDF-1 in a concentration-
dependent manner[119].

Modification of the target tissue
Finally, MSC migration and homing can be influenced by 
modifying the target tissue. In early homing studies, it was 
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already shown that altering the target tissue by irradiation 
increases MSC homing[7,8]. After chemo- and radio-therapy, 
there are increased levels of SDF-1 in the bone marrow, 
thus increasing its attraction for HSCs and MSCs[126]. 
There are also reports of manipulating MSC migration with 
ultrasound or magnetic or electric fields[127-129]. However, 
these techniques do not appear to be very practical and 
they need adequate expression of homing molecules. For 
example, application of electrical fields could induce heat 
and electrochemical products near the electrodes. On the 
other hand, ultrasound-guided delivery might be more 
challenging in deep organs. Finally, homing directed by a 
magnetic field might require the implantation of a magnet 
in or near the tissue of interest[127-129].

Caveats in modifying homing molecules
In animal models and clinical studies, only limited eng-
raftment or no engraftment at all is often observed, 
raising the question of whether tissue-specific homing 
is required for the therapeutic effect of MSCs[30,42]. A 
study on the use of systemically administered MSCs for 
the treatment of stroke in an animal model also showed 
very limited migration of MSCs to the tissue of interest, 
the brain. However, the researchers found that MSC 
homing to the spleen was important and correlated with 
a reduced infarct size and peri-infarct inflammation. They 
propose that MSCs exert a beneficial effect by abrogating 
secondary, inflammation-related cell death[130]. These 
data show that tissue-specific MSC homing is important, 
even though the target tissue is not the brain, as one 
would expect in a stroke model. Fernández-García et 
al[131] performed cotransplantation studies with MSCs and 
HSCs and found that cotransplantation improves short- 
and long-term haematopoietic reconstitution. This was 
the result of MSC and HSC interactions, and they propose 
that MSCs act as carriers that facilitate HSC homing to 
the bone marrow[131].

Manipulating stem cells, such as MSCs, to improve 
their homing capacities might not only change their 
migratory capacities but also have other consequences. 
For example, Liu et al[132] claim that the CXCR4-SDF-1 axis 
plays an important role in MSC survival because MSCs 
pretreated with SDF-1 exhibited significantly improved 
survival and proliferation. These effects could be partially 
inhibited by AMD3100, an inhibitor of CXCR4[132]. The 
pretreatment of MSCs with cytokines also revealed some 
conflicting observations. In a recently published paper, 
Kavanagh et al[133] report that licensing murine MSCs 
with inflammatory cytokines does not improve homing 
to the injured gut in an ischaemia/reperfusion model in 
their hands. More importantly, they found that while the 
untreated MSCs improved tissue perfusion, this effect 
was abrogated with the pretreated MSCs[133]. However, 
another group reported positive effects of pretreatment 
on the biological functions of the MSCs. Szabó et al[134] 
found that licensing murine MSCs with pro-inflammatory 
cytokines resulted in a significant reduction in the 
variability in immunosuppressive capacities of these MSCs. 
This reduction in variability was due to an increased 

immunosuppression of clones that were poor inhibitors of 
T-cell proliferation prior to licensing[134].

The pretreatment of MSCs with different factors or 
conditions, e.g., hypoxia and inflammatory cytokines, 
could also modify their response to these treatments. 
Naaldijk et al[135] found that the oxygen concentration 
(normoxia vs hypoxia) alters the response of rat and 
human AT MSCs. They also found that the migration 
of MSCs isolated from older donors (rat and human) 
was not significantly impaired compared with the MSCs 
from young donors[135]. In contrast to this last finding, 
Choudery described that MSCs from aged mice exhibit 
diminished effectiveness and increased expression of 
apoptotic and senescent genes[136].

In this review, we have described different techniques 
for improving MSC homing and the expression of homing 
molecules on MSCs. Importantly, however, the expression 
of homing molecules and the resulting migration, homing 
and biological functions of MSCs might easily be altered 
unintentionally. Currently, many different protocols are 
used to expand MSCs for in vitro, animal and clinical 
studies. These variables can have a major impact on the 
expression of the homing molecules and the biological 
functions of MSCs; we will briefly discuss this below.

MSCs were first isolated from bone marrow. Since 
then, MSCs have been isolated from a wide variety of 
tissues, including adipose tissue (AT), umbilical cord 
blood (CB), Wharton’s jelly (WJ), etc.[59,79,80,82]. Several 
groups have reported differences in the expression of 
homing molecules in human MSCs isolated from different 
sources; these are listed in Table 1. Additionally, the MSCs 
derived from different sources also exhibit differences in 
their biological functions. For example, AT MSCs might 
have better immunosuppressive capacities than bone 
marrow MSCs[95]. On the other hand, bone marrow 
MSCs appear to be the only MSCs that are capable of 
forming a haematopoietic niche that can support human 
haematopoietic tissue in an in vivo model[87].

When using MSCs for organ-specific treatments, one 
might choose to induce differentiation in vitro before 
transplantation. However, in vitro differentiation might not 
always result in a clinical benefit during MSC therapy. In 
a study using human CB MSCs in a mouse model for liver 
disease, the researchers found that hepatic differentiated 
MSCs performed worse than the undifferentiated MSCs. 
The differentiated MSCs showed decreased expression of 
the homing molecules and decreased in vivo migration 
after IV infusion. Additionally, their immunosuppressive 
capacity was decreased and the expression of HLA DR 
was increased, thus increasing their immunogenicity[137]. 
Ullah et al[138] also found that chondrogenic differentiated 
human MSCs exhibited a significantly reduced in vitro 
migration capacity than undifferentiated MSCs. However, 
CCR9 expression and in vitro migration to its ligand, 
CCL25, were retained in the differentiated MSCs[138]. 

Many parameters in MSC cultures vary between 
different research groups, including seeding density, number 
of passages, basal medium, and growth supplements [foetal 
bovine serum (FBS) vs platelet lysate (PL)]. All of these 
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factors might have an important impact on MSC function 
and migration. For example, Cholewa et al[139] found that PL 
increased MSC proliferation and increased the number of 
population doublings before senescence compared to FBS. 
However, they also showed that seeding MSCs at lower 
densities selected a highly migratory MSC population[139]. 
There are also reports of MSCs losing their migratory 
capacity and/or expression of homing molecules after ex 
vivo expansion[48,94]. After culture, MSCs are harvested 
with trypsin to detach them for passaging. Chamberlain et 
al[140] reported that the cell surface expression of chemokine 
receptors was decreased when the cells were detached with 
trypsin.

Future research directions
As described above, there is currently substantial variability 
in the isolation and expansion protocols for MSCs. 
Research on MSC homing and migration would clearly 
benefit from standardized MSC expansion protocols. What 
appears to be a rather minor aspect of the expansion 
protocol might have a significant impact on MSC function 
and/or migration. Thus, standardizing MSC expansion 
protocols would minimize unintentional modifications 
of the homing molecules. Of course, different culture 
conditions should be compared to create an optimal 
expansion protocol. Once this protocol is defined, it will 
also be easier to evaluate therapeutic efficacy of MSCs in 
clinical settings. It may be that different clinical applications 
require different expansion protocols to obtain the desired 
therapeutic effect.

We summarized the strategies for improving MSC 
homing. Many of these methods have not yet been 
validated in vivo. Before they can be translated to the 
clinic, the techniques with the most promising results 
should be first validated using in vivo homing models. In 
these experiments, the migration of engineered MSCs 
should be compared with the migration of untreated 
cells, and the therapeutic efficacy of the treated MSCs 
can also be assessed in animal disease models.

Although MSCs are widely studied and used in many 
clinical trials in a variety of clinical domains, little is known 
about the exact mechanisms by which MSCs exert certain 
therapeutic effects and their homing to certain tissues. 
Further studies would benefit from a better understanding 
of MSC biology. Understanding whether and where MSC 
migration or homing is necessary can help to define the 
optimal expansion protocols.

Finally, when transitioning to clinical trials, all conditions 
should be strictly defined, and, ideally, randomized 
controlled trials would be designed.

CONCLUSION
MSCs are interesting effector cells that can be used in a 
variety of therapeutic applications. Systemic administration 
is often the preferred route of delivery. However, this 
approach requires that adequate numbers of MSCs migrate 
and home to the target tissue(s). MSCs do not express 
many homing receptors, which impairs their migration 

capacity and hampers their therapeutic efficacy. Studies 
are ongoing and are needed to further elucidate the MSC 
homing mechanisms. A better understanding of MSC 
homing, as well as the factors influencing this process, will 
allow researchers to optimize the migration capacities of 
these stem cells and their therapeutic effects in a target 
tissue.
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